1.9 * New classifier: Naive Bayes 1.8 * Self-Organized maps (SOM) implementation added. * Bug fixed on genetic algorithms data load 1.7 * New neural network: Hopfield nets added 1.6.1 * Hyperpipes bug fixed * Data set domains builder returns range for numeric attributes 1.6 * New classifier: Hyperpipes * New clusterer: Hierarchical Weighted Average Linkage * New clusterer: Hierarchical Centroid Linkage * New clusterer: Hierarchical Median Linkage * New clusterer: Hierarchical Ward's method Linkage * New clusterer: Diana (Divisive Analysis) * Example code added: Simple website clusterer * New simple matching distance function added for discrete attribute vectors 1.5 * ClassifierEvaluator class added: Ideal for experimentation with classifiers * New classifier: Multilayer Perceptron using Backpropagation neural network * New clusterer: Hierarchical Single Linkage * New clusterer: Hierarchical Complete Linkage * New clusterer: Hierarchical Average Linkage * Simple Statistics module added * Simple Proximity functions module added * New parameter for K-Means based clusterers: Custom centroid function 1.4 * Backpropagation neural networks rebuilt from zero: Faster, leaner code, more parameterizable. * All algorithms include the Parameterizable module. 1.3 * DataSet class added to wrap data used in classifiers * All classifiers use the new DataSet class * All classifiers extend Classifier class * Clustering algorithm implemented: K Means * Clustering algorithm implemented: Bisecting K Means * get_rules method returns generated rules, do not use to_s anymore 1.2 * New module organization * Added PRISM algorithm implementation * Added OneR algorithm implementation * Added ZeroR algorithm implementation * Example list added to the forrest documentation * Backpropagation networks: Checking output dimensions during training 1.1 * Backpropagation networks: Train method returns net error. 1.0 * Initial release