Theorem 1.
There exist infinitely many prime numbers.
Theorem
There exist infinitely many prime numbers.
Theorem 1: Euclid
There exist infinitely many prime numbers.
Theorem: Euclid
There exist infinitely many prime numbers.
\[ a^{p-1} \equiv 1\ \text{mod}\ p \]
Comment
It is sometimes useful to "hide" a comment …​
Buurem lok medes, nor. Paat for deng zu locnoop.
1.
Buurem lok medes, nor. Paat for deng zu locnoop.
Blaar, dem za doop
Buurem lok medes, nor. Paat for deng zu locnoop.
1: Blaar, dem za doop
Buurem lok medes, nor. Paat for deng zu locnoop.
\[ a^{p-1} \equiv 1\ \text{mod}\ p \]
\[\begin{split} a &= b + c \\ c &= d + e \\ a &= b + d + e \end{split}\]

This — \(\ce{ 2H2 + O2 → 2H2O }\) — happens a lot.

\[\ce{2Fe2O3 + 3C → 4Fe + 3CO2}\] (1)
JSXGraph 1.

He read an article in The Washington Post

Let’s smelt some iron!

\[\ce{2Fe2O3 + 3C → 4Fe + 3CO2}\] (1)