false M3AAWG 781 Beach Street, Suite 302 San Francisco, California 94109 U.S.A. www.m3aawg.org M3AAWG As with all M3AAWG documents that we publish, please check the M3AAWG website (www.m3aawg.org) for updates to this paper.     © copyright by the ( ) M3AAWG M3AAWG Companion Document: : .0 The direct URL to this paper is: www.m3aawg.org/dns-crypto-recipes This document is intended to accompany and complement the companion document, “M3 AAWG Tutorial on Third Party Recursive Resolvers and Encrypting DNS Stub Resolver-to-Recursive Resolver Traffic” (www.m3aawg.org/dns-crypto-tutorial). This document was produced by the M3 AAWG Data and Identity Protection Committee. <!-- DEBUG contents= --> bold   bold       false false true false true true false <xsl:apply-templates select="xalan:nodeset($title)" mode="contents_item"/> 14pt 12pt 14pt 14pt 12pt fo:inline fo:block bold 8pt 10pt 0pt 6pt 12pt 6pt 12pt 8pt always H fo:inline fo:inline fo:block justify 0mm 6pt   iVBORw0KGgoAAAANSUhEUgAAAjUAAAA8CAYAAACehUt5AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAA99pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuMy1jMDExIDY2LjE0NTY2MSwgMjAxMi8wMi8wNi0xNDo1NjoyNyAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyIgeG1wTU06T3JpZ2luYWxEb2N1bWVudElEPSJ1dWlkOmZhZjViZGQ1LWJhM2QtMTFkYS1hZDMxLWQzM2Q3NTE4MmYxYiIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDo1QjFGQUNFRDVCODYxMUU0OUZCN0FCODI3QzkxM0M3RiIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDo1QjFGQUNFQzVCODYxMUU0OUZCN0FCODI3QzkxM0M3RiIgeG1wOkNyZWF0b3JUb29sPSJBZG9iZSBQaG90b3Nob3AgQ1M2IChXaW5kb3dzKSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOkMwOEQ1MzE4OTE1NUU0MTE4ODdFRjlCOTFBMkJDOUNFIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOjg1QjAyNUI5RTdEQkUxMTFBMzhBOEE4OTAwQjRGMkQxIi8+IDxkYzpjcmVhdG9yPiA8cmRmOlNlcT4gPHJkZjpsaT5wYXJ0aWN1bGFyPC9yZGY6bGk+IDwvcmRmOlNlcT4gPC9kYzpjcmVhdG9yPiA8L3JkZjpEZXNjcmlwdGlvbj4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gPD94cGFja2V0IGVuZD0iciI/PgKyUlQAADIMSURBVHja7F0HmBZF0m6QIOqJgKdnBgMqwrl6xhP3QM9w5gDqmWBVQFBEQO/0Pw/Md+aEIHHF7ClGRMQEK+YEioAYQFFBUQRBQQT3r/ebd9jZ2e6e8M23ya7nab5lpqen01S9XV1V3WBxUdtyVb/pspbT5lyqHDlyVCMkPGZL+Wkk6XP5Fn91PeLIkaNCUHl5eY7R5P4Gw6mn7VzihtqRoxqlqZK2kdTCfY+OHDkqJPmg5gdZQbV23eHIkSNHjhw5qqvU0HWBI0eOHDly5MiBGkeOHDly5MiRo1pCjepz4xYXtd1cfk6S1FlSB0mbEMh9I+kVSWNbTpvztJsGjhw5cuTIUX0GNaVlLeXfowx3Z6uS4tdqpMalZe3k370Md5+Qei0moOktP7dIaqzJt5WkE5Ek34Pye7qAm1X5VOuOVz9eL9cvSm0YuAwD7H3O3nf7D+vi5JA2vSg/u4UunyntGZeyvFbyc6Th9kIpd2I1tOl38nO84fYsqcPr1VCHXTX96tPLUoePMn7f1vLzZ0l7S9pOUhtJAPxNJa3PbD8rz4h3kaR5kj6W9K6kN6Q+sx2rdOTIUd0GNUqBEZYa7q0QcPFnARDTqhnQbCb/PidpM0MOCIrF/PsHA6AJE8DNfEkX5lm70wmWwnS+pN51ENBAAHbS3LpA0riUxS6VdLVh/FbIOzcXAVpo75jukm413JsjddhJ6lDoMAdDJHXUXC8n4Mhi/HaSn1MkdZW0Y4xHAHA2ZWofKusr+XlW0iP4lf5Z4VinI0eOaiOltalpJukxARm/r0ZA04RMdbOYT4wnsBkp6WBJqCvK2DVX98rUe3FR22Z5CJAG8tPXcLub3N+4Ds6Nfobr+0h7/pymQBGGq+VntGVOnVYN7epluddW0l8KDBbbGQAN6Gnpo8/yLP9ASdB4zZJ0SUxAE0XQ6nST9Likb6T8MZI6ct47cuTIUZ0HNSDEnfifgI3G1VTX2yFQ42ZuOW0OtAJt5LenpGclfSvpF0nvyfUuylOv+wQVfOs86nagpHYWYX12XZoUIqw2Yx+ZaEAexY+iRkJHvQvcrv3lZ5eIbIXWqvW0VTGPtu0s6SnlaTIPKWD9N5BUIukl5Wm2/iVpC8dKHTlyVNdBDaiTpJsKXsvSsj7y71lJHxMAs9hwfY38zAxdzkel3i/i/rnC+JvUoXmB/raB1WOlPam2SaiJMNnO7EzgUSiKAy7Rtk0KBKrWVd42pY6wBTohRZkNJA2UP7EVfFg1z5PtJV0p6SrHSh05clQfQA3oHAEdZxYQ0EDI3ZxlkYuL2iKy6X6BS58K0JmXUlDB8PLwiGywUzilLkwIaQ9sK3rFmDf983jNiJSajHzahS3ALjGyNqYmohAE+5YWhnsjBfCtSdim5vID773rlbe16siRI0e/acrKpXuYgI+ZqqT41YwBDQxvH1bxDH7jgBl4KGGr6L+SWvEyzqLpl0ex50qKY1swQITQndVghJovwQU+jq3UGdKeQSkNe2Hv9KUk3bZFVym3n5S7OON2nZFA8PeSOlwndcj6nCITYLPZGpkADb4NaHbax3xkpaTnlXdkwXQAeeV5Ov3M76sJwTfKhR0ObM/2UdnY5MT93mFr5GtkrxN+8kHM5y5gP/wkz/RxbL0GqLRsqPy7Xm5ulRTfFPOZP6qKrexR8txU15F5jcF58u/ukn5UcHwpKf4pxjPr5741b+ymyjOjHKipWN0+Ih20h3TKlxkN0LrKMwzOaytAgAzi07xE4LFh6DaYeu+W0+aMT7n6h3twXC0VmO5fledFUpvp/Jj58DH04AeRiGAwLH2Hj2ew5jY0RdiiyUw7J+9qqJJpgNpwrCZlWAebgfAT0idfJShrS4KTrWNkBzC4UdJD8o5lEXkRv+l9FdgGk3f9QXmayOMkHZTVAsNA2M7qxr/3Fx6wpx+iwcInzgzMQdjROVBTM3SypOYck8UybmMjxg2LyieUZ5sJmsw57Sg9HSDpaP7dQvr4FBmHcssYQCbCw7lr4GqdBzVZRhQG83uUYCQLwhbFHhmUsw4/tjCgAQP8t6Qn8yi7u6TfJcg/sDZPBtqzFCV4pJ88k1bIQTNh0oT0zNizBgBlu4TPZG0wbANVwxKMEbRoL8YANABJ2PLsIGBmTAxAYwKgiB80WhKADbygoBX5pBqm47bKc0RYx8KU903Sd46qjUbI2OxjGTcsph8KABpH2dPfJf0zIs/FIUBTLyjrYxL2lDQ8Ay0NtAVZuffCABjqdgTAC676AHTgbfLB4qK2f0y5+j834WOHyHPta/F86JswP7aPTkgpLG2GsTurbF2rbQBlteH6kYibkxFYtBkIAyA8H7McXxhsH5EVcYTaSx/fl+V2p5T1raQblOf6jnEvdJwqbBXfaOARW+QWUYXVHDlKR024wDV9PxjTzq6bCk5XyRgcYfh+cP3K+tjoQpz9dLp0WHoj0tIyqNCuz6oyLafN+VBSkaSdJLWiwLwzkAUC4lkBNpsmLPpQMncd2aITn18bJwKjzh6Xoj212mCYwMQUxXi2BYRDQ5CVAbzNQPiOBMDjqhhgb7CU10XS94WaK7A1kgRwtTtXhIXQ3PhRlc8TnnBGiEesS0CzKUHpPCe/ag1hLmA+Q3P/WBXNvTeWfQN5HWVP+Pa/pny/T/p8p9AY7JS77plkfKby8/ytddQoj4nb0sKor5eOe0+VFD+fqNTSstZciZpUzsvIwDrkAXIgyEoExPyQY5gewW4HBmv/TFDUeZZ7vSiwdavI0xDbQ4TC17VsLvSx9PulynOH1m15/Ena00naMznFO6GpgcZGF4n5eHgsQTuQZ7t6Wto1nFqScwz3e0gdrk7qlZQAoK0KAWwbOIMW9IKIbOdKXW+vrglDMPZAgYrvxfHZQXmOCLMCjgj4tvbk3wOo0Wmt4SfmBURJ8c2BfNhyPUbSRpyPD8v9zwL3mxKYImI55gKOiHlS8vyieSd4IhwPHpf770bwO9ilYWv0T8rbHodhJ+JoTapkS1RathvBLK7P5LXeOcFVUvyIpfztCOinaOtSWrY3y/0DgYinNSwpzudYF9jFlFILgDGCjcapfF9wuxC2W9j+iLZnLC07PcdLS4pHG+4juCps1u6VPIsC17FViy3YOXJ9guFZ1G3jXL1Kin/W3Pf7/jm5P4PXYHMH26+xcm2u5hnMl6B2+CcuoGCI+6thjPRytqQ4jXnED1xsTFGeecQTubEuKf5efjdSni3T7whmMO/Bu5tZ+r8h+2A/zpUVXHQ8pbWh9bYeg9uPmMuYt29XsvHRz2t8s4vk//ca6uKPqY6+wLebFtR8QSH4tEHb0zAHTjzD4U9jApr1lBfpt6UlFybgGfmAmgDdGgImB8UFNSJg4BFiCnD2YW6ye0Zbui20JhSig2qRlgYTuofh9koKF3zwNxjyDOCHkVQorpF3I+Lz5YZ+6mZ5Z5x22bQt+DDhjbZE8oER64x4AbYOU3nYXUUYCD8UB7Rxq/MOZdesXladgKaaVpswenydDPjRHD/xtr387wpC5Ta5fqChDJsXzs3kO/2YL2jD9R+53l7KnkOQ8oKqamv2OAVCmMCfBpOpHxohqK+ltilMv8j9EfJ+f3v7L6xjiaqIr/UfhS300rJuku8uw1s68DloU98NvBsBKAEQ9jbU7R2FKOwlxd+lHDschbIrgeApUt40agYe4Xf9Pfsu2tC9tGxTAqOG8vdzlcBmBZ1MXjFZec4fQWGKtq+f264Mg5bSMtj03MWxR1vv1pR9jQY0g9+dSwGvi33VzDD3PpB3HiP1+FgzRjp6PDXvwQLAA76juDB4QP4P8HQ//w86K3fUUWmZrf/35MKrnWGegi/9Q8pZGbh+qNI7gbyUq0NJ8VLLvMb/p+cAqp62sPQXQNzD6befSoon5Rpjpha5QSkt2yDGxPWtsHe1MW155xMZMs0fQ/9PYvBrcwG/nStYmzDuTSBRW+g0C5i8n+7VI7kC0NER0p62Kd89mqtfrYYjT4NhfMRbWtq1JLDyT6plyVdL42uK4hDi6+xuuT8+933UNyopnsVVWTmFP7RqvqfTWypeMMU51LCEk7/qu45M9E9csR9MALBeQIAVUVuJSNswYL5I6cIDeCtaH4gckgNGen43iAsfaHIHsswNKeRP4HjGPYpklJT319h96gmp1wloRvIX70ZfdCLf2iYhPwyPWzkF1fQAMHiRIACaipNiL3a9MW5MbWu/hPVYQ6HeSukNYs8KgNlemr7alpq0CVLWfF5DX3Vnjm7yf9sROOjnNvx28a3vosznKQ7XzNH+eX4/4K1D+L+DOR4+0L5e7t8XMVf+ojzPYQCa/ynPC3IHArE+VG5gK/FZg4PQALbjEH67+6vs7Hie1PRXLhxEozw77QaqkEzqoPY5JFxadrzVtcw7TPKEiAZkzbRPDP0/1kfGgGcmo8/lZFbQQkyXvM8T5YdpY5YxXNUOshkI38b2LKNWRefB1YAfYGKPIbgyS7njVYUrYpAAlDpzpZyGbEEEg14zD3HlrgN2h0v9tklzJlOEgfAHUuZLMcpA314codE4ow7EP0rLY54U/vFvMkMfOMP1/LjQ6lAZNXLmg3d3ocC8X/K8w2tg0FMCoKWIgvgqybN6rZAuLdO5vh7FFf0bkvYiUw/bA3UmL4N32n5S5rzAXWyvz1eelvsPMdq2gAJ7XC7GT0nx+xFCqhm1Jevn5mVJ8d2hd0/JpdKyy3Kr8PzG7cecVkKpN8nv/LG7mAviOACsCUHNVwS2PXJ1q1jpx100DSYvuCdQdmPlaacXEMQeJtc6hPrQBz3DQpq4DQJjDOF+ueHdKzm+86g1OTSntcW2I/qnMi0s0AHR/SmHAVh3WjvHPWBu63u08UHlhdg4U+o2JpRjhuS5h7IZ4OcKVfVQ6Llr21Rahu038NB9M2rXYm1/dS/PxFC4B1dNJjpWea7Tps47lKpUE2E759QIUFS1xUVth0kaKmk/SY0D15tJOk9Vja/yYMyizyRT0NFdIlyC2gybtqZ/bTgQUOrQWZkDuL0i7Qnuxd9i0arg4M5WKasxImKllqZd2yrzFuHb0q63AsAKwvFOQ94GKsURHSSbgXBcQLu3srvZXyL1X6TqN2E742H+/UuuX/2Vc3702VrhFfTUKSleJWn5WsbsbfsNCglt3dZMv7WaCJ9vVQUn/1r7zsqAJgwKFsbUQp1OTcsEeoTZqBs1l2NCgCb87mUxAWMUsJnHb8AHg/9TyeJadaV2B/zhVoKJngnrAED0OMFEuxAA9be2/G3b3gG51IgA5nPlH+viaeKwAPyBz3+f08zFC2PSQFXY9q2uxkUB3tUlMNfnUlMWZSd4OvtnrAbQVMwTb4yW5frFvivj88GC86qGGXTaCuV5zdgMXy+TBh+lATTbK2+Pz1QPdBb2IH9ICGjWYWdjksJeYrlc+0gSGM1SCufGITXh2BiCsmGEViNs04CPwRQVdUdV/Wf16MjmjTUkpFWZbwF/zVT62C4TyTx0dEzKs5h6KnOk52EJgdWZKePxmBgwDAfvilnGqZZ7X6h6ECwrBo/BgqY7V8f95P9lCZ5uljMErpx2ZLlzVYXNwfs5zxxPcAUJ+/ff5hZmpWVPS9rBsDjrwNXweJZ7I3lM30CeplzVLlDm88+S9g2+x38SrDzF7RETHRTQXlTX2E0m2AOPLUm4OO1HADCCCdqN81Icojxc8z32IQAdybGYRxDqC+YjKNSHB4x7sf2ybW4BVFIMeQd7EmzbmcKPrJubL6Vlf+Z7tsy9S2eQDPBWdZ7+IaMx+I4gbD7laZxo7Qfwd0xE2YsIGpuqqraD7aUNB0nqQbkB2XtJRjOrpaa/ts4G1HgNQ2cdH6GyvLcSUi4tw54tDIM3sjL0kuLZKWqELbGg1gBqTACotqqqRxJUoUfwkMsogo1Ga8O9F0XozwyBAHzAtsi4NRqMj4dSmizv8dGO01y/0VJkqoM7eRyBSXPRWFXsYcdtVxMVVvtX0FIC6XAdAHgnG57ZjEwhSR1sBsIPyPviqtCPsb1GylmlfgsEdX1JMTw4kgbbwzf/big9GNIEDqa2A8K+jAakKgB8IJSwjQKtMtTu/6AdYJB88DKUv3cTDJ1NLydFAQgNwCdVhDscJbBdUzk1jtk31xKowybxIctzvn3ZJxpQ1jH07q0zHLuhkvaJFba/oj4wtIb9zyPy3AJJSwhA0YaksbGeY5u7s5+3p9B+Mie7PNAC0AGZdHIAAK0OCfW+oUXREMq8AZr5ANqb2rSXyY+eU+Zz5Xpp5unZGY4BvJG3zv3GIx9QxTHL8OdT2Oj9CsrXEVzEwxxjeUYtOlLTX5dnB2q8TntZ2YPRAQE/kfMm8CYAVqq7WLU7KQ2DBaC8xRXRGKJTnWAbT4FxqOSP6zZsM1S7zXAdzO0bw73OIvyKVM2R7dyq4TqBKdfeVt7eu442DTCFpDRGmdWySQ2Gj1fm86vGSht+SqDBCTKdLLQ0QcEXBYzAfG1bCvcpR1GE7Yf+oXRdgG+tkXQ5AQFsnPbLgVsvjL+fB+6r+/J7wTdxjQpuqXt5sVrHCrwd3VIxXz5Snp2WD8r9eCC6LUloIx8NpfUTtLMvedrBlgXC8rWr3Kp0ZejdB9TwuPmeqStz/en1qa8xGZBQNv1KwdqcgKi35nsfQ4DSm6D20Fw/+NuAnscYNF0Lc/e8+pxAoQ9blcMMwn4wtVR+/5u0JM9o5unEGux/f640j6U18WiZRiaWENDhvMXOOfDhaa7ypTc1/ZXjh40y7YaS4hGM+WDahoBPPuJavBqxAs3bMFiASllu1aVy21HNKeR8d8Kv5X6iwwpFwHRQ5iiY85XB9U4E6M/y7G1ErSZtzWnVPWOlTgCZJlsRX+VrouuVOQjcQCl7bFLDVYTjl+cAYo8zzJsDudKJQzYAYrNlgeZwkQEQ/RUgQ+r5cYy+tRkIv0NgGIdsRnUfSjlzHWaJpEWVYtKYeddMGvGOIgjpQUZcAX6wvVxa9iyF1MXy9y00WkVe365Cp8nsL3mH5bYBSss+J/DZJuSejIXPsQGAsUtC3rtGyjyR2sYS+Xue8mLeBGkawQoE9qzQPWwLbMwV8Bk1OmKefVMX/u90zbe0e26sSopfTFDqnexXhNNoQzDybKD/FkqZ+P5htnAHF3vDNVoaaDBuMvDxp0LXvsgB5tKyq7m4PYnzQ7f4fy3WPK0+guH8IZwPH1jGqpGq0Pa/Gbr7grTpsUBe8PdXlGcj1ynP+s3U9ldGhsJhOt8HEwY6WOl92Ncya5XCMDgC4CyV9LGkmZIWJAU0oUmtXeHjkEabnFNevBcdnShCcIsamLS+gaGOHpX22A4mncBx0pF/cGcasgGOWPY63PYxAa4p4S3CELDCKtxkb9BAxTdStBkID03QHztZ7r3i8ErewnMrboMHgYuvgenAPDuGwMMcruoBYrYlU+/DxVJbCsxgGkVQ7i/iRnMu3VrJfgdbMxAAnhBIF3DS296BLchcLgrDi6VSajsurrK9hBOyvXe/XwtGBt964wAACaaDAiAiSd8ANMLYHLGOWuV4cjgQnsenFUHfHOV7XXqxitCXszX1aUONSmfJt7vh3aupsZiWa1MSF/yaI9iY4nv4Z5VvoDJdqjyTjAkxjPd9kL1VISuePaiB54DH1D9P8XQqw+Bq0Gq0UmaDzVUqwliTAdbuNNxurJKfIZVve8BUbRGRh0S051dlD2w2IGXVniND1tFRPDE6Hy1NHHsM7K2bAHX3mDZDPS3zO0kE3h0s92Y5VJI3AWw8QxsLnzqvXWV7dLXcv3CtnYrn6eKrz7EVcTSZ9OjcNhU8foLJ8+z8NfBNQMuJ/X/YaD3GWChBoAUNaj4xYiC8/6a8bY7jQvdmcJUMTSQCof0t9O6G1NbUJNBsym/4mxxfDfdnSTF4BGwzDq8S/j+aRgR4ti5ezIsEM17eioU1NFfr5fhi1frMC2j0BlrGZSX5QnmOx8SJ31aT5EWVhscfbF6nSn3/TgDvj9MWksAr/8WxOjdiXNcN9NO7hax6owJ1yDfSiGOV53mUJMhcWsNgLS0uatuJaq6JLafNeS2PonpY2vFATJfam/ix6mxDzhZheZWUs7yapizUiib0/Z7UI453CWyirjQwwUNxcKeUMyNJpQCW5LkRSu/i77tYXm0Ba2A83Qy38eE9GqMOn0o5UEsfrLkNYQB7nfsjNEUmA2Fsy/2YoEtsXl/zHCaJRe24FRMm2EBgLPbJCTIvii4IQfiWBAAw7GCu5Yp1JrUxm1LgLqBtRblRA4cgc6VliA3ThaHqX2dYf7g3H5nTrJSWzSBAakUNUWOWmU5bDYFUWnY0FwlNQ3cHcQV+ifLcwL8iQF5XeUHWfA3jmhoar5P4nV3OBbKOAAwPJIgIRkIHUAvXG6H8/ThqU6hteUuufavpt/JcJGfvjLVSCmN40vblguQuQ38jtg/sOE+QX3iiLTfke1PuwzW9H/lYcGEJu6HuoSewfdWxBoENAD3mIEwn7lPe6etzKQv9hcAHOZ6oOy7Cy38z5/Mm5OFfqOjI/R3kuSWa6xhHfwcB31On0H0oQ/7YsIAdAiaR5EDArCMGKwIaP2R5Wq2Gr142UazQ9CLMsAIwhbwGGu5ejdP1vAzas0LZt1LSHtzpG+zp6Cy61dsYosmwbXQCT6F8DIZ7xlgpxiWbkd5Pqv7RQuUHgEvmJTGDz0wNXX9ceVul0zRpRU7IeLwBqnZo4LB6RkCxvQIxZM6kUEM0VnjBwRYDZ3CdTdsPCNFbDEzdp2tYv2Lyxm8plA/lfF9JrVFD8ghodVoHgsx9weeDsWumKtsp6dhO8rTLUwJaJ09wlxRfqrytTaycYSMGjyIYe77Nax1VMFBdPJoaAA1xaUlgvP227cb/32F57hmCwi2pAZjNZ97WjPPcSm33AJGNxwHM3Bpwe96VC4irGJfFLL88Lydo+lazPrrxuYjzsgM1TQv4/8maus9MOAb+d/BaZmNXUvwfzpVr+Q00I3iAxhnnSxVpzgqbx/Jm8m+UO44yYRfJ/4llXk9RnsG+7ptdyvQ4AXv4fm7rtMHiorYYaNicbBRSFxVZ1EQ4IK1TTHUiPuh/ROR6MqfGjWNH4xlzHW24u1swyqC07VKCmv7SvlRGWCJEu/ID0tGbIij3SlBWsTJ7DmGg23Jrp2DE4wxmGzRGYDJbxtUmMH7MZ6rCSDJI8ATZJs3BnVIu+rurScskZU4yPIc4JntqbmFetYkbFZhA9nMKMR3tLGXN1jyHfvhK6e1ppsoz+yfshw+U/swV0EFS3nMZzgtfq5mWXpP6TDRoTMHY4FHSQr7DJU555MiRo0JQeXl5gbafKtP/QSWkzIe7ZW4YXNu0GgHtRpkID6gp99Dc9o0JHylwe/oqsxv3nUm2RyTvN9IerOh0XlRQe6c9uHO4BdRAazZJI5R3NwAa0FNJjjmA0TePhDDV/WyDJiqLCMJBssV9ynpPvpOyG/BHEQJaTlSOHDlyVIPUsOBv8DwKoKb6SHO3VhoGBwQlVKGmPU3Y0TyQoljb0QkDCtye4GFsOm1GmlOebcH40h7cCa+DTwz3cHjm5gagYWx6ijrA+NukNTudWpkwmbaeENHzoRR1sKm7WylHjhw5clTNoMYDNlA5H6Vh0pkaBheAbHYhoxCDJkWZcCs0eYbtJ8JyzwK25wzLCn9inBgsGq0GjAwnGG7DiPi0FGUCYJnsT2C4d6YGrJkOVYWG5ukUdZhvaRe0MSeG6mAzEL4z5VyxhTPf1rEvR44cOaoJUOMBm9kUPP42UyEMg7PUasBe5CTD7TUpV/+K8WxutWS5oEDtiTq3akgexVu1TykP7oQBpcmwN2wwDOC0niHviDzslJIYDNsMhO9I+X4byPzjb4VJLS5qu62kXetRexpLKpK0ZT0dr60ltZa0QUS+dZlv6xhlbsq8LZ3Yznt81pO0h6S/STpYUofgoc8O1CQDNjAIPo4C4bJa3jeooykmyZMiKD/Po2zYa5i23I4Xgb1NAdpzuGV1D4+O1PYQ0hfYLjJ5YqQ6uJOxfcYZboMJBm20TFtPsEnJ58BH20Gb+zLKdFQE4efTaMBINi3mfhGeYPWGASu44Mr8kr8715Nm4SgROGE8L22qj2MIEA+vo2sj8l3IfJ9JP+xomQOwz/uAeTs5WJL6W9pHEmQwNMDw/IMmGp5kCIq3WO49LOkoSY3qcjur/4PyomaOqMWGwf6BiLYItrflU74IuR8IbHSE7ZXzCtAs27lVt2fgdVUIW6ERUZoSGSts+bQ35HkExsx5jNOvlnFSgTkCoG4yEB6WR5/aogbjfVnGsIAb6C0RaXwNfI6nBvp2oKof5H/f8EQ8op6CmtzYmbQ1ch18rmeMhUluoac8GzK4Pz+hHCUFM+tIgib+Vc43gMRZXLS9wIXbBuznxzPmK9VOjdyQawnnjpjceeF7/2IG74CQOJ8gJkw9RFhfRvCTBUjDOTIHGm4j3kxpBq/ByceIcaE78uEAHNwp7ZmWsEy4v88h8w8TDIa3Uva4MXdk0C5oegYbvpVTpQ4XKvPW08I8mTDmGjRWpiivCDRYlsUcoTv2xIh5dEx1CmFhxA1CYPxwubZTy2lzZtdVxiL1RzTiYDj9C+qhoMYZSIhBgu21kw2Lk8NUxanhubksffN/MrYrNHn972uU3F/txFNiwla+r0lGuIx/4dig0LwEL4VDz7l1vbEN3XhbV1ImrUbeWiYaopri3yBM+lkZtsdmS3Ov1OX7DNrzC4GaiQamKNNmMIy5i8iUJxjuz5LnJ2fQLhswwThdqsxnTY1iv6R9N9o/zpLl5JhHR9RVwuGLMMBGoMHp9URb4zsfvMrf/UWg7FmfBk0E5hpVse1rWnT4Wk6chQXvwCrG9xS2O/L7itKaOtKD6JMDgOYyGZsTw4CGYzZfErYLcTTLu3W5zU5TU3U1igijextuw3vr7gxfdyPRsY76SV1ujTgoM057YFhn80AakmF7RlKrsb7mHg7uvCjioEwd3am8sOVNNffOKbCWJljWcYZ7JsPuX1V+9jw+3WMRDLDlQSydPvV8cYEQ7ZO4CMCWBlaa3xiYOPpjrty/23AfAhJHuFwueWBHAE1b1IGyQyAIJO+xFLAXGzQKUQJmy8A88kPl/5VA7STDM3tR2wFaQwDwrLz/zVA+RH7Fob2jNWVszxX4fXL/DV7D3MGWDzRHMMjHNsQ9cn8V7yP/9poqrS0jBi/A4aC7S1l/kmfeDtQHNoO+TRwWQogSO4D1udOgpZkAwWvoo3bsPwAgaL6xnTJe8r9gGX8QFhzzJD0Unk80SMZcelTuTQlc350g4T25PobXELYC/T9Frj3Ka7C3g5fmULk2x1BvzL0Vcn+I5l4bgjyU04yaLxzfMkny/xxzvkHTeWWg/y6NAUhR9s8aYOQHmUX0a0TufcT2DcgzCDQKze42nLfog4flmemGb3axoR/wbV4YHAfNN/st6zPTaWqSa2ngmrssqxdJWTCANEUYhjHs8Rm8Bhofk2fQS1KH6Rm2Z4lFkKc6uFPKTBPjBSv7uzKcE4jc+0nCZyYkCfhnIYRet23bnU0gXt9WmGDqR/K/iJ/0CAXQuhFgFmEL7pLnTcEbdyOg8E+o70zmi9SF97oHriH5239/4f2mKZvVh0L3LYIS3w6tCwW9jtrxnRDaaBME0xvYqtFoPo40lLEly2jHvgXff4aLKgT93JMak+ACqwvre0wobR2nodI+RNYeH9LKqID2BgJ3quSDgPTtzvaGV1hgDqCf/bPchmnmSCNJAEUzCKD2ZBvBZ2CEPUnSxobxx2GeCDMCT9QPAbxC+TZkvt1CWiP029GqcgDQpswb1Nhux2tPy3O/N3TTKeznSkCEQh5Baa8gUNuYYBga4wUJ5hsAWBv+fXkenyPOKoO2vxPnCBZa72r6FvVvIQnjXsb2t2c9cPAljP2HS2qi+Wa7GN79+/A4sN/8uXk8v4npUm4Xp6mpqtXY3NK5oKERz9uOcEhDD0iZDxSwyftL+Um30nDcwDzL/ZvJVHS2Qr1SHtyJLahTk/QbAVZWYK2cB21ek1C7k9W7r7IAuwacJ7tL3sX1bHGBtr0igm8aGeZNXNn3kb//G6EtuVvyLJA8UyOE72EBhtxaeR42N8dZ1SYEaQBjPQIgTVFAwqtnF7bXtrV2ktRpMoQGtSqD5G/UM80ZYNBE48iW032NlpRVrKoe2jtT7hfl0exh5Id/l/IHSFk/0HX4jCBQoRYMbTqAAMjXTPoGwtC86Oy9bmV+aEdQ/jy2BdvC2JoG8Jso/99Po93ANsw0hgqAkTzsAQ+K0LLhdHDwy4Pk2S9i9gE8Tp+U5w+IOVaDKKQhS/rIMwsCdeigkjld+LZb4Ldv5jmFl/lzQeoBTdVYAp3BQZCpvCOP9iNgvgra0IDG5QZq3pops7doXJoZqA/sgeBUgXO9HnaamqqrHZO//nO6835CBIY4PUWyqRM/TlnmdGU/yRmq1/dSlLkqQgjPU+bTsFuoFAd3Spk44GxWgkeGFmBulEa1PUBgwk9n+O5xyu4JhVX+YzylvD5oaTYICL7gWELdv5QrVxtThJoe2wmP21yFq5lOYb3B5B+gMC9XFRG5e0hdm8fQgHzPuQDtQPOUdfHnScNAuWWSnsm4zc+SJ64XWJRgdY1TzhepyvZi/jifLP3ga9H8rafhUrdfQ3OkiPwa31kXH9CwLRDAOIUcCRqYsy39CZ42W1mCWVLTAkADsHSIzibFQmMIIu+lx5dt3m9LjdOLbNOCUF3fl1SS4N2+JuW7cP8F3tlRUvdQijrP0F9gtQ5dP5WA5hp530Af0LDuX1LLg+CzpxFEZ0LclnyNfNBpagJalqbK7kkTaXsiwrd/ynf3sqzs35dyj0tZ7hTNxPMJGpNCxQq63qLxOl/qNTSFCzk0JTfFyPeWlP121g2SMhdJvccpsw1UpbpmeTAptTVgzO9YvlnsYY+Hh1JWXnM1SAAsEGzYi18fjDb4PSjP5XSAXB9pYNbY+jifwh/q/31MNjjVrHnKrTChdZE6+dcbsZ2/oybn+ghtD86Ng3H85LDQS0CvEHgPp+3IbYXwKsLYYIyUZzvUk8DFBxilIe0Jtla+JuCB3RRABLZzVhMYhMnnL4NNAlvoOmq/TlAGJwZ5D2yaOlgWYs2pJYI24G/yrqRGtHcT2F1B/mUzb0A9AXwupbF1vuSf8r6RJQ/ME7qFrqGv3jD0VzDkSNh0oSsX6FcZ5kO5PH8xxw5tzcRzU8psS83j7EpI3VFuz9q09/kZ1WqFIth/fGu4d4wIqu1SAJpdOdAmLc2IQjVGhOrryrMF0RHacnTKPlpZQ1qaILCKIjDh0QXoUwjziyKywT7kJRn77euwlqZBgGmCgQ6nlsxPfgwNMLLDLQJ1JrUC2DYYzyB+WdcVkXOXaNLJoXwQzn4E6I6h9gxXFVu1/SyBz7B6x3bbS/z/oLT15rYdtnpmUVP0dtCWJUAdNG3rkPB1o8lvdpVnu/G95Sp0wKvUKRgo8+yAlgYGogsNfAT0rqWdKHNGIG+QnpH6LKc2CecSXmgoBt8ctnFuChoMJ+zvK9kPfeWdtojxfj3fCs2fDRlN2U9NYr7aN1Bubhk3bM+OZZpvKQt1AIhGn2GrDnYzYTsnaJo+gqbM0hfQci0zjEkSaif1mcc6fchF0PkO1IQ0CJZ7w7JceWsE1gplDtIGJt8/4/aMk3cuKHB/2oLxpXHvhirzwYhsS2LkyWecJqvobbDH6AZeCLrRsqL0CcJzmgCbPpLqoib2EOUZR64MMNtweod5L4gQJhgvqOthQPpglPo/BTXkSj6cmhi0NO9Z2rScAOxEw7tuJx+4iNqqMmlPzzyADQzfsc3wDwLEqVJe+OgNbBHdHEqLEr4HGrLH+F8fyEyU659qso8k4IEAPif0TJh8+5QosAoN2I+a60+qinhjb1gEOvodfXUhou3mwz6UZ0N1ncWIfXWgzkE6g9oeP7WL+c4y8kRlAm0yDoj90x0p8F3paBXn6UyO0XiNTdvKqPGgTVVTw5gk1UI9yvkBDef2/vapAzWeVgOqe5NB3M8qG9fcKBqizLY13aWOLRK0Bxqnv0e8q9D0uDJ7DKU9uDNKUzJWAMVPBW5XVB3uKNSLGbfmVBWttl2fzPhd6eeTJDXO8/toJKmTirf1li/5AOB+n9mGk6o4Q64YZ9hECNV7led5gaCBt2Vc14XUjoXTxAATb02NEaiXpU2+8DYZgsIdFobBMFZHIM1XuGJe+yplPrndNwBeFtZkSMIWDcYWADjsUbUQBtOhlAaw+9rTprZvRMqGRnxCIC80DS8YyvQF8NEWAQrNwa5hzYfPA+V98BaDDQu2Oy8xFAOD4GJqA3CMwEkpQSQAC8AMjN5hxN7R0qawBvJhzqtrEr4TQORq/hd2LPnEPlsp5QFQ70NAOAznRoXyoJ9xTlt7SzmHE/QHxwTb5S0soFQFwJlPX0p9+nNOjqLNjnKgpioj1dH9dCsuKDGc/90WIdUrQXE9lNntdJq86+VqaA80WzYbmAtSlAlGPqMmAEWAsA1m8rr5yMKEs+pXgDasGF+LkR3M5X5JnwsouU3SwTzRPArErIMI0NT2QPP1LVe1JxSybcIMEfjLj19ym4VZY+/8qbhaP8l/NbUAMCztmVV9pVww+smaFBT8fchn35TrtjG7hSv13aPOuKKBMZh8C7o9K34XOKRwU80jvuB/l/3cNniYppSH7WKkNgUaWj8yOOjzwNjpKKiZGcG26ghg9TtqPtpq5tKG5KcNqWEy9eWVXIBdYjo0le7p2DaDpxoMfk9JOV+WUah/w3eGA2f639pVBGT+c19Q65gmkvbNqiJsyEgp9w5Jm2n6CwvhjWO04RcuKgBARwWMun2tFvj+WHrphd/Rmt81QEzQTgoazPaGsAY+wIsdeuQ3bygsTBtxF46tYa2GT9heMKHpvlLXG0WorYpoD1bl59SS9typvPgIupN1cwd3pojlAk2J7pTzyTG807IAFYul3ggC103HkLOINh2jDkulDgeSsR8T4xEwz3OZYHQM1T/SAq7eIUybc5zATNsq82GuhV5c+PFLogwyr6X2pasww4u4yrcRAM1WqvJBqAUl2vGcFee7gweH5H+QAmOgqnoUSxHtjSAsoFmGK/qEgLHtDRQA2JYaTI1AK2r2elHT42/5IHTFfcyHyMbQmu6rqkbshS1GeH7NTnpMBQ1Eh7OOIyOMYKGpwVbQJspyfIuU4dsuwcD4TfkbAhXxpFayPdh+hxCFF86rEVXsS+3XaBqVr9a8b5Hcg0YL8WnugTCXa4nPdQNAwunY1LS1DAIVurxDEwR7lbfk72vZJoCA7WJ+61VACLfN7uP8wFyAp9108oAm7KcOCcpczuCM46kt7MPrcJEfyMXse/L3DdTINKI2sB+1hseGDPdv4oJpMufkm+RHuIYt10lJDLSdpqYiIJaOXi+EJ41FWM1SFerXMG0ec6V8PPPq6Huu3KurPT9atCfrKPvxDSa626ApGVaNc0a3BfWzyuYMrSQaG3gRDFIVe/FxqAEZJGJynE4A7AecO4ranWoHNFzxdY8LvIXJvUTmF+sAWArSrqp6Q8CfRhCySMWz9brOX53ijKvQvZuoBRxHnvWgCri104j1KPJ0fOPgJTACLeHqOAjCP2TCPH6fq2b05b9D74SwezSUTkrZF1jgwG5oVIxxArh6KOgSbMg7iWAMPBpeNfCYepnaCTx7uOS5McbcmE8gCffvSyz5lhL8AHAOlTHql1Jj8wG1Z79o7j3PNmE8rubvh5QL2O5BEMqvEr4PoOhILt4xJ7Dw2o2y4sgAoAEQvkxVhBmwlQltG7TWvYPbUNgiZZlLOGdfYn8NojYQoPHpUFlvc7Hh29HNJNg+l/Ola5L2/qY1NYzr0cOS5bYaqNaNXIXpCB/ePTFWuyYaUw02J7o+hJGazq6jp4zB5UlckBFUjwEJg/EavlbRBrRZAopXpA5Y6QTV1Q9Vd/A7eR8EwBVSl4kUBLvW0Ke0SqVTjYfL8Jnr/JjPHMIVXVB72VEZvOS4woSWA6p2XfA0XGujqu7f+3Q5BWbc+QoAAuPFn+KEtkfMFKrgAUz8LW/YU0wOZINA+hpbXzpBI89D+MH7bQuC/xly/cdQPmjoOsN7i5o5hKh/L1QcwMu6mmqmCmrJIyl2iWmTA2HYNGa5AKkHSNmbsN0A7fOCNhZhHqg8w+UwMBhJLcya0FxYrJlD0LRsRjDegPOhTWheTOK1hYZ6T2bQuAaaewAXh9DdfgdqN76jluyXlP1fznY/xgXEzqrCButblm2a1xcovbcdtD7QrPwUehc0OOM5l7cmeJtjA6k80mJnbrttzUXiDIMn1WHWVZsUgsYulYcr+7KXlhVZVjVTVElxpxphn6Vltqi9u0m9pgVWf5ey0/sTQYZBDfbXTdb1UI9tFbXdUyCwhX43GS4fKHV6wfDcXkTDOsI4byfPzq2B9pQqc9C9gVKnGxOWF24nYu5cUs1twmr59sCl/WjzU1MAHYIQWw2XqsLZRoRpOjVnMND+1qKFmae8wFgtsG2gHDly5KgAVF5e/pvffrJtf4yoCUBDsrlDD0jZnqdqAtAEtE9GzVJS12NpxxuqwnCspk7vvSewQplRk4CGffKrpLu4WsU2xFMqfgTkuIS+hrErAGQ7eV+RpBtsgMaRI0eOqpNswmSFMlscf1yDdZ5rqVfsk3NFkMJL4HkmbZYabCMMUYsM4wNDz3VFkKzUrNShVr7FUOZ9NShw35f64SwWk60P1I2fJiwW9gDQlGR1cGTSNv0gbYKhLrYvh9WWD5peZ3C5fFLqB3dI7HfDm2YPzqkkhzFChQ+bC2gOAdpwAOpSxzYdOXJUW8m8/VQPKGr7yVHdJbgdKy+GwcowwKvGOsCgFnZZy2jfUtv7DMAXtgDYy4dHFM5Yakzw/AsXBTBqhR3AXAaFzOI7nKfc9pMjR44KTNh+cmc/OaqTRBCxpIbrgO2dVXWoz6DF+ZLJkSNHjuodOZduR44cOXLkyJEDNY4cOXLkyJEjR7WF/O2nDbnvXd9oIzfEjhw5cuTI0W8L1CAA0DauOxw5clQA6khe84PrCkeOHBWS/l+AAQACYD7v73Ou8wAAAABJRU5ErkJggg== false 215.9 279.4 17.3 17.3 35 23 Version Édition Издание Table of Contents Sommaire Contents Descriptors 第 # 部分: Sub-part # Partie de sub # List of Tables List of Figures Table of Figures List of Recommendations Summary (продолжение) (continued) (continué)   abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ EB Garamond 12 12pt , , always always always blue underline 0mm pre wrap Code Courier New 12pt 14pt 14pt justify 8pt 8pt 5mm bold 8pt 8pt 1mm bold 0mm 0mm true fixed 0mm 0mm always bold center 6pt 4mm bold bold solid black 1pt 1mm center center solid black 1pt 1mm solid black 1pt 1mm 1mm 1mm 10pt 12pt 12pt 80% 5mm super 0 0 80% 5mm super justify 12pt 6pt 12pt bold 12pt 12pt 10pt 8pt 8pt 0mm 4pt justify 125% 10mm5mm 5mm bold 2mm 0mm 4pt 12mm 12mm 12pt right always bold center 12pt 12pt always 6pt 12pt 14pt 14pt center right left center 100% 100% scale-to-fit uniform Courier New 11pt bold center 12pt always always bold rgb(0, 255, 0) red underline red line-through STIX Two Math 6mm 12pt 135% 80% always always always 7pt super normal normal 0 0 9pt 12pt always 6pt super 1mm always center 12pt bold bold 12pt -11.7mm 11.7mm 12mm 12pt 12mm 12pt justify always 65% 7pt 30% always 6pt 30% 1mm 10pt 12pt 0pt 9pt 4pt #d73a49 #d73a49 #d73a49 #d73a49 #d73a49 #d73a49 #d73a49 #6f42c1 #6f42c1 #6f42c1 #6f42c1 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #005cc5 #032f62 #032f62 #032f62 #e36209 #e36209 #6a737d #6a737d #6a737d #22863a #22863a #22863a #22863a #24292e #005cc5 bold #735c0f #24292e italic #24292e bold #22863a #f0fff4 #b31d28 #ffeef0 H1 always 2.5pt solid rgb(0, 176, 80)2.5pt solid rgb(255, 0, 0)ace-tag_
###fo:inline######/fo:inline### ([A-Z]{2,}(/[A-Z]{2,})* \d+(-\d+)*(:\d{4})?) <fo:inline keep-together.within-line="always"> </fo:inline> 15 0 mm mm 100% mm mm 0pt solid black 1 true 0pt solid black 0pt solid black center 1mm before center after before left 1mm 1mm 10pt 0 0mm 0mm where   where key 10pt 0 true 0 true false   10 11 pt pt true false A closing A C closing C 5mm 100% scale-down-to-fit uniform scale(-1 1) translate(-,0) 25   - . : = _ ========== (==========) = (=) en < xmlns="http://www.w3.org/1998/Math/MathML" =" " > </ > <> () false 1mm : 100% 100% scale-down-to-fit uniform % 14 Figure 1 1 100% 100% scale-down-to-fit uniform 100% 100% scale-down-to-fit % uniform   false true false false : preface annex <xsl:apply-templates select="xalan:nodeset($title)" mode="contents_item"/> English Français Deutsche version Figures Tableaux Tables Deutsche version bookmarks bookmarks bookmarks pt pt ###interspers123######/interspers123### -->