module Numo module Liblinear module SolverType L2R_LR: Integer L2R_L2LOSS_SVC_DUAL: Integer L2R_L2LOSS_SVC: Integer L2R_L1LOSS_SVC_DUAL: Integer MCSVM_CS: Integer L1R_L2LOSS_SVC: Integer L1R_LR: Integer L2R_LR_DUAL: Integer L2R_L2LOSS_SVR: Integer L2R_L2LOSS_SVR_DUAL: Integer L2R_L1LOSS_SVR_DUAL: Integer ONECLASS_SVM: Integer end LIBLINEAR_VERSION: Integer VERSION: String type model = { nr_class: Integer, nr_feature: Integer, w: Numo::DFloat, label: Numo::Int32, bias: Float, rho: Float } type param = { solver_type: Integer?, eps: Float?, C: Float?, nr_weight: Integer?, weight_label: Numo::Int32?, weight: Numo::DFloat?, p: Float?, nu: Float?, verbose: bool?, random_seed: Integer? } def self?.cv: (Numo::DFloat x, Numo::DFloat y, param, Integer n_folds) -> Numo::DFloat def self?.train: (Numo::DFloat x, Numo::DFloat y, param) -> model def self?.predict: (Numo::DFloat x, param, model) -> Numo::DFloat def self?.predict_proba: (Numo::DFloat x, param, model) -> Numo::DFloat def self?.decision_function: (Numo::DFloat x, param, model) -> Numo::DFloat def self?.save_model: (String filename, param, model) -> bool def self?.load_model: (String filename) -> [param, model] end end