require 'gmath3D' module GMath3D # # Quat represents quaternion. # class Quat public attr_accessor :x attr_accessor :y attr_accessor :z attr_accessor :w # [Input] # _x_, _y_, _z_, _w_should be Numeric. # [Output] # return new instance of Quat. def initialize(x=0.0,y=0.0,z=0.0,w=0.0) Util.check_arg_type(Numeric, x) Util.check_arg_type(Numeric, y) Util.check_arg_type(Numeric, z) Util.check_arg_type(Numeric, w) super() @x = x @y = y @z = z @w = w end # [Input] # _axsi_ should be Vector3 and _angle_ should be Numeric. # [Output] # return new instance of Quat. def self.from_axis(axis, angle) Util.check_arg_type(Vector3, axis) Util.check_arg_type(Numeric, angle) s = Math.sin(0.5*angle) x = s * axis.x y = s * axis.y z = s * axis.z w = Math.cos(0.5*angle) return Quat.new(x,y,z,w) end # [Input] # _matrix_ should be Matrix which row and column size are 3. # [Output] # return new instance of Quat. def self.from_matrix(mat) fourWSquaredMinus1 = mat[0,0] + mat[1,1] + mat[2,2] fourXSquaredMinus1 = mat[0,0] - mat[1,1] - mat[2,2] fourYSquaredMinus1 = mat[1,1] - mat[0,0] - mat[2,2] fourZSquaredMinus1 = mat[2,2] - mat[0,0] - mat[1,1] biggestIndex = 0 fourBiggestSquaredMinus1 = fourWSquaredMinus1 if(fourXSquaredMinus1 > fourBiggestSquaredMinus1) fourBiggestSquaredMinus1 = fourXSquaredMinus1 biggestIndex = 1 end if(fourYSquaredMinus1 > fourBiggestSquaredMinus1) fourBiggestSquaredMinus1 = fourYSquaredMinus1 biggestIndex = 2 end if(fourZSquaredMinus1 > fourBiggestSquaredMinus1) fourBiggestSquaredMinus1 = fourZSquaredMinus1 biggestIndex = 3 end biggestVal = Math.sqrt(fourBiggestSquaredMinus1 + 1.0) * 0.5 multi = 0.25 / biggestVal case biggestIndex when 0 w = biggestVal x = (mat[1,2] - mat[2,1]) *multi y = (mat[2,0] - mat[0,2]) *multi z = (mat[0,1] - mat[1,0]) *multi when 1 x = biggestVal; w = (mat[1,2] - mat[2,1]) *multi y = (mat[0,1] + mat[1,0]) *multi z = (mat[2,0] + mat[0,2]) *multi when 2 y = biggestVal; w = (mat[2,0] - mat[0,2]) *multi x = (mat[0,1] + mat[1,0]) *multi z = (mat[1,2] + mat[2,1]) *multi when 3 z = biggestVal; w = (mat[0,1] - mat[1,0]) *multi x = (mat[2,0] + mat[0,2]) *multi y = (mat[1,2] + mat[2,1]) *multi end return Quat.new(x,y,z,w) end def to_element_s "[#{@x}, #{@y}, #{@z}, #{@w}]" end def to_s "Quat" + to_element_s end # [Input] # _rhs_ should be Quat. # [Output] # return true if rhs equals myself. def ==(rhs) return false if( !rhs.kind_of?(Quat) ) return false if(self.x != rhs.x) return false if(self.y != rhs.y) return false if(self.z != rhs.z) return false if(self.w != rhs.w) true end # [Output] # return conjugated Quat. def conjugate return Quat.new( -self.x, -self.y, -self.z, self.w) end # [Output] # return normalized result as Quat. def normalize() mag = Math.sqrt(self.x*self.x + self.y*self.y + self.z*self.z) return Quat.new(self.x/mag, self.y/mag, self.z/mag, self.w/mag) end # [Input] # _rhs_ should be Quat. # [Output] # return added result as Quat. def +(rhs) Util.check_arg_type(Quat, rhs) t1 = Vector3.new(self.x, self.y, self.z) t2 = Vector3.new(rhs.x, rhs.y, rhs.z) dot = t1.dot(t2) t3 = t2.cross(t1) t1 *= rhs.w t2 *= self.w tf = t1 + t2 + t3 rtn_w = self.w * rhs.w - dot return Quat.new(tf.x, tf.y, tf.z, rtn_w) end # [Input] # _rsh_ should be Quat. # [Output] # return (outer products) multiplyed result as Quat. def *(rhs) Util.check_arg_type(Quat, rhs) pw = self.w; px = self.x; py = self.y; pz = self.z; qw = rhs.w ; qx = rhs.x ; qy = rhs.y ; qz = rhs.z; w = pw * qw - px * qx - py * qy - pz * qz x = pw * qx + px * qw + py * qz - pz * qy y = pw * qy - px * qz + py * qw + pz * qx z = pw * qz + px * qy - py * qx + pz * qw return Quat.new( x,y,z,w ) end end end