\documentclass{article} \usepackage[mathbf]{euler} \usepackage{longtable} \usepackage{geometry} \geometry{hmargin=0.5in,vmargin=1.2in} %% Set up indexing headers and footer for fast lookup while %% flipping pages. \usepackage{fancyhdr} \pagestyle{fancy} \renewcommand{\headrulewidth}{0pt} \setlength{\headheight}{14.0pt} \lhead{\large\mathversion{bold}$\firstmark$} \rhead{\large\mathversion{bold}$\botmark$} \begin{document} %% This function is a utility to help the sprintf %% function keep the number of digits after the decimal %% place at the right level to come out to 9 digits in total %% both before and after the decimal point. {: def digs(x) if ("%0.8f" % x) =~ /[-+]?([0-9]*)\./ l = 10 - $1.length #$ This comment keeps syntax highlighting in emacs # from getting confused. The single dollar # sign makes it think is in math mode. # Occasionally needed when ruby and LaTeX mix. l = (l > 0 ? l : 0) return l end return(0) end :} %% Set up the longtable environment by specifying the header for %% each page and the footer. \begin{longtable}[c]{l|llllll} \hline\hline \multicolumn{1}{c|}{\mathversion{bold}$x$}& \multicolumn{1}{c}{\mathversion{bold}$\sin(x)$}& \multicolumn{1}{c}{\mathversion{bold}$\cos(x)$}& \multicolumn{1}{c}{\mathversion{bold}$\tan(x)$}& \multicolumn{1}{c}{\mathversion{bold}$\cot(x)$}& \multicolumn{1}{c}{\mathversion{bold}$\sec(x)$}& \multicolumn{1}{c}{\mathversion{bold}$\csc(x)$}\\ \hline\hline \endhead \hline\hline \endfoot {: ## Set up variables needed for computing the values that go into ## the table, taking care to use ruby's BigDecimal class to ensure ## accuracy. The table is set up here to go from 0 to pi/2 in ## increments of step require 'bigdecimal' step = BigDecimal("0.001") one = BigDecimal("1.0") z0 = BigDecimal("0.0") p2 = BigDecimal((Math::PI / 2.0).to_s) -:} %% Treat the first line of the table, for an x value of 0 specially %% by giving exact answers in symbolic form. {:= "\\multicolumn{1}{c|}{{\\mathversion{bold}\\mark{0}$0$}}" :}& {:= "\\multicolumn{1}{c}{{$0$}}" :}& {:= "\\multicolumn{1}{c}{{$1$}}" :}& {:= "\\multicolumn{1}{c}{{$0$}}" :}& {:= "\\multicolumn{1}{c}{{$\\infty$}}" :}& {:= "\\multicolumn{1}{c}{{$1$}}" :}& {:= "\\multicolumn{1}{c}{{$\\infty$}}" :}\\ %% Here is the loop for the body of the table, which starts with %% x one step beyond 0 and pre-computes some of the functions {: x = z0 + step while (x < p2) do tanx = BigDecimal(Math.tan(x).to_s) cotx = one / BigDecimal(Math.tan(x).to_s) secx = one / BigDecimal(Math.cos(x).to_s) cscx = one / BigDecimal(Math.sin(x).to_s) :} {: ## Here is where each line of the main body of the table is set. ## We use the digs function defined above to make sure that every ## column as the same number of significant digits for the functions ## that tend toward infinity. ## ## NB: I could write this comment as a LaTeX comment outside a code ## segment, but then it would end up in the generated LaTeX file, ## TrigTable.etx. Doing so made that file about 6MB in size; by ## putting the comments inside this ruby code block, the size was ## around 2MB. -:} {: xf = "%0.4f" % x :} \mark{{:= xf :}} {:= "\\mathversion{bold}$%0.4f$" % x :}& {:= "$%0.8f$" % Math.sin(x) :}& {:= "$%0.8f$" % Math.cos(x) :}& {:= "$%0.*f$" % [ digs(tanx), tanx ] :}& {:= "$%0.*f$" % [ digs(cotx), cotx ] :}& {:= "$%0.*f$" % [ digs(secx), secx ] :}& {:= "$%0.*f$" % [ digs(cscx), cscx ] :}\\ %% Step and loop {: x += step end :} %% Finally, treat the last row of the table for pi/2 specially %% by giving exact values symbolically. {:= "\\multicolumn{1}{c}{{\\mark{\\pi/{2}}\\mathversion{bold}$\\pi/{2}$}}" :}& {:= "\\multicolumn{1}{c}{$1$}" :}& {:= "\\multicolumn{1}{c}{$0$}" :}& {:= "\\multicolumn{1}{c}{$\\infty$}" :}& {:= "\\multicolumn{1}{c}{$0$}" :}& {:= "\\multicolumn{1}{c}{$\\infty$}" :}& {:= "\\multicolumn{1}{c}{$1$}" :}\\ %% End the table and document---this version comes to 315 pages! \end{longtable} \end{document}