require "narray" require "numru/ganalysis/fitting" require "test/unit" include NumRu class FittingTest < Test::Unit::TestCase def setup nx = 7 ny = 5 @x = NArray.float(nx).indgen! - nx/2 @y = NArray.float(ny).indgen! - ny/2 x = @x.newdim(-1) y = @y.newdim(0) @data = x + 2*y + 10 # then the coefficients will be [1, 2, 10] dist = (x*x)*(y*y)*1e-1 dist -= dist.mean @data += dist # disturbance that does not change the fitting result @data2 = NArray.float(nx,2,ny) @data2[true,0,true] = @data - 1 @data2[true,1,true] = @data + 1 @data3 = 2*NMath.cos(x) + 3*NMath.sin(y) @f_cosx = proc {|x,y| NMath.cos(x).newdim!(-1)} @f_sinx = proc {|x,y| NMath.sin(x).newdim!(-1)} @f_cosy = proc {|x,y| NMath.cos(y).newdim!(0)} @f_siny = proc {|x,y| NMath.sin(y).newdim!(0)} d = NArray.float(nx,2,ny) d[true,0,true] = x + 2*y + 10 - 1 d[true,1,true] = x + 2*y + 10 + 1 mask = NArray.byte( *d.shape ) mask[0..3,true,0..3] = mask[-3..-1,true,true] = 1 mask[0,0,0] = 0 # this is the source of a small descrepancy @data2m = NArrayMiss.to_nam( d, mask ) @data4 = NArray.float(nx,2,ny,2) @data4[false,0] = d - 0.1 @data4[false,1] = d + 0.1 end def test_least_square_fit_1 f_x = GAnalysis::Fitting::X f_y = GAnalysis::Fitting::Y c, bf, dif = GAnalysis::Fitting.least_square_fit(@data, [@x,@y], [f_x, f_y]) err = (c - NArray[1.0, 2.0, 10.0]).abs.max assert( err < 1e-5 ) c, bf, dif = GAnalysis::Fitting.least_square_fit(@data2, [@x,@y], [f_x,f_y], [1]) err = (c - NArray[1.0, 2.0, 10.0]).abs.max assert( err < 1e-5 ) end def test_least_square_fit_2 c, bf, dif = GAnalysis::Fitting.least_square_fit(@data3, [@x,@y], [@f_cosx, @f_sinx, @f_cosy, @f_siny]) err = (c - NArray[2.0, 0, 0, 3, 0]).abs.max assert( err < 1e-10 ) assert( dif < 1e-10 ) end def test_least_square_fit_3 f_x = GAnalysis::Fitting::X f_y = GAnalysis::Fitting::Y c, bf, dif = GAnalysis::Fitting.least_square_fit(@data2m, [@x,@y], [f_x,f_y],[1]) err = (c - NArray[1.0, 2.0, 10.0]).abs.max assert( err < 3e-2 ) end def test_least_square_fit_4 f_x = GAnalysis::Fitting::X f_y = GAnalysis::Fitting::Y c, bf, dif = GAnalysis::Fitting.least_square_fit(@data4, [@x,@y], [f_x,f_y], nil, [1,3]) assert_equal( c.rank, 3 ) assert( dif < 1e-10 ) # should be a perfect fit (except round-off) c, bf, dif = GAnalysis::Fitting.least_square_fit(@data4, [@x,@y], [f_x,f_y], [3], [1]) assert_equal( c.rank, 2 ) assert_equal( bf.rank, 4 ) assert_equal( bf.shape[3], 1 ) end def test_least_square_fit_5 va = VArray.new(@data4,{"long_name"=>"data4","units"=>""},"data4") xax = Axis.new().set_pos( VArray.new(@x,{"units"=>""},"x") ) yax = Axis.new().set_pos( VArray.new(@y,{"units"=>""},"y") ) v1 = NArray.float(@data4.shape[1]).indgen! ax1 = Axis.new().set_pos( VArray.new(v1,nil,"d1") ) v3 = NArray.float(@data4.shape[3]).indgen! ax3 = Axis.new().set_pos( VArray.new(v3,nil,"d3") ) grid = Grid.new(xax, ax1, yax, ax3) gphys = GPhys.new(grid, va) f_x = GAnalysis::Fitting::X f_y = GAnalysis::Fitting::Y c, bf, dif = gphys.least_square_fit([f_x,f_y], [3], [1]) assert_equal( c.rank, 2 ) assert_equal( bf.class, NumRu::GPhys ) assert_equal( bf.rank, 3 ) # rank reduced <-- ensemble_dims are deleted assert_equal( bf.shape, [7,2,5] ) # [nx, len of indep_dim, ny ] end end