require 'mathn' module Math def self.roots_of_cubic_function(a,b,c,d,with_complex = false) f = ((3*c/a) - (b**2/a**2))/3 g = (((2*b**3)/a**3) - (9*b*c/a**2) + (27*d/a))/27 h = (g**2/4) + (f**3/27) if f == 0 && g == 0 && h == 0 f = (3*c/a) - (b**2/a**2) g = (2*b**3/a**3) - (9*b*c/a**2) + (27*d/a) h = (g**2/4) + (f**3/27) [-Math.cbrt(d/a)] elsif h <= 0 i = Math.sqrt((g**2/4) - h) j = Math.cbrt(i) k = Math.acos(-(g / (2*i))) l = j * -1 m = Math.cos(k/3) n = Math.sqrt(3) * Math.sin(k/3) p = (b/(3*a))*-1 [2*j*Math.cos(k/3) - (b/(3*a)), l*(m+n)+p, l*(m-n)+p] else f = (((3*c)/a) - (b**2/a**2))/3 g = ((2*b**3/a**3) - (9*b*c/a**2) + ((27*d)/a))/27 h = (g**2/4) + (f**3/27) r = -(g/2) + Math.sqrt(h) s = Math.cbrt(r) t = -(g/2) - Math.sqrt(h) u = Math.cbrt(t) roots = [(s + u) - (b/(3*a))] roots |= [1,-1].map do |algebraic_sign| Complex((-(s + u)/2) - (b/(3*a)),algebraic_sign * (s-u)*Math.sqrt(3)/2) end if with_complex roots end.map { |n| n.respond_to?(:round) ? n.round(10) : n }.to_set end def self.roots_of_quadratic_function(a,b,c) p = b/a q = c/a denom = (p/2.0)**2 - q return Set[] if denom < 0 root = Math.sqrt(denom) Set.new([:+,:-].map{ |operator| (-(p/2.0)).send(operator, root)}) end def self.roots_of_quartic_function(*args) a,b,c,d,e = args.map { |n| n/args.first } f = c - (3*b**2/8) g = d + (b**3/8) - (b*c/2) h = e - (3*b**4/256) + (b**2 * c/16) - ( b*d/4) roots = self.roots_of_cubic_function(1,(f/2),(((f**2)-(4*h))/16),-(g**2)/64,true) combs = roots.reject{ |n| n == 0}.combination(2) only_complex = combs.select { |comb| comb.all? { |n| n.is_a? Complex }} p,q = (only_complex.empty? ? combs.first : only_complex.first).map { |n| Math.sqrt(n) } r = (-g/(8*p*q)) s = b/(4*a) roots = Set.new([p + q + r -s, p - q - r -s, -p + q - r -s, -p - q + r -s].map { |n| n.is_a?(Complex) ? (n.real if n.imaginary == 0) : n }.compact ) roots.map { |n| n.respond_to?(:round) ? n.round(10) : n }.to_set end end