#include #include #include #include #include #include enum result { SUCCESS, FAIL, ASSERT, STATIC_ASSERT }; namespace bitfieldInsert { template struct type { genType Base; genType Insert; sizeType Offset; sizeType Bits; genType Return; }; typedef type typeU32; typeU32 const Data32[] = { {0x00000000, 0xffffffff, 0, 32, 0xffffffff}, {0x00000000, 0xffffffff, 0, 31, 0x7fffffff}, {0x00000000, 0xffffffff, 0, 0, 0x00000000}, {0xff000000, 0x0000ff00, 8, 8, 0xff00ff00}, {0xffff0000, 0x0000ffff, 16, 16, 0x00000000}, {0x0000ffff, 0xffff0000, 16, 16, 0xffffffff} }; int test() { int Error = 0; glm::uint count = sizeof(Data32) / sizeof(typeU32); for(glm::uint i = 0; i < count; ++i) { glm::uint Return = glm::bitfieldInsert( Data32[i].Base, Data32[i].Insert, Data32[i].Offset, Data32[i].Bits); Error += Data32[i].Return == Return ? 0 : 1; } return Error; } }//bitfieldInsert namespace bitfieldExtract { template struct type { genType Value; sizeType Offset; sizeType Bits; genType Return; result Result; }; typedef type typeU32; typeU32 const Data32[] = { {0xffffffff, 0,32, 0xffffffff, SUCCESS}, {0xffffffff, 8, 0, 0x00000000, SUCCESS}, {0x00000000, 0,32, 0x00000000, SUCCESS}, {0x0f0f0f0f, 0,32, 0x0f0f0f0f, SUCCESS}, {0x00000000, 8, 0, 0x00000000, SUCCESS}, {0x80000000,31, 1, 0x00000001, SUCCESS}, {0x7fffffff,31, 1, 0x00000000, SUCCESS}, {0x00000300, 8, 8, 0x00000003, SUCCESS}, {0x0000ff00, 8, 8, 0x000000ff, SUCCESS}, {0xfffffff0, 0, 5, 0x00000010, SUCCESS}, {0x000000ff, 1, 3, 0x00000007, SUCCESS}, {0x000000ff, 0, 3, 0x00000007, SUCCESS}, {0x00000000, 0, 2, 0x00000000, SUCCESS}, {0xffffffff, 0, 8, 0x000000ff, SUCCESS}, {0xffff0000,16,16, 0x0000ffff, SUCCESS}, {0xfffffff0, 0, 8, 0x00000000, FAIL}, {0xffffffff,16,16, 0x00000000, FAIL}, //{0xffffffff,32, 1, 0x00000000, ASSERT}, // Throw an assert //{0xffffffff, 0,33, 0x00000000, ASSERT}, // Throw an assert //{0xffffffff,16,16, 0x00000000, ASSERT}, // Throw an assert }; int test() { int Error = 0; glm::uint count = sizeof(Data32) / sizeof(typeU32); for(glm::uint i = 0; i < count; ++i) { glm::uint Return = glm::bitfieldExtract( Data32[i].Value, Data32[i].Offset, Data32[i].Bits); bool Compare = Data32[i].Return == Return; if(Data32[i].Result == SUCCESS && Compare) continue; else if(Data32[i].Result == FAIL && !Compare) continue; Error += 1; } return Error; } }//extractField namespace bitfieldReverse { /* GLM_FUNC_QUALIFIER unsigned int bitfieldReverseLoop(unsigned int v) { unsigned int Result(0); unsigned int const BitSize = static_cast(sizeof(unsigned int) * 8); for(unsigned int i = 0; i < BitSize; ++i) { unsigned int const BitSet(v & (static_cast(1) << i)); unsigned int const BitFirst(BitSet >> i); Result |= BitFirst << (BitSize - 1 - i); } return Result; } GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseLoop(glm::uint64_t v) { glm::uint64_t Result(0); glm::uint64_t const BitSize = static_cast(sizeof(unsigned int) * 8); for(glm::uint64_t i = 0; i < BitSize; ++i) { glm::uint64_t const BitSet(v & (static_cast(1) << i)); glm::uint64_t const BitFirst(BitSet >> i); Result |= BitFirst << (BitSize - 1 - i); } return Result; } */ template class vecType> GLM_FUNC_QUALIFIER vecType bitfieldReverseLoop(vecType const & v) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldReverse' only accept integer values"); vecType Result(0); T const BitSize = static_cast(sizeof(T) * 8); for(T i = 0; i < BitSize; ++i) { vecType const BitSet(v & (static_cast(1) << i)); vecType const BitFirst(BitSet >> i); Result |= BitFirst << (BitSize - 1 - i); } return Result; } template GLM_FUNC_QUALIFIER T bitfieldReverseLoop(T v) { return bitfieldReverseLoop(glm::tvec1(v)).x; } GLM_FUNC_QUALIFIER glm::uint32_t bitfieldReverseUint32(glm::uint32_t x) { x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1; x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2; x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4; x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8; x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16; return x; } GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseUint64(glm::uint64_t x) { x = (x & 0x5555555555555555) << 1 | (x & 0xAAAAAAAAAAAAAAAA) >> 1; x = (x & 0x3333333333333333) << 2 | (x & 0xCCCCCCCCCCCCCCCC) >> 2; x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x & 0xF0F0F0F0F0F0F0F0) >> 4; x = (x & 0x00FF00FF00FF00FF) << 8 | (x & 0xFF00FF00FF00FF00) >> 8; x = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16; x = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32; return x; } template struct compute_bitfieldReverseStep { template class vecType> GLM_FUNC_QUALIFIER static vecType call(vecType const & v, T, T) { return v; } }; template <> struct compute_bitfieldReverseStep { template class vecType> GLM_FUNC_QUALIFIER static vecType call(vecType const & v, T Mask, T Shift) { return (v & Mask) << Shift | (v & (~Mask)) >> Shift; } }; template class vecType> GLM_FUNC_QUALIFIER vecType bitfieldReverseOps(vecType const & v) { vecType x(v); x = compute_bitfieldReverseStep= 2>::call(x, T(0x5555555555555555ull), static_cast( 1)); x = compute_bitfieldReverseStep= 4>::call(x, T(0x3333333333333333ull), static_cast( 2)); x = compute_bitfieldReverseStep= 8>::call(x, T(0x0F0F0F0F0F0F0F0Full), static_cast( 4)); x = compute_bitfieldReverseStep= 16>::call(x, T(0x00FF00FF00FF00FFull), static_cast( 8)); x = compute_bitfieldReverseStep= 32>::call(x, T(0x0000FFFF0000FFFFull), static_cast(16)); x = compute_bitfieldReverseStep= 64>::call(x, T(0x00000000FFFFFFFFull), static_cast(32)); return x; } template GLM_FUNC_QUALIFIER genType bitfieldReverseOps(genType x) { return bitfieldReverseOps(glm::tvec1(x)).x; } template struct type { genType Value; genType Return; result Result; }; typedef type typeU32; typeU32 const Data32[] = { {0x00000001, 0x80000000, SUCCESS}, {0x0000000f, 0xf0000000, SUCCESS}, {0x000000ff, 0xff000000, SUCCESS}, {0xf0000000, 0x0000000f, SUCCESS}, {0xff000000, 0x000000ff, SUCCESS}, {0xffffffff, 0xffffffff, SUCCESS}, {0x00000000, 0x00000000, SUCCESS} }; typedef type typeU64; #if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44)) typeU64 const Data64[] = { {0xf000000000000000LLU, 0x000000000000000fLLU, SUCCESS}, {0xffffffffffffffffLLU, 0xffffffffffffffffLLU, SUCCESS}, {0x0000000000000000LLU, 0x0000000000000000LLU, SUCCESS} }; #else typeU64 const Data64[] = { {0x00000000000000ff, 0xff00000000000000, SUCCESS}, {0x000000000000000f, 0xf000000000000000, SUCCESS}, {0xf000000000000000, 0x000000000000000f, SUCCESS}, {0xffffffffffffffff, 0xffffffffffffffff, SUCCESS}, {0x0000000000000000, 0x0000000000000000, SUCCESS} }; #endif int test32_bitfieldReverse() { int Error = 0; std::size_t const Count = sizeof(Data32) / sizeof(typeU32); for(std::size_t i = 0; i < Count; ++i) { glm::uint Return = glm::bitfieldReverse(Data32[i].Value); bool Compare = Data32[i].Return == Return; if(Data32[i].Result == SUCCESS) Error += Compare ? 0 : 1; else Error += Compare ? 1 : 0; } return Error; } int test32_bitfieldReverseLoop() { int Error = 0; std::size_t const Count = sizeof(Data32) / sizeof(typeU32); for(std::size_t i = 0; i < Count; ++i) { glm::uint Return = bitfieldReverseLoop(Data32[i].Value); bool Compare = Data32[i].Return == Return; if(Data32[i].Result == SUCCESS) Error += Compare ? 0 : 1; else Error += Compare ? 1 : 0; } return Error; } int test32_bitfieldReverseUint32() { int Error = 0; std::size_t const Count = sizeof(Data32) / sizeof(typeU32); for(std::size_t i = 0; i < Count; ++i) { glm::uint Return = bitfieldReverseUint32(Data32[i].Value); bool Compare = Data32[i].Return == Return; if(Data32[i].Result == SUCCESS) Error += Compare ? 0 : 1; else Error += Compare ? 1 : 0; } return Error; } int test32_bitfieldReverseOps() { int Error = 0; std::size_t const Count = sizeof(Data32) / sizeof(typeU32); for(std::size_t i = 0; i < Count; ++i) { glm::uint Return = bitfieldReverseOps(Data32[i].Value); bool Compare = Data32[i].Return == Return; if(Data32[i].Result == SUCCESS) Error += Compare ? 0 : 1; else Error += Compare ? 1 : 0; } return Error; } int test64_bitfieldReverse() { int Error = 0; std::size_t const Count = sizeof(Data64) / sizeof(typeU64); for(std::size_t i = 0; i < Count; ++i) { glm::uint64 Return = glm::bitfieldReverse(Data64[i].Value); bool Compare = Data64[i].Return == Return; if(Data64[i].Result == SUCCESS) Error += Compare ? 0 : 1; else Error += Compare ? 1 : 0; } return Error; } int test64_bitfieldReverseLoop() { int Error = 0; std::size_t const Count = sizeof(Data64) / sizeof(typeU64); for(std::size_t i = 0; i < Count; ++i) { glm::uint64 Return = bitfieldReverseLoop(Data64[i].Value); bool Compare = Data64[i].Return == Return; if(Data32[i].Result == SUCCESS) Error += Compare ? 0 : 1; else Error += Compare ? 1 : 0; } return Error; } int test64_bitfieldReverseUint64() { int Error = 0; std::size_t const Count = sizeof(Data64) / sizeof(typeU64); for(std::size_t i = 0; i < Count; ++i) { glm::uint64 Return = bitfieldReverseUint64(Data64[i].Value); bool Compare = Data64[i].Return == Return; if(Data64[i].Result == SUCCESS) Error += Compare ? 0 : 1; else Error += Compare ? 1 : 0; } return Error; } int test64_bitfieldReverseOps() { int Error = 0; std::size_t const Count = sizeof(Data64) / sizeof(typeU64); for(std::size_t i = 0; i < Count; ++i) { glm::uint64 Return = bitfieldReverseOps(Data64[i].Value); bool Compare = Data64[i].Return == Return; if(Data64[i].Result == SUCCESS) Error += Compare ? 0 : 1; else Error += Compare ? 1 : 0; } return Error; } int test() { int Error = 0; Error += test32_bitfieldReverse(); Error += test32_bitfieldReverseLoop(); Error += test32_bitfieldReverseUint32(); Error += test32_bitfieldReverseOps(); Error += test64_bitfieldReverse(); Error += test64_bitfieldReverseLoop(); Error += test64_bitfieldReverseUint64(); Error += test64_bitfieldReverseOps(); return Error; } int perf32(glm::uint32 Count) { int Error = 0; std::vector Data; Data.resize(static_cast(Count)); std::clock_t Timestamps0 = std::clock(); for(glm::uint32 k = 0; k < Count; ++k) Data[k] = glm::bitfieldReverse(k); std::clock_t Timestamps1 = std::clock(); for(glm::uint32 k = 0; k < Count; ++k) Data[k] = bitfieldReverseLoop(k); std::clock_t Timestamps2 = std::clock(); for(glm::uint32 k = 0; k < Count; ++k) Data[k] = bitfieldReverseUint32(k); std::clock_t Timestamps3 = std::clock(); for(glm::uint32 k = 0; k < Count; ++k) Data[k] = bitfieldReverseOps(k); std::clock_t Timestamps4 = std::clock(); std::printf("glm::bitfieldReverse: %d clocks\n", static_cast(Timestamps1 - Timestamps0)); std::printf("bitfieldReverseLoop: %d clocks\n", static_cast(Timestamps2 - Timestamps1)); std::printf("bitfieldReverseUint32: %d clocks\n", static_cast(Timestamps3 - Timestamps2)); std::printf("bitfieldReverseOps: %d clocks\n", static_cast(Timestamps4 - Timestamps3)); return Error; } int perf64(glm::uint64 Count) { int Error = 0; std::vector Data; Data.resize(static_cast(Count)); std::clock_t Timestamps0 = std::clock(); for(glm::uint32 k = 0; k < Count; ++k) Data[k] = glm::bitfieldReverse(k); std::clock_t Timestamps1 = std::clock(); for(glm::uint64 k = 0; k < Count; ++k) Data[k] = bitfieldReverseLoop(k); std::clock_t Timestamps2 = std::clock(); for(glm::uint64 k = 0; k < Count; ++k) Data[k] = bitfieldReverseUint64(k); std::clock_t Timestamps3 = std::clock(); for(glm::uint64 k = 0; k < Count; ++k) Data[k] = bitfieldReverseOps(k); std::clock_t Timestamps4 = std::clock(); std::printf("glm::bitfieldReverse - 64: %d clocks\n", static_cast(Timestamps1 - Timestamps0)); std::printf("bitfieldReverseLoop - 64: %d clocks\n", static_cast(Timestamps2 - Timestamps1)); std::printf("bitfieldReverseUint - 64: %d clocks\n", static_cast(Timestamps3 - Timestamps2)); std::printf("bitfieldReverseOps - 64: %d clocks\n", static_cast(Timestamps4 - Timestamps3)); return Error; } int perf(std::size_t Samples) { int Error = 0; Error += perf32(static_cast(Samples)); Error += perf64(static_cast(Samples)); return Error; } }//bitfieldReverse namespace findMSB { template struct type { genType Value; retType Return; }; # if GLM_HAS_BITSCAN_WINDOWS template GLM_FUNC_QUALIFIER int findMSB_intrinsic(genIUType Value) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findMSB' only accept integer values"); if(Value == 0) return -1; unsigned long Result(0); _BitScanReverse(&Result, Value); return int(Result); } # endif//GLM_HAS_BITSCAN_WINDOWS # if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC template GLM_FUNC_QUALIFIER int findMSB_avx(genIUType Value) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findMSB' only accept integer values"); if(Value == 0) return -1; return int(_tzcnt_u32(Value)); } # endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS template GLM_FUNC_QUALIFIER int findMSB_095(genIUType Value) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findMSB' only accept integer values"); if(Value == genIUType(0) || Value == genIUType(-1)) return -1; else if(Value > 0) { genIUType Bit = genIUType(-1); for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){} return Bit; } else //if(Value < 0) { int const BitCount(sizeof(genIUType) * 8); int MostSignificantBit(-1); for(int BitIndex(0); BitIndex < BitCount; ++BitIndex) MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex; assert(MostSignificantBit >= 0); return MostSignificantBit; } } template GLM_FUNC_QUALIFIER int findMSB_nlz1(genIUType x) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findMSB' only accept integer values"); if (x == 0) return -1; int n = 0; if (x <= 0x0000FFFF) {n = n +16; x = x <<16;} if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;} if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;} if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;} if (x <= 0x7FFFFFFF) {n = n + 1;} return 31 - n; } int findMSB_nlz2(unsigned int x) { unsigned y; int n; n = 32; y = x >>16; if (y != 0) {n = n -16; x = y;} y = x >> 8; if (y != 0) {n = n - 8; x = y;} y = x >> 4; if (y != 0) {n = n - 4; x = y;} y = x >> 2; if (y != 0) {n = n - 2; x = y;} y = x >> 1; if (y != 0) return n - 2; return 32 - (n - x); } int findMSB_pop(unsigned int x) { x = x | (x >> 1); x = x | (x >> 2); x = x | (x >> 4); x = x | (x >> 8); x = x | (x >>16); return 31 - glm::bitCount(~x); } int perf_int(std::size_t Count) { type const Data[] = { {0x00000000, -1}, {0x00000001, 0}, {0x00000002, 1}, {0x00000003, 1}, {0x00000004, 2}, {0x00000005, 2}, {0x00000007, 2}, {0x00000008, 3}, {0x00000010, 4}, {0x00000020, 5}, {0x00000040, 6}, {0x00000080, 7}, {0x00000100, 8}, {0x00000200, 9}, {0x00000400, 10}, {0x00000800, 11}, {0x00001000, 12}, {0x00002000, 13}, {0x00004000, 14}, {0x00008000, 15}, {0x00010000, 16}, {0x00020000, 17}, {0x00040000, 18}, {0x00080000, 19}, {0x00100000, 20}, {0x00200000, 21}, {0x00400000, 22}, {0x00800000, 23}, {0x01000000, 24}, {0x02000000, 25}, {0x04000000, 26}, {0x08000000, 27}, {0x10000000, 28}, {0x20000000, 29}, {0x40000000, 30} }; int Error(0); std::clock_t Timestamps0 = std::clock(); for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { int Result = glm::findMSB(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } std::clock_t Timestamps1 = std::clock(); for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { int Result = findMSB_nlz1(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } std::clock_t Timestamps2 = std::clock(); for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { int Result = findMSB_nlz2(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } std::clock_t Timestamps3 = std::clock(); for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { int Result = findMSB_095(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } std::clock_t Timestamps4 = std::clock(); # if GLM_HAS_BITSCAN_WINDOWS for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { int Result = findMSB_intrinsic(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } # endif//GLM_HAS_BITSCAN_WINDOWS std::clock_t Timestamps5 = std::clock(); for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { int Result = findMSB_pop(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } std::clock_t Timestamps6 = std::clock(); # if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { int Result = findMSB_avx(Data[i].Value); Error += Data[i].Return == Result ? 0 : 1; } # endif std::clock_t Timestamps7 = std::clock(); std::printf("glm::findMSB: %d clocks\n", static_cast(Timestamps1 - Timestamps0)); std::printf("findMSB - nlz1: %d clocks\n", static_cast(Timestamps2 - Timestamps1)); std::printf("findMSB - nlz2: %d clocks\n", static_cast(Timestamps3 - Timestamps2)); std::printf("findMSB - 0.9.5: %d clocks\n", static_cast(Timestamps4 - Timestamps3)); # if GLM_HAS_BITSCAN_WINDOWS std::printf("findMSB - intrinsics: %d clocks\n", static_cast(Timestamps5 - Timestamps4)); # endif//GLM_HAS_BITSCAN_WINDOWS std::printf("findMSB - pop: %d clocks\n", static_cast(Timestamps6 - Timestamps5)); # if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC std::printf("findMSB - avx tzcnt: %d clocks\n", static_cast(Timestamps7 - Timestamps6)); # endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS return Error; } int test_ivec4() { type const Data[] = { {glm::ivec4(0x00000000), glm::ivec4(-1)}, {glm::ivec4(0x00000001), glm::ivec4( 0)}, {glm::ivec4(0x00000002), glm::ivec4( 1)}, {glm::ivec4(0x00000003), glm::ivec4( 1)}, {glm::ivec4(0x00000004), glm::ivec4( 2)}, {glm::ivec4(0x00000005), glm::ivec4( 2)}, {glm::ivec4(0x00000007), glm::ivec4( 2)}, {glm::ivec4(0x00000008), glm::ivec4( 3)}, {glm::ivec4(0x00000010), glm::ivec4( 4)}, {glm::ivec4(0x00000020), glm::ivec4( 5)}, {glm::ivec4(0x00000040), glm::ivec4( 6)}, {glm::ivec4(0x00000080), glm::ivec4( 7)}, {glm::ivec4(0x00000100), glm::ivec4( 8)}, {glm::ivec4(0x00000200), glm::ivec4( 9)}, {glm::ivec4(0x00000400), glm::ivec4(10)}, {glm::ivec4(0x00000800), glm::ivec4(11)}, {glm::ivec4(0x00001000), glm::ivec4(12)}, {glm::ivec4(0x00002000), glm::ivec4(13)}, {glm::ivec4(0x00004000), glm::ivec4(14)}, {glm::ivec4(0x00008000), glm::ivec4(15)}, {glm::ivec4(0x00010000), glm::ivec4(16)}, {glm::ivec4(0x00020000), glm::ivec4(17)}, {glm::ivec4(0x00040000), glm::ivec4(18)}, {glm::ivec4(0x00080000), glm::ivec4(19)}, {glm::ivec4(0x00100000), glm::ivec4(20)}, {glm::ivec4(0x00200000), glm::ivec4(21)}, {glm::ivec4(0x00400000), glm::ivec4(22)}, {glm::ivec4(0x00800000), glm::ivec4(23)}, {glm::ivec4(0x01000000), glm::ivec4(24)}, {glm::ivec4(0x02000000), glm::ivec4(25)}, {glm::ivec4(0x04000000), glm::ivec4(26)}, {glm::ivec4(0x08000000), glm::ivec4(27)}, {glm::ivec4(0x10000000), glm::ivec4(28)}, {glm::ivec4(0x20000000), glm::ivec4(29)}, {glm::ivec4(0x40000000), glm::ivec4(30)} }; int Error(0); for(std::size_t i = 0; i < sizeof(Data) / sizeof(type); ++i) { glm::ivec4 Result0 = glm::findMSB(Data[i].Value); Error += glm::all(glm::equal(Data[i].Return, Result0)) ? 0 : 1; } return Error; } int test_int() { typedef type entry; entry const Data[] = { {0x00000000, -1}, {0x00000001, 0}, {0x00000002, 1}, {0x00000003, 1}, {0x00000004, 2}, {0x00000005, 2}, {0x00000007, 2}, {0x00000008, 3}, {0x00000010, 4}, {0x00000020, 5}, {0x00000040, 6}, {0x00000080, 7}, {0x00000100, 8}, {0x00000200, 9}, {0x00000400, 10}, {0x00000800, 11}, {0x00001000, 12}, {0x00002000, 13}, {0x00004000, 14}, {0x00008000, 15}, {0x00010000, 16}, {0x00020000, 17}, {0x00040000, 18}, {0x00080000, 19}, {0x00100000, 20}, {0x00200000, 21}, {0x00400000, 22}, {0x00800000, 23}, {0x01000000, 24}, {0x02000000, 25}, {0x04000000, 26}, {0x08000000, 27}, {0x10000000, 28}, {0x20000000, 29}, {0x40000000, 30} }; int Error(0); for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) { int Result0 = glm::findMSB(Data[i].Value); Error += Data[i].Return == Result0 ? 0 : 1; } for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) { int Result0 = findMSB_nlz1(Data[i].Value); Error += Data[i].Return == Result0 ? 0 : 1; } /* for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) { int Result0 = findMSB_nlz2(Data[i].Value); Error += Data[i].Return == Result0 ? 0 : 1; } */ for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) { int Result0 = findMSB_095(Data[i].Value); Error += Data[i].Return == Result0 ? 0 : 1; } # if GLM_HAS_BITSCAN_WINDOWS for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) { int Result0 = findMSB_intrinsic(Data[i].Value); Error += Data[i].Return == Result0 ? 0 : 1; } # endif//GLM_HAS_BITSCAN_WINDOWS for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) { int Result0 = findMSB_pop(Data[i].Value); Error += Data[i].Return == Result0 ? 0 : 1; } return Error; } int test() { int Error(0); Error += test_ivec4(); Error += test_int(); return Error; } int perf(std::size_t Samples) { int Error(0); Error += perf_int(Samples); return Error; } }//findMSB namespace findLSB { template struct type { genType Value; retType Return; }; typedef type entry; entry const DataI32[] = { {0x00000001, 0}, {0x00000003, 0}, {0x00000002, 1}, // {0x80000000, 31}, // Clang generates an error with this {0x00010000, 16}, {0x7FFF0000, 16}, {0x7F000000, 24}, {0x7F00FF00, 8}, {0x00000000, -1} }; # if GLM_HAS_BITSCAN_WINDOWS template GLM_FUNC_QUALIFIER int findLSB_intrinsic(genIUType Value) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findLSB' only accept integer values"); if(Value == 0) return -1; unsigned long Result(0); _BitScanForward(&Result, Value); return int(Result); } # endif template GLM_FUNC_QUALIFIER int findLSB_095(genIUType Value) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findLSB' only accept integer values"); if(Value == 0) return -1; genIUType Bit; for(Bit = genIUType(0); !(Value & (1 << Bit)); ++Bit){} return Bit; } template GLM_FUNC_QUALIFIER int findLSB_ntz2(genIUType x) { if(x == 0) return -1; return glm::bitCount(~x & (x - static_cast(1))); } template GLM_FUNC_QUALIFIER int findLSB_branchfree(genIUType x) { bool IsNull(x == 0); int const Keep(!IsNull); int const Discard(IsNull); return static_cast(glm::bitCount(~x & (x - static_cast(1)))) * Keep + Discard * -1; } int test_int() { int Error(0); for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = glm::findLSB(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = findLSB_095(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } # if GLM_HAS_BITSCAN_WINDOWS for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = findLSB_intrinsic(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } # endif for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = findLSB_ntz2(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = findLSB_branchfree(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } return Error; } int test() { int Error(0); Error += test_int(); return Error; } int perf_int(std::size_t Count) { int Error(0); std::clock_t Timestamps0 = std::clock(); for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = glm::findLSB(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } std::clock_t Timestamps1 = std::clock(); for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = findLSB_095(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } std::clock_t Timestamps2 = std::clock(); # if GLM_HAS_BITSCAN_WINDOWS for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = findLSB_intrinsic(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } # endif std::clock_t Timestamps3 = std::clock(); for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = findLSB_ntz2(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } std::clock_t Timestamps4 = std::clock(); for(std::size_t k = 0; k < Count; ++k) for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) { int Result = findLSB_branchfree(DataI32[i].Value); Error += DataI32[i].Return == Result ? 0 : 1; } std::clock_t Timestamps5 = std::clock(); std::printf("glm::findLSB: %d clocks\n", static_cast(Timestamps1 - Timestamps0)); std::printf("findLSB - 0.9.5: %d clocks\n", static_cast(Timestamps2 - Timestamps1)); # if GLM_HAS_BITSCAN_WINDOWS std::printf("findLSB - intrinsics: %d clocks\n", static_cast(Timestamps3 - Timestamps2)); # endif std::printf("findLSB - ntz2: %d clocks\n", static_cast(Timestamps4 - Timestamps3)); std::printf("findLSB - branchfree: %d clocks\n", static_cast(Timestamps5 - Timestamps4)); return Error; } int perf(std::size_t Samples) { int Error(0); Error += perf_int(Samples); return Error; } }//findLSB namespace uaddCarry { int test() { int Error(0); { glm::uint x = std::numeric_limits::max(); glm::uint y = 0; glm::uint Carry = 0; glm::uint Result = glm::uaddCarry(x, y, Carry); Error += Carry == 0 ? 0 : 1; Error += Result == std::numeric_limits::max() ? 0 : 1; } { glm::uint x = std::numeric_limits::max(); glm::uint y = 1; glm::uint Carry = 0; glm::uint Result = glm::uaddCarry(x, y, Carry); Error += Carry == 1 ? 0 : 1; Error += Result == 0 ? 0 : 1; } { glm::uvec1 x(std::numeric_limits::max()); glm::uvec1 y(0); glm::uvec1 Carry(0); glm::uvec1 Result(glm::uaddCarry(x, y, Carry)); Error += glm::all(glm::equal(Carry, glm::uvec1(0))) ? 0 : 1; Error += glm::all(glm::equal(Result, glm::uvec1(std::numeric_limits::max()))) ? 0 : 1; } { glm::uvec1 x(std::numeric_limits::max()); glm::uvec1 y(1); glm::uvec1 Carry(0); glm::uvec1 Result(glm::uaddCarry(x, y, Carry)); Error += glm::all(glm::equal(Carry, glm::uvec1(1))) ? 0 : 1; Error += glm::all(glm::equal(Result, glm::uvec1(0))) ? 0 : 1; } return Error; } }//namespace uaddCarry namespace usubBorrow { int test() { int Error(0); { glm::uint x = 16; glm::uint y = 17; glm::uint Borrow = 0; glm::uint Result = glm::usubBorrow(x, y, Borrow); Error += Borrow == 1 ? 0 : 1; Error += Result == 1 ? 0 : 1; } { glm::uvec1 x(16); glm::uvec1 y(17); glm::uvec1 Borrow(0); glm::uvec1 Result(glm::usubBorrow(x, y, Borrow)); Error += glm::all(glm::equal(Borrow, glm::uvec1(1))) ? 0 : 1; Error += glm::all(glm::equal(Result, glm::uvec1(1))) ? 0 : 1; } { glm::uvec2 x(16); glm::uvec2 y(17); glm::uvec2 Borrow(0); glm::uvec2 Result(glm::usubBorrow(x, y, Borrow)); Error += glm::all(glm::equal(Borrow, glm::uvec2(1))) ? 0 : 1; Error += glm::all(glm::equal(Result, glm::uvec2(1))) ? 0 : 1; } { glm::uvec3 x(16); glm::uvec3 y(17); glm::uvec3 Borrow(0); glm::uvec3 Result(glm::usubBorrow(x, y, Borrow)); Error += glm::all(glm::equal(Borrow, glm::uvec3(1))) ? 0 : 1; Error += glm::all(glm::equal(Result, glm::uvec3(1))) ? 0 : 1; } { glm::uvec4 x(16); glm::uvec4 y(17); glm::uvec4 Borrow(0); glm::uvec4 Result(glm::usubBorrow(x, y, Borrow)); Error += glm::all(glm::equal(Borrow, glm::uvec4(1))) ? 0 : 1; Error += glm::all(glm::equal(Result, glm::uvec4(1))) ? 0 : 1; } return Error; } }//namespace usubBorrow namespace umulExtended { int test() { int Error(0); { glm::uint x = 2; glm::uint y = 3; glm::uint msb = 0; glm::uint lsb = 0; glm::umulExtended(x, y, msb, lsb); Error += msb == 0 ? 0 : 1; Error += lsb == 6 ? 0 : 1; } { glm::uvec1 x(2); glm::uvec1 y(3); glm::uvec1 msb(0); glm::uvec1 lsb(0); glm::umulExtended(x, y, msb, lsb); Error += glm::all(glm::equal(msb, glm::uvec1(0))) ? 0 : 1; Error += glm::all(glm::equal(lsb, glm::uvec1(6))) ? 0 : 1; } { glm::uvec2 x(2); glm::uvec2 y(3); glm::uvec2 msb(0); glm::uvec2 lsb(0); glm::umulExtended(x, y, msb, lsb); Error += glm::all(glm::equal(msb, glm::uvec2(0))) ? 0 : 1; Error += glm::all(glm::equal(lsb, glm::uvec2(6))) ? 0 : 1; } { glm::uvec3 x(2); glm::uvec3 y(3); glm::uvec3 msb(0); glm::uvec3 lsb(0); glm::umulExtended(x, y, msb, lsb); Error += glm::all(glm::equal(msb, glm::uvec3(0))) ? 0 : 1; Error += glm::all(glm::equal(lsb, glm::uvec3(6))) ? 0 : 1; } { glm::uvec4 x(2); glm::uvec4 y(3); glm::uvec4 msb(0); glm::uvec4 lsb(0); glm::umulExtended(x, y, msb, lsb); Error += glm::all(glm::equal(msb, glm::uvec4(0))) ? 0 : 1; Error += glm::all(glm::equal(lsb, glm::uvec4(6))) ? 0 : 1; } return Error; } }//namespace umulExtended namespace imulExtended { int test() { int Error(0); { int x = 2; int y = 3; int msb = 0; int lsb = 0; glm::imulExtended(x, y, msb, lsb); Error += msb == 0 ? 0 : 1; Error += lsb == 6 ? 0 : 1; } { glm::ivec1 x(2); glm::ivec1 y(3); glm::ivec1 msb(0); glm::ivec1 lsb(0); glm::imulExtended(x, y, msb, lsb); Error += glm::all(glm::equal(msb, glm::ivec1(0))) ? 0 : 1; Error += glm::all(glm::equal(lsb, glm::ivec1(6))) ? 0 : 1; } { glm::ivec2 x(2); glm::ivec2 y(3); glm::ivec2 msb(0); glm::ivec2 lsb(0); glm::imulExtended(x, y, msb, lsb); Error += glm::all(glm::equal(msb, glm::ivec2(0))) ? 0 : 1; Error += glm::all(glm::equal(lsb, glm::ivec2(6))) ? 0 : 1; } { glm::ivec3 x(2); glm::ivec3 y(3); glm::ivec3 msb(0); glm::ivec3 lsb(0); glm::imulExtended(x, y, msb, lsb); Error += glm::all(glm::equal(msb, glm::ivec3(0))) ? 0 : 1; Error += glm::all(glm::equal(lsb, glm::ivec3(6))) ? 0 : 1; } { glm::ivec4 x(2); glm::ivec4 y(3); glm::ivec4 msb(0); glm::ivec4 lsb(0); glm::imulExtended(x, y, msb, lsb); Error += glm::all(glm::equal(msb, glm::ivec4(0))) ? 0 : 1; Error += glm::all(glm::equal(lsb, glm::ivec4(6))) ? 0 : 1; } return Error; } }//namespace imulExtended namespace bitCount { template struct type { genType Value; genType Return; }; type const DataI32[] = { {0x00000001, 1}, {0x00000003, 2}, {0x00000002, 1}, {0x7fffffff, 31}, {0x00000000, 0} }; template inline int bitCount_if(T v) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitCount' only accept integer values"); int Count(0); for(T i = 0, n = static_cast(sizeof(T) * 8); i < n; ++i) { if(v & static_cast(1 << i)) ++Count; } return Count; } template inline int bitCount_vec(T v) { GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitCount' only accept integer values"); int Count(0); for(T i = 0, n = static_cast(sizeof(T) * 8); i < n; ++i) { Count += static_cast((v >> i) & static_cast(1)); } return Count; } template struct compute_bitfieldBitCountStep { template class vecType> GLM_FUNC_QUALIFIER static vecType call(vecType const & v, T, T) { return v; } }; template <> struct compute_bitfieldBitCountStep { template class vecType> GLM_FUNC_QUALIFIER static vecType call(vecType const & v, T Mask, T Shift) { return (v & Mask) + ((v >> Shift) & Mask); } }; template class vecType> GLM_FUNC_QUALIFIER vecType bitCount_bitfield(vecType const & v) { vecType::type, P> x(*reinterpret_cast::type, P> const *>(&v)); x = compute_bitfieldBitCountStep= 2>::call(x, typename glm::detail::make_unsigned::type(0x5555555555555555ull), typename glm::detail::make_unsigned::type( 1)); x = compute_bitfieldBitCountStep= 4>::call(x, typename glm::detail::make_unsigned::type(0x3333333333333333ull), typename glm::detail::make_unsigned::type( 2)); x = compute_bitfieldBitCountStep= 8>::call(x, typename glm::detail::make_unsigned::type(0x0F0F0F0F0F0F0F0Full), typename glm::detail::make_unsigned::type( 4)); x = compute_bitfieldBitCountStep= 16>::call(x, typename glm::detail::make_unsigned::type(0x00FF00FF00FF00FFull), typename glm::detail::make_unsigned::type( 8)); x = compute_bitfieldBitCountStep= 32>::call(x, typename glm::detail::make_unsigned::type(0x0000FFFF0000FFFFull), typename glm::detail::make_unsigned::type(16)); x = compute_bitfieldBitCountStep= 64>::call(x, typename glm::detail::make_unsigned::type(0x00000000FFFFFFFFull), typename glm::detail::make_unsigned::type(32)); return vecType(x); } template GLM_FUNC_QUALIFIER int bitCount_bitfield(genType x) { return bitCount_bitfield(glm::tvec1(x)).x; } int perf(std::size_t Size) { int Error(0); std::vector v; v.resize(Size); std::vector w; w.resize(Size); std::clock_t TimestampsA = std::clock(); // bitCount - TimeIf { for(std::size_t i = 0, n = v.size(); i < n; ++i) v[i] = bitCount_if(static_cast(i)); } std::clock_t TimestampsB = std::clock(); // bitCount - TimeVec { for(std::size_t i = 0, n = v.size(); i < n; ++i) v[i] = bitCount_vec(i); } std::clock_t TimestampsC = std::clock(); // bitCount - TimeDefault { for(std::size_t i = 0, n = v.size(); i < n; ++i) v[i] = glm::bitCount(i); } std::clock_t TimestampsD = std::clock(); // bitCount - TimeVec4 { for(std::size_t i = 0, n = v.size(); i < n; ++i) w[i] = glm::bitCount(glm::ivec4(static_cast(i))); } std::clock_t TimestampsE = std::clock(); { for(std::size_t i = 0, n = v.size(); i < n; ++i) v[i] = bitCount_bitfield(static_cast(i)); } std::clock_t TimestampsF = std::clock(); std::printf("bitCount - TimeIf %d\n", static_cast(TimestampsB - TimestampsA)); std::printf("bitCount - TimeVec %d\n", static_cast(TimestampsC - TimestampsB)); std::printf("bitCount - TimeDefault %d\n", static_cast(TimestampsD - TimestampsC)); std::printf("bitCount - TimeVec4 %d\n", static_cast(TimestampsE - TimestampsD)); std::printf("bitCount - bitfield %d\n", static_cast(TimestampsF - TimestampsE)); return Error; } int test() { int Error(0); for(std::size_t i = 0, n = sizeof(DataI32) / sizeof(type); i < n; ++i) { int ResultA = glm::bitCount(DataI32[i].Value); int ResultB = bitCount_if(DataI32[i].Value); int ResultC = bitCount_vec(DataI32[i].Value); int ResultE = bitCount_bitfield(DataI32[i].Value); Error += DataI32[i].Return == ResultA ? 0 : 1; Error += DataI32[i].Return == ResultB ? 0 : 1; Error += DataI32[i].Return == ResultC ? 0 : 1; Error += DataI32[i].Return == ResultE ? 0 : 1; assert(!Error); } return Error; } }//bitCount int main() { int Error = 0; Error += ::bitCount::test(); Error += ::bitfieldReverse::test(); Error += ::findMSB::test(); Error += ::findLSB::test(); Error += ::umulExtended::test(); Error += ::imulExtended::test(); Error += ::uaddCarry::test(); Error += ::usubBorrow::test(); Error += ::bitfieldInsert::test(); Error += ::bitfieldExtract::test(); # ifdef NDEBUG std::size_t const Samples = 1000; ::bitCount::perf(Samples); ::bitfieldReverse::perf(Samples); ::findMSB::perf(Samples); ::findLSB::perf(Samples); # endif return Error; }