Sha256: 92f9ca8ffbe63d9e5379a88c9c598bbd06ea45b111ffecd1739f905d175238a8
Contents?: true
Size: 1.6 KB
Versions: 1
Compression:
Stored size: 1.6 KB
Contents
module Anomaly class Detector def initialize(data = nil) @m = 0 train(data) if data end def train(data) if defined?(NMatrix) d = NMatrix.to_na(data) @n, @m = d.sizes # Convert these to an array for Marshal.dump @mean = d.mean(1).to_a @std = d.stddev(1).to_a else # Default to Array, since built-in Matrix does not give us a big performance advantage. d = data.to_a @m = d.size @n = d.first ? d.first.size : 0 cols = @n.times.map{|i| d.map{|r| r[i]}} @mean = cols.map{|c| mean(c)} @std = cols.each_with_index.map{|c,i| std(c, @mean[i])} end @std.map!{|std| (std == 0 or std.nan?) ? Float::MIN : std} end def trained? @m > 0 end def samples @m end # Limit the probability of features to [0,1] # to keep probabilities at same scale. def probability(x) raise "Train me first" unless trained? raise ArgumentError, "x must have #{@n} elements" if x.size != @n @n.times.map do |i| p = normal_pdf(x[i], @mean[i], @std[i]) (p.nan? or p > 1) ? 1 : p end.reduce(1, :*) end def anomaly?(x, epsilon) probability(x) < epsilon end protected SQRT2PI = Math.sqrt(2*Math::PI) def normal_pdf(x, mean = 0, std = 1) 1/(SQRT2PI*std)*Math.exp(-((x - mean)**2/(2.0*(std**2)))) end # Not used for NArray def mean(x) x.inject(0.0){|a, i| a + i}/x.size end def std(x, mean) Math.sqrt(x.inject(0.0){|a, i| a + (i - mean) ** 2}/(x.size - 1)) end end end
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
anomaly-0.0.3 | lib/anomaly/detector.rb |