//! Stack slots. //! //! The `StackSlotData` struct keeps track of a single stack slot in a function. //! use crate::entity::PrimaryMap; use crate::ir::entities::{DynamicStackSlot, DynamicType}; use crate::ir::StackSlot; use core::fmt; use core::str::FromStr; /// imports only needed for testing. #[allow(unused_imports)] use crate::ir::{DynamicTypeData, GlobalValueData}; #[allow(unused_imports)] use crate::ir::types::*; #[cfg(feature = "enable-serde")] use serde_derive::{Deserialize, Serialize}; /// The size of an object on the stack, or the size of a stack frame. /// /// We don't use `usize` to represent object sizes on the target platform because Cranelift supports /// cross-compilation, and `usize` is a type that depends on the host platform, not the target /// platform. pub type StackSize = u32; /// The kind of a stack slot. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))] pub enum StackSlotKind { /// An explicit stack slot. This is a chunk of stack memory for use by the `stack_load` /// and `stack_store` instructions. ExplicitSlot, /// An explicit stack slot for dynamic vector types. This is a chunk of stack memory /// for use by the `dynamic_stack_load` and `dynamic_stack_store` instructions. ExplicitDynamicSlot, } impl FromStr for StackSlotKind { type Err = (); fn from_str(s: &str) -> Result { use self::StackSlotKind::*; match s { "explicit_slot" => Ok(ExplicitSlot), "explicit_dynamic_slot" => Ok(ExplicitDynamicSlot), _ => Err(()), } } } impl fmt::Display for StackSlotKind { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use self::StackSlotKind::*; f.write_str(match *self { ExplicitSlot => "explicit_slot", ExplicitDynamicSlot => "explicit_dynamic_slot", }) } } /// Contents of a stack slot. #[derive(Clone, Debug, PartialEq, Eq, Hash)] #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))] pub struct StackSlotData { /// The kind of stack slot. pub kind: StackSlotKind, /// Size of stack slot in bytes. pub size: StackSize, } impl StackSlotData { /// Create a stack slot with the specified byte size. pub fn new(kind: StackSlotKind, size: StackSize) -> Self { Self { kind, size } } /// Get the alignment in bytes of this stack slot given the stack pointer alignment. pub fn alignment(&self, max_align: StackSize) -> StackSize { debug_assert!(max_align.is_power_of_two()); if self.kind == StackSlotKind::ExplicitDynamicSlot { max_align } else { // We want to find the largest power of two that divides both `self.size` and `max_align`. // That is the same as isolating the rightmost bit in `x`. let x = self.size | max_align; // C.f. Hacker's delight. x & x.wrapping_neg() } } } impl fmt::Display for StackSlotData { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} {}", self.kind, self.size) } } /// Contents of a dynamic stack slot. #[derive(Clone, Debug, PartialEq, Eq, Hash)] #[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))] pub struct DynamicStackSlotData { /// The kind of stack slot. pub kind: StackSlotKind, /// The type of this slot. pub dyn_ty: DynamicType, } impl DynamicStackSlotData { /// Create a stack slot with the specified byte size. pub fn new(kind: StackSlotKind, dyn_ty: DynamicType) -> Self { assert!(kind == StackSlotKind::ExplicitDynamicSlot); Self { kind, dyn_ty } } /// Get the alignment in bytes of this stack slot given the stack pointer alignment. pub fn alignment(&self, max_align: StackSize) -> StackSize { debug_assert!(max_align.is_power_of_two()); max_align } } impl fmt::Display for DynamicStackSlotData { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} {}", self.kind, self.dyn_ty) } } /// All allocated stack slots. pub type StackSlots = PrimaryMap; /// All allocated dynamic stack slots. pub type DynamicStackSlots = PrimaryMap; #[cfg(test)] mod tests { use super::*; use crate::ir::Function; use alloc::string::ToString; #[test] fn stack_slot() { let mut func = Function::new(); let ss0 = func.create_sized_stack_slot(StackSlotData::new(StackSlotKind::ExplicitSlot, 4)); let ss1 = func.create_sized_stack_slot(StackSlotData::new(StackSlotKind::ExplicitSlot, 8)); assert_eq!(ss0.to_string(), "ss0"); assert_eq!(ss1.to_string(), "ss1"); assert_eq!(func.sized_stack_slots[ss0].size, 4); assert_eq!(func.sized_stack_slots[ss1].size, 8); assert_eq!(func.sized_stack_slots[ss0].to_string(), "explicit_slot 4"); assert_eq!(func.sized_stack_slots[ss1].to_string(), "explicit_slot 8"); } #[test] fn dynamic_stack_slot() { let mut func = Function::new(); let int_vector_ty = I32X4; let fp_vector_ty = F64X2; let scale0 = GlobalValueData::DynScaleTargetConst { vector_type: int_vector_ty, }; let scale1 = GlobalValueData::DynScaleTargetConst { vector_type: fp_vector_ty, }; let gv0 = func.create_global_value(scale0); let gv1 = func.create_global_value(scale1); let dtd0 = DynamicTypeData::new(int_vector_ty, gv0); let dtd1 = DynamicTypeData::new(fp_vector_ty, gv1); let dt0 = func.dfg.make_dynamic_ty(dtd0); let dt1 = func.dfg.make_dynamic_ty(dtd1); let dss0 = func.create_dynamic_stack_slot(DynamicStackSlotData::new( StackSlotKind::ExplicitDynamicSlot, dt0, )); let dss1 = func.create_dynamic_stack_slot(DynamicStackSlotData::new( StackSlotKind::ExplicitDynamicSlot, dt1, )); assert_eq!(dss0.to_string(), "dss0"); assert_eq!(dss1.to_string(), "dss1"); assert_eq!( func.dynamic_stack_slots[dss0].to_string(), "explicit_dynamic_slot dt0" ); assert_eq!( func.dynamic_stack_slots[dss1].to_string(), "explicit_dynamic_slot dt1" ); } #[test] fn alignment() { let slot = StackSlotData::new(StackSlotKind::ExplicitSlot, 8); assert_eq!(slot.alignment(4), 4); assert_eq!(slot.alignment(8), 8); assert_eq!(slot.alignment(16), 8); let slot2 = StackSlotData::new(StackSlotKind::ExplicitSlot, 24); assert_eq!(slot2.alignment(4), 4); assert_eq!(slot2.alignment(8), 8); assert_eq!(slot2.alignment(16), 8); assert_eq!(slot2.alignment(32), 8); } }