// Copyright (C) 2006 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_THRESHOLDINg_ #define DLIB_THRESHOLDINg_ #include "../pixel.h" #include "thresholding_abstract.h" #include "equalize_histogram.h" namespace dlib { // ---------------------------------------------------------------------------------------- const unsigned char on_pixel = 255; const unsigned char off_pixel = 0; // ---------------------------------------------------------------------------------------- template < typename in_image_type, typename out_image_type > void threshold_image ( const in_image_type& in_img_, out_image_type& out_img_, typename pixel_traits<typename image_traits<in_image_type>::pixel_type>::basic_pixel_type thresh ) { COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<in_image_type>::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<out_image_type>::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT(pixel_traits<typename image_traits<out_image_type>::pixel_type>::grayscale); const_image_view<in_image_type> in_img(in_img_); image_view<out_image_type> out_img(out_img_); // if there isn't any input image then don't do anything if (in_img.size() == 0) { out_img.clear(); return; } out_img.set_size(in_img.nr(),in_img.nc()); for (long r = 0; r < in_img.nr(); ++r) { for (long c = 0; c < in_img.nc(); ++c) { if (get_pixel_intensity(in_img[r][c]) >= thresh) assign_pixel(out_img[r][c], on_pixel); else assign_pixel(out_img[r][c], off_pixel); } } } // ---------------------------------------------------------------------------------------- template < typename image_type > void threshold_image ( image_type& img, typename pixel_traits<typename image_traits<image_type>::pixel_type>::basic_pixel_type thresh ) { threshold_image(img,img,thresh); } // ---------------------------------------------------------------------------------------- template < typename in_image_type, typename out_image_type > void auto_threshold_image ( const in_image_type& in_img_, out_image_type& out_img_ ) { COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<in_image_type>::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<out_image_type>::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<in_image_type>::pixel_type>::is_unsigned == true ); COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<out_image_type>::pixel_type>::is_unsigned == true ); COMPILE_TIME_ASSERT(pixel_traits<typename image_traits<out_image_type>::pixel_type>::grayscale); image_view<out_image_type> out_img(out_img_); // if there isn't any input image then don't do anything if (image_size(in_img_) == 0) { out_img.clear(); return; } unsigned long thresh; // find the threshold we should use matrix<unsigned long,1> hist; get_histogram(in_img_,hist); const_image_view<in_image_type> in_img(in_img_); // Start our two means (a and b) out at the ends of the histogram long a = 0; long b = hist.size()-1; bool moved_a = true; bool moved_b = true; while (moved_a || moved_b) { moved_a = false; moved_b = false; // catch the degenerate case where the histogram is empty if (a >= b) break; if (hist(a) == 0) { ++a; moved_a = true; } if (hist(b) == 0) { --b; moved_b = true; } } // now do k-means clustering with k = 2 on the histogram. moved_a = true; moved_b = true; while (moved_a || moved_b) { moved_a = false; moved_b = false; int64 a_hits = 0; int64 b_hits = 0; int64 a_mass = 0; int64 b_mass = 0; for (long i = 0; i < hist.size(); ++i) { // if i is closer to a if (std::abs(i-a) < std::abs(i-b)) { a_mass += hist(i)*i; a_hits += hist(i); } else // if i is closer to b { b_mass += hist(i)*i; b_hits += hist(i); } } long new_a = (a_mass + a_hits/2)/a_hits; long new_b = (b_mass + b_hits/2)/b_hits; if (new_a != a) { moved_a = true; a = new_a; } if (new_b != b) { moved_b = true; b = new_b; } } // put the threshold between the two means we found thresh = (a + b)/2; // now actually apply the threshold threshold_image(in_img_,out_img_,thresh); } template < typename image_type > void auto_threshold_image ( image_type& img ) { auto_threshold_image(img,img); } // ---------------------------------------------------------------------------------------- template < typename in_image_type, typename out_image_type > void hysteresis_threshold ( const in_image_type& in_img_, out_image_type& out_img_, typename pixel_traits<typename image_traits<in_image_type>::pixel_type>::basic_pixel_type lower_thresh, typename pixel_traits<typename image_traits<in_image_type>::pixel_type>::basic_pixel_type upper_thresh ) { COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<in_image_type>::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<out_image_type>::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT(pixel_traits<typename image_traits<out_image_type>::pixel_type>::grayscale); DLIB_ASSERT( lower_thresh <= upper_thresh && is_same_object(in_img_, out_img_) == false, "\tvoid hysteresis_threshold(in_img_, out_img_, lower_thresh, upper_thresh)" << "\n\tYou can't use an upper_thresh that is less than your lower_thresh" << "\n\tlower_thresh: " << lower_thresh << "\n\tupper_thresh: " << upper_thresh << "\n\tis_same_object(in_img_,out_img_): " << is_same_object(in_img_,out_img_) ); const_image_view<in_image_type> in_img(in_img_); image_view<out_image_type> out_img(out_img_); // if there isn't any input image then don't do anything if (in_img.size() == 0) { out_img.clear(); return; } out_img.set_size(in_img.nr(),in_img.nc()); assign_all_pixels(out_img, off_pixel); const long size = 1000; long rstack[size]; long cstack[size]; // now do the thresholding for (long r = 0; r < in_img.nr(); ++r) { for (long c = 0; c < in_img.nc(); ++c) { typename pixel_traits<typename image_traits<in_image_type>::pixel_type>::basic_pixel_type p; assign_pixel(p,in_img[r][c]); if (p >= upper_thresh) { // now do line following for pixels >= lower_thresh. // set the stack position to 0. long pos = 1; rstack[0] = r; cstack[0] = c; while (pos > 0) { --pos; const long r = rstack[pos]; const long c = cstack[pos]; // This is the base case of our recursion. We want to stop if we hit a // pixel we have already visited. if (out_img[r][c] == on_pixel) continue; out_img[r][c] = on_pixel; // put the neighbors of this pixel on the stack if they are bright enough if (r-1 >= 0) { if (pos < size && get_pixel_intensity(in_img[r-1][c]) >= lower_thresh) { rstack[pos] = r-1; cstack[pos] = c; ++pos; } if (pos < size && c-1 >= 0 && get_pixel_intensity(in_img[r-1][c-1]) >= lower_thresh) { rstack[pos] = r-1; cstack[pos] = c-1; ++pos; } if (pos < size && c+1 < in_img.nc() && get_pixel_intensity(in_img[r-1][c+1]) >= lower_thresh) { rstack[pos] = r-1; cstack[pos] = c+1; ++pos; } } if (pos < size && c-1 >= 0 && get_pixel_intensity(in_img[r][c-1]) >= lower_thresh) { rstack[pos] = r; cstack[pos] = c-1; ++pos; } if (pos < size && c+1 < in_img.nc() && get_pixel_intensity(in_img[r][c+1]) >= lower_thresh) { rstack[pos] = r; cstack[pos] = c+1; ++pos; } if (r+1 < in_img.nr()) { if (pos < size && get_pixel_intensity(in_img[r+1][c]) >= lower_thresh) { rstack[pos] = r+1; cstack[pos] = c; ++pos; } if (pos < size && c-1 >= 0 && get_pixel_intensity(in_img[r+1][c-1]) >= lower_thresh) { rstack[pos] = r+1; cstack[pos] = c-1; ++pos; } if (pos < size && c+1 < in_img.nc() && get_pixel_intensity(in_img[r+1][c+1]) >= lower_thresh) { rstack[pos] = r+1; cstack[pos] = c+1; ++pos; } } } // end while (pos >= 0) } else { out_img[r][c] = off_pixel; } } } } // ---------------------------------------------------------------------------------------- } #endif // DLIB_THRESHOLDINg_