# RNN sample # # Ruby port Example based on article by Erik Hallström # https://medium.com/@erikhallstrm/hello-world-rnn-83cd7105b767 # # require "bundler/setup" require "tensor_stream" # require 'tensor_stream/opencl' # require 'pry-byebug' tf = TensorStream num_epochs = 100 total_series_length = 50000 truncated_backprop_length = 15 state_size = 4 num_classes = 2 echo_step = 3 batch_size = 5 num_batches = total_series_length / batch_size / truncated_backprop_length randomizer = TensorStream.random_uniform([total_series_length], minval: 0, maxval: 2) def generate_data(randomizer, total_series_length, batch_size, echo_step) x = randomizer.eval y = x.rotate(-echo_step) y[echo_step] = 0 x = TensorStream::TensorShape.reshape(x, [batch_size, -1]) # The first index changing slowest, subseries as rows y = TensorStream::TensorShape.reshape(y, [batch_size, -1]) [x, y] end batchX_placeholder = tf.placeholder(:float32, shape: [batch_size, truncated_backprop_length], name: "batch_x") batchY_placeholder = tf.placeholder(:int32, shape: [batch_size, truncated_backprop_length], name: "batch_y") init_state = tf.placeholder(:float32, shape: [batch_size, state_size], name: "init_state") W = tf.variable(tf.random_uniform([state_size + 1, state_size]), dtype: :float32, name: "W") b = tf.variable(tf.zeros([state_size]), dtype: :float32, name: "b") W2 = tf.variable(tf.random_uniform([state_size, num_classes]), dtype: :float32, name: "W2") b2 = tf.variable(tf.zeros([num_classes]), dtype: :float32, name: "b2") inputs_series = tf.unpack(batchX_placeholder, axis: 1) labels_series = tf.unpack(batchY_placeholder, axis: 1) current_state = init_state states_series = [] inputs_series.each do |current_input| current_input = tf.reshape(current_input, [batch_size, 1]) input_and_state_concatenated = tf.concat([current_input, current_state], 1) # Increasing number of columns next_state = tf.tanh(tf.matmul(input_and_state_concatenated, W) + b) # Broadcasted addition states_series << next_state current_state = next_state end logits_series = states_series.collect { |state| tf.matmul(state, W2) + b2 } predictions_series = logits_series.collect { |logits| tf.nn.softmax(logits) } losses = logits_series.zip(labels_series).collect { |logits, labels| tf.nn.sparse_softmax_cross_entropy_with_logits(logits: logits, labels: labels) } total_loss = tf.reduce_mean(losses) train_step = TensorStream::Train::AdagradOptimizer.new(0.1).minimize(total_loss) puts "#{tf.get_default_graph.nodes.keys.size} nodes created" zeros_state = tf.zeros([batch_size, state_size]).eval tf.session do |sess| sess.run(tf.global_variables_initializer) (0..num_epochs).each do |epoch_idx| x, y = generate_data(randomizer, total_series_length, batch_size, echo_step) _current_state = zeros_state print("New data, epoch", epoch_idx, "\n") (0..num_batches - 1).each do |batch_idx| start_idx = batch_idx * truncated_backprop_length end_idx = start_idx + truncated_backprop_length batchX = x.map { |x| x[start_idx...end_idx] } batchY = y.map { |y| y[start_idx...end_idx] } _total_loss, _train_step, _current_state, _predictions_series = sess.run( [total_loss, train_step, current_state, predictions_series], feed_dict: { batchX_placeholder => batchX, batchY_placeholder => batchY, init_state => _current_state, } ) if batch_idx % 10 == 0 print("Step", batch_idx, " Loss ", _total_loss, "\n") end end end end