rbbt.ruby.exec.singularity <- function(code, image){ return(system(paste('singularity exec -e ', image,' rbbt_exec.rb - file', sep=""), input = code, intern=TRUE)); } rbbt.ruby.exec <- function(code){ return(system('rbbt_exec.rb - file', input = code, intern=TRUE)); } rbbt.ruby <- function(code, load = TRUE, flat = FALSE, type = 'tsv', ...){ file = rbbt.ruby.exec(code) error_str = "^#:rbbt_exec Error" if (regexpr(error_str, file)[1] != -1 ){ print(file); return(NULL); } if (load){ if(type == 'tsv'){ if(flat){ data = rbbt.flat.tsv(file, ...); }else{ data = rbbt.tsv(file, ...); } rm(file); return(data) } if(type == 'list' || type == 'array'){ data = scan(file, what='string', sep="\n", ...) return(data); } if(type == 'string'){ return(file); } return(NULL); }else{ return(file); } } rbbt.job <- function(workflow, task, load=TRUE, flat = FALSE, type = 'tsv', jobname="Default", code='', ...){ str = "require 'rbbt/workflow'" str = paste(str, code, sep="\n") str = paste(str, paste("wf = Workflow.require_workflow '", workflow, "'", sep=""), sep="\n") args_list = list(...) args_strs = c() tmp_files = c() for (input in names(args_list)){ value = args_list[[input]] input = sub('input\\.', '', input) if (is.vector(value) && length(value) > 1){ file = tempfile() writeLines(value, file) tmp_files = c(tmp_files, file) value = paste("Open.read('", file, "').split(\"\\n\")", sep="") }else{ if (!is.numeric(value)){ if (all(value %in% TRUE)){ value = 'true' }else{ if (all(value %in% FALSE)){ value = 'false' }else{ if (is.data.frame(value)){ file = tempfile() rbbt.tsv.write(file, value) tmp_files = c(tmp_files, file) value = paste("TSV.open('", file, "')", sep="") }else{ value = paste("'", value, "'", sep="") } } } } } args_strs = c(args_strs, paste(":",input,' => ',value, sep="")) } args_str = paste(args_strs, collapse=",") str = paste(str, paste('wf.job(:', task, ", '", jobname, "', ", args_str,').produce.path', sep=""), sep="\n") res = rbbt.ruby(str, load, flat, type) unlink(tmp_files) return(res); } rbbt.ruby.substitutions <- function(script, substitutions = list(), ...){ for (keyword in names(substitutions)){ script = sub(keyword, substitutions[[keyword]], script); } result = rbbt.ruby(script, ...); return(result); } rbbt.glob <- function(d, pattern){ d=sub("/$", '', d); sapply(dir(d, pattern), function(file){paste(d,file,sep="/")}); } rbbt.load.data <- function(filename, sep = "\t", ...){ data=read.table(file=filename, sep=sep, fill=TRUE, as.is=TRUE, ...); return(data); } rbbt.flat.tsv <- function(filename, sep = "\t", comment.char ="#", ...){ f = file(filename, 'r'); line = readLines(f, 1); if (length(grep("^#: ", line)) > 0){ line = readLines(f, 1); } if (comment.char=="" || length(grep("^# ", line)) > 0){ line = readLines(f, 1); } result = list(); while( TRUE ){ parts = unlist(strsplit(line, sep, fixed = TRUE)); id = parts[1]; result[[id]] = parts[2:length(parts)]; line = readLines(f, 1); if (length(line) == 0){ break;} } close(f); return(result); } rbbt.tsv.columns <- function(filename, sep="\t", comment.char="#"){ f = file(filename, 'r'); headers = readLines(f, 1); if (length(grep("^#:", headers)) > 0){ headers = readLines(f, 1); } if (comment.char == "" || length(grep("^#", headers)) > 0){ fields = strsplit(headers, sep)[[1]]; close(f); return(fields); } close(f); return(NULL); } rbbt.tsv <- function(filename, sep = "\t", comment.char ="#", row.names=1, check.names=FALSE, fill=TRUE, as.is=TRUE, quote='', ...){ if (comment.char == ""){ data=read.table(file=filename, sep=sep, fill=fill, as.is=as.is, quote=quote, row.names= row.names, comment.char = comment.char, skip=1, ...); }else{ data=read.table(file=filename, sep=sep, fill=fill, as.is=as.is, quote=quote, row.names= row.names, comment.char = comment.char, ...); } columns = rbbt.tsv.columns(filename, sep, comment.char=comment.char) if (! is.null(columns)){ names(data) <- columns[2:length(columns)]; attributes(data)$key.field = substring(columns[1],2); } return(data); } rbbt.tsv.comma <- function(tsv){ for (c in names(tsv)){ v = tsv[,c] if (is.character(v)){ v = gsub('\\|', ', ', v) tsv[,c] = v } } return(tsv) } rbbt.tsv.numeric <- function(filename, sep="\t", ...){ columns = rbbt.tsv.columns(filename, sep) colClasses = c('character', rep('numeric', length(columns) - 1)) return(rbbt.tsv(filename, sep, colClasses= colClasses, ...)) } rbbt.tsv2matrix <- function(data){ d = data d[d == TRUE] = 1 d[d == FALSE] = 0 d[d == 'true'] = 1 d[d == 'false'] = 0 new <- data.matrix(d); colnames(new) <- colnames(data); rownames(new) <- rownames(data); return(new); } rbbt.tsv.write <- function(filename, data, key.field = NULL, extra_headers = NULL, eol="\n", ...){ if (is.null(key.field)){ key.field = attributes(data)$key.field;} if (is.null(key.field)){ key.field = "ID";} f = file(filename, 'wb'); if (!is.null(extra_headers)){ extra_headers = paste("#: ", extra_headers, "\n", sep=""); cat(extra_headers, file=f); } header = paste("#", key.field, sep=""); for (name in colnames(data)){ header = paste(header, name, sep="\t");} header = paste(header, "\n", sep=""); cat(header, file=f); write.table(data, file=f, quote=FALSE, append=TRUE, col.names=FALSE, row.names=TRUE, sep="\t", eol="\n", ...); close(f); return(NULL); } rbbt.print.data <- function(data, file="", ...){ write.table(data, quote=FALSE, row.name=FALSE,col.name=FALSE,file=file, ...); } rbbt.percent <- function(values){ values=values/sum(values); } rbbt.a.to.string <- function(a){ paste("'",paste(a, collapse="', '"), "'", sep=""); } rbbt.split <- function(string){ return(unlist(strsplit(string, "\\|"))); } rbbt.last <-function(data){ data[length(data)]; } rbbt.sort_by_field <- function(data, field, is.numeric=TRUE){ if (is.numeric){ field.data=as.numeric(data[,field]); }else{ field.data=data[,field]; } index = sort(field.data, index.return = TRUE)$ix; return(data[index,]); } rbbt.add <- function(data, new){ if (is.null(data)){ return(c(new)); }else{ return(c(data, new)); } } rbbt.acc <- function(data, new){ if (is.null(data)){ return(c(new)); }else{ return(unique(c(data, new))); } } rbbt.init <- function(data, new){ if (is.null(data)){ return(new); }else{ return(data); } } rbbt.this.script = NULL; rbbt.reload <- function (){ if (is.null(rbbt.this.script)){ rbbt.this.script = system("rbbt_Rutil.rb", intern =T) } source(rbbt.this.script) } rbbt.parse <- function(filename){ f <- file(filename, open='r'); lines <- readLines(f); close(f); from = match(1,as.vector(sapply(lines, function(x){grep('#[[:space:]]*START',x,ignore.case=TRUE)}))); to = match(1,as.vector(sapply(lines, function(x){grep('#[[:space:]]*END',x,ignore.case=TRUE)}))); if (is.na(from)){from = 1} if (is.na(to)){to = length(lines)} return(parse(text=paste(lines[from:to],sep="\n"))); } rbbt.pull.keys <- function(items, key){ pulled = list() rest = list() names = names(items) prefix = paste("^",key,'.',sep='') matches = grep(prefix, names) for (i in seq(1,length(names))){ if (i %in% matches){ name = names[i] name = sub(prefix, "", name) pulled[[name]] = items[[i]] }else{ name = names[i] rest[[name]] = items[[i]] } } list(pulled=pulled, rest=rest) } rbbt.run <- function(filename){ rbbt.reload(); eval(rbbt.parse(filename), envir=globalenv()); } # UTILITIES rbbt.log <- function(m){ head = "R-Rbbt" cat(paste(head, "> ", m,"\n",sep=""), file = stderr()) } rbbt.ddd <- function(o){ cat(toString(o), file = stderr()) cat("\n", file = stderr()) } # From: http://ryouready.wordpress.com/2008/12/18/generate-random-string-name/ rbbt.random_string <- function(n=1, length=12){ randomString <- c(1:n) for (i in 1:n){ randomString[i] <- paste(sample(c(0:9, letters, LETTERS), length, replace=TRUE), collapse="") } return(randomString) } # {{{ MODELS rbbt.model.fit <- function(data, formula, method=lm, ...){ method(formula, data = data, ...); } rbbt.model.groom <- function(data, variables = NULL, classes = NULL, formula = NULL){ names = names(data) if (is.null(variables)){ if (is.null(formula)){ variables = names } variables = names[names %in% all.vars(formula)] } data.groomed = data[,variables,drop=F] if (! is.null(classes)){ if (is.character(classes)){ classes = rep(classes,dim(data.groomed)[2]) } i = 1 for (class in classes){ v = data.groomed[, i] v = switch(class, numeric =as.numeric(v), character = as.character(v), factor = as.factor(v), boolean = as.logical(v), logical = as.logical(v)) data.groomed[,i] = v i = i+1 } } data.groomed } rbbt.model.predict <- function(model, data, ...){ predictions = predict(model, newdata = data, ...); predictions } rbbt.loaded.models = list(); rbbt.model.load <- function(file, force = F){ if (is.null(rbbt.loaded.models[[file]])){ load(file) rbbt.loaded.models[[file]] = model } rbbt.loaded.models[[file]] } rbbt.model.add_fit <- function(data, formula, method, classes=NULL, ...){ data.groomed = rbbt.model.groom(data, formula=formula, classes = classes); args = list(...) args.pull = rbbt.pull.keys(args, 'predict') predict.args = args.pull$pulled args.pull = rbbt.pull.keys(args.pull$rest, 'fit') fit.args = args.pull$pulled args.rest = args.pull$rest fit.args =c(fit.args, args.rest) predict.args =c(predict.args, args.rest) fit.args[["data"]] = data.groomed fit.args[["formula"]] = formula fit.args[["method"]] = method model = do.call(rbbt.model.fit, fit.args); response = rbbt.model.formula.reponse(formula) data.groomed[[response]] = NULL predict.args[["model"]] = model predict.args[["data"]] = data.groomed predictions = do.call(rbbt.model.predict,predict.args) data$Prediction = predictions; data } rbbt.model.formula.reponse <- function(formula){ tt <- terms(formula) vars <- as.character(attr(tt, "variables"))[-1] ## [1] is the list call response.index <- attr(tt, "response") # index of response var as.character(vars[response.index]) } rbbt.model.inpute <- function(data, formula, ...){ data = rbbt.model.add_fit(data, formula=formula, ...) response = rbbt.model.formula.reponse(formula) rows = rownames(data) missing = rows[is.na(data[,c(response)])] predictions = data[missing, "Prediction"] data[missing,c(response)] = predictions # data$Prediction = NULL data } rbbt.tsv.melt <- function(tsv, variable = NULL, value = NULL, key.field = NULL){ if (is.null(key.field)){ key.field = attributes(data)$key.field;} if (is.null(key.field)){ key.field = "ID" } if (is.null(variable)){ variable = "variable" } if (is.null(value)){ value = "value" } tsv[key.field] = rownames(tsv) m <- melt(tsv) names(m) <- c(key.field, variable, value) return(m) } rbbt.ranks <- function(x){ l = sum(!is.na(x)) i = sort(x, index.return=T, na.last=NA)$ix vv = rep(NA,length(x)) c = 1 for (pos in i){ vv[pos] = c / l c = c + 1 } return(vv) } rbbt.ranks <- function(x){ x = as.numeric(x) missing = is.na(x) l = sum(!missing) x.fixed = x[!missing] x.i = sort(x.fixed, index.return=T, na.last=NA)$ix vv = rep(NA,length(x)) c = 1 for (pos in x.i){ vv[pos] = c / l c = c + 1 } vv.complete = rep(NA,length(x)) vv.complete[!missing] = vv return(vv.complete) } rbbt.default_code <- function(organism){ return(organism + "/feb2014") } # Adapted from # http://stackoverflow.com/questions/27418461/calculate-the-modes-in-a-multimodal-distribution-in-r # by http://stackoverflow.com/users/6388753/ferroao rbbt.get.modes <- function(x,bw = NULL,spar = NULL) { if (is.null(bw)) bw = bw.nrd0(x); if (is.null(spar)) spar = 0.1; den <- density(x, kernel=c("gaussian"),bw=bw) den.s <- smooth.spline(den$x, den$y, all.knots=TRUE, spar=spar) s.1 <- predict(den.s, den.s$x, deriv=1) s.0 <- predict(den.s, den.s$x, deriv=0) den.sign <- sign(s.1$y) a<-c(1,1+which(diff(den.sign)!=0)) b<-rle(den.sign)$values df<-data.frame(a,b) df = df[which(df$b %in% -1),] modes<-s.1$x[df$a] density<-s.0$y[df$a] df2<-data.frame(modes,density) df2<-df2[with(df2, order(-density)), ] # ordered by density df2 } #{{{ PLOTS rbbt.png_plot <- function(filename, p, width=500, height=500, ...){ png(filename=filename, width=width, height=height, ...); eval(parse(text=p)); dev.off() } rbbt.tiff_plot <- function(filename, p, width=500, height=500, ...){ tiff(filename=filename, width=width, height=height, ...); eval(parse(text=p)); dev.off() } rbbt.pheatmap <- function(filename, data, width=800, height=800, take_log=FALSE, stdize=FALSE, positive=FALSE, ...){ rbbt.require('pheatmap') #opar = par() png(filename=filename, width=width, height=height); data = as.matrix(data) data[is.nan(data)] = NA data = data[rowSums(is.na(data))==0, ] if (take_log){ for (study in colnames(data)){ skip = sum(data[, study] <= 0) != 0 if (!skip){ data[, study] = log(data[, study]) } } data = data[, colSums(is.na(data))==0] } if (stdize){ rbbt.require('pls') data = stdize(data) } if (positive){ pheatmap(data,color= colorRampPalette(c("white", "red"))(100), ...) }else{ pheatmap(data, ...) } #par(opar) dev.off(); } rbbt.heatmap <- function(filename, data, width=800, height=800, take_log=FALSE, stdize=FALSE, ...){ opar = par() png(filename=filename, width=width, height=height); #par(cex.lab=0.5, cex=0.5, ...) data = as.matrix(data) data[is.nan(data)] = NA #data = data[rowSums(!is.na(data))!=0, colSums(!is.na(data))!=0] data = data[rowSums(is.na(data))==0, ] if (take_log){ for (study in colnames(data)){ skip = sum(data[, study] <= 0) != 0 if (!skip){ data[, study] = log(data[, study]) } } data = data[, colSums(is.na(data))==0] } rbbt.require('pls') if (stdize){ data = stdize(data) } heatmap.2(data, scale='column', ...) dev.off(); par(opar) } # Addapted from http://www.phaget4.org/R/image_matrix.html rbbt.plot.matrix <- function(x, ...){ min <- min(x, na.rm=T); max <- max(x, na.rm=T); yLabels <- rownames(x); xLabels <- colnames(x); title <-c(); # check for additional function arguments if( length(list(...)) ){ Lst <- list(...); if( !is.null(Lst$zlim) ){ min <- Lst$zlim[1]; max <- Lst$zlim[2]; } if( !is.null(Lst$yLabels) ){ yLabels <- c(Lst$yLabels); } if( !is.null(Lst$xLabels) ){ xLabels <- c(Lst$xLabels); } if( !is.null(Lst$title) ){ title <- Lst$title; } } # check for null values if( is.null(xLabels) ){ xLabels <- c(1:ncol(x)); } if( is.null(yLabels) ){ yLabels <- c(1:nrow(x)); } layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(4,1), heights=c(1,1)); # Red and green range from 0 to 1 while Blue ranges from 1 to 0 ColorRamp <- rgb( seq(0,1,length=256), # Red seq(0,1,length=256), # Green seq(1,0,length=256)) # Blue ColorLevels <- seq(min, max, length=length(ColorRamp)); # Reverse Y axis reverse <- nrow(x) : 1; yLabels <- yLabels[reverse]; x <- x[reverse,]; # Data Map par(mar = c(3,5,2.5,2)); image(1:length(xLabels), 1:length(yLabels), t(x), col=ColorRamp, xlab="", ylab="", axes=FALSE, zlim=c(min,max)); if( !is.null(title) ){ title(main=title); } axis(BELOW<-1, at=1:length(xLabels), labels=xLabels, cex.axis=0.7); axis(LEFT <-2, at=1:length(yLabels), labels=yLabels, las= HORIZONTAL<-1, cex.axis=0.7); # Color Scale par(mar = c(3,2.5,2.5,2)); image(1, ColorLevels, matrix(data=ColorLevels, ncol=length(ColorLevels),nrow=1), col=ColorRamp, xlab="",ylab="", xaxt="n"); layout(1); } # Adapted from: https://rstudio-pubs-static.s3.amazonaws.com/13301_6641d73cfac741a59c0a851feb99e98b.html rbbt.plot.venn <- function(data, a, ...) { rbbt.require('VennDiagram') group.matches <- function(data, fields) { sub = data for (i in 1:length(fields)) { sub <- subset(sub, sub[,fields[i]] == T) } nrow(sub) } if (length(a) == 1) { out <- draw.single.venn(group.matches(data, a), ...) } if (length(a) == 2) { out <- draw.pairwise.venn(group.matches(data, a[1]), group.matches(data, a[2]), group.matches(data, a[1:2]), ...) } if (length(a) == 3) { out <- draw.triple.venn(group.matches(data, a[1]), group.matches(data, a[2]), group.matches(data, a[3]), group.matches(data, a[1:2]), group.matches(data, a[2:3]), group.matches(data, a[c(1, 3)]), group.matches(data, a), ...) } if (length(a) == 4) { out <- draw.quad.venn(group.matches(data, a[1]), group.matches(data, a[2]), group.matches(data, a[3]), group.matches(data, a[4]), group.matches(data, a[1:2]), group.matches(data, a[c(1, 3)]), group.matches(data, a[c(1, 4)]), group.matches(data, a[2:3]), group.matches(data, a[c(2, 4)]), group.matches(data, a[3:4]), group.matches(data, a[1:3]), group.matches(data, a[c(1, 2, 4)]), group.matches(data, a[c(1, 3, 4)]), group.matches(data, a[2:4]), group.matches(data, a), ...) } if (length(a) == 5) { out <- draw.quintuple.venn( group.matches(data, a[1]), group.matches(data, a[2]), group.matches(data, a[3]), group.matches(data, a[4]), group.matches(data, a[5]), group.matches(data, a[c(1, 2)]), group.matches(data, a[c(1, 3)]), group.matches(data, a[c(1, 4)]), group.matches(data, a[c(1, 5)]), group.matches(data, a[c(2, 3)]), group.matches(data, a[c(2, 4)]), group.matches(data, a[c(2, 5)]), group.matches(data, a[c(3, 4)]), group.matches(data, a[c(3, 5)]), group.matches(data, a[c(4, 5)]), group.matches(data, a[c(1, 2, 3)]),group.matches(data, a[c(1, 2, 4)]),group.matches(data, a[c(1, 2, 5)]), group.matches(data, a[c(1, 3, 4)]),group.matches(data, a[c(1, 3, 5)]), group.matches(data, a[c(1, 4, 5)]), group.matches(data, a[c(2, 3, 4)]),group.matches(data, a[c(2, 3, 5)]), group.matches(data, a[c(2, 4, 5)]), group.matches(data, a[c(3, 4, 5)]), group.matches(data, a[c(1, 2, 3, 4)]),group.matches(data, a[c(1, 2, 3, 5)]),group.matches(data, a[c(1, 2, 4, 5)]),group.matches(data, a[c(1, 3, 4, 5)]),group.matches(data, a[c(2, 3, 4, 5)]), group.matches(data, a), ...) } if (!exists("out")) out <- "Oops" return(out) } rbbt.plot.pca <- function(data, center = TRUE, scale. = TRUE, ...) { rbbt.require('vqv/ggbiplot') data <- rbbt.impute(data) pca <- prcomp(data, center=center, scale.=scale.) ggbiplot(pca, ...) } rbbt.plot.text_scatter <- function(formula, data) { plot(formula, data=data, cex = 0) text(formula, data=data, cex = 0.6, labels=rownames(data)) } rbbt.install.CRAN <- function(pkg){ cat("Try CRAN install:", pkg, "\n") res = FALSE tryCatch({ install.packages(pkg); library(pkg); res = TRUE; }, error = function(e){ str(e); warning(paste("Could not install CRAN ", pkg)); res = FALSE }) return(res) } rbbt.install.bioc <-function(pkg){ cat("Try BIOC install:", pkg, "\n") res = FALSE tryCatch({ source("http://bioconductor.org/biocLite.R"); biocLite(pkg, ask=FALSE, suppressUpdates = TRUE); res = TRUE }, error = function(e){ warning(paste("Could not install Bioconductor ", pkg, "\n")); res = FALSE }) return(res) } rbbt.install.biocManager <-function(pkg, ...){ cat("Try BiocManager install:", pkg, "\n") res = FALSE tryCatch({ BiocManager::install(pkg, ...); res = TRUE }, error = function(e){ warning(paste("Could not install BiocManager ", pkg, "\n")); res = FALSE }) return(res) } rbbt.install.github <- function(pkg, ...){ cat("Try GITHUB install:", pkg, "\n") res = FALSE tryCatch({ library(devtools); install_github(pkg, ...); res = TRUE }, error = function(e){ warning(paste("Could not install GITHUB ", pkg, "\n")); res = FALSE }) return(res) } rbbt.require <- function(pkg, ...){ list.of.packages <- c(pkg) clean.packages <- c() for (pkg in list.of.packages){ parts = strsplit(pkg,'/')[[1]] clean.packages <- c(clean.packages, parts[length(parts)]) } new.packages <- list.of.packages[!(clean.packages %in% installed.packages()[,"Package"])] for (pkg in new.packages){ if (!rbbt.install.github(pkg, ...)){ if (!rbbt.install.CRAN(pkg, ...)){ if (!rbbt.install.biocManager(pkg, ...)){ if (!rbbt.install.bioc(pkg, ...)){ stop("Error!", pkg) } } } } } library(clean.packages, character.only=T) } rbbt.psd <- function(m){ e = eigen(m) library(MASS) values = e$values values[values < 0] = 0 p = e$vectors %*% diag(values) %*% t(e$vectors) rownames(p) <- rownames(m) colnames(p) <- colnames(m) return(p) } rbbt.impute <- function(data){ m = as.matrix(data) if (sum(is.na(m)) == 0){ return (m) }else{ rbbt.require('Hmisc') m.i = impute(m) return(m.i) } } rbbt.fix_distance <- function(data){ m = rbbt.impute(data) p <- rbbt.psd(m) p <- m d <- as.dist(p) return(d) }