// Copyright 2006-2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Platform specific code for Solaris 10 goes here. For the POSIX comaptible // parts the implementation is in platform-posix.cc. #ifdef __sparc # error "V8 does not support the SPARC CPU architecture." #endif #include // for stack alignment #include // getpagesize(), usleep() #include // mmap() #include // walkstack(), getcontext() #include // dladdr #include #include // for sched_yield #include #include #include // gettimeofday(), timeradd() #include #include // finite() #include // sigemptyset(), etc #include #undef MAP_TYPE #include "v8.h" #include "platform.h" #include "vm-state-inl.h" // It seems there is a bug in some Solaris distributions (experienced in // SunOS 5.10 Generic_141445-09) which make it difficult or impossible to // access signbit() despite the availability of other C99 math functions. #ifndef signbit // Test sign - usually defined in math.h int signbit(double x) { // We need to take care of the special case of both positive and negative // versions of zero. if (x == 0) { return fpclass(x) & FP_NZERO; } else { // This won't detect negative NaN but that should be okay since we don't // assume that behavior. return x < 0; } } #endif // signbit namespace v8 { namespace internal { // 0 is never a valid thread id on Solaris since the main thread is 1 and // subsequent have their ids incremented from there static const pthread_t kNoThread = (pthread_t) 0; double ceiling(double x) { return ceil(x); } void OS::Setup() { // Seed the random number generator. // Convert the current time to a 64-bit integer first, before converting it // to an unsigned. Going directly will cause an overflow and the seed to be // set to all ones. The seed will be identical for different instances that // call this setup code within the same millisecond. uint64_t seed = static_cast(TimeCurrentMillis()); srandom(static_cast(seed)); } uint64_t OS::CpuFeaturesImpliedByPlatform() { return 0; // Solaris runs on a lot of things. } int OS::ActivationFrameAlignment() { return STACK_ALIGN; } void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { __asm__ __volatile__("" : : : "memory"); *ptr = value; } const char* OS::LocalTimezone(double time) { if (isnan(time)) return ""; time_t tv = static_cast(floor(time/msPerSecond)); struct tm* t = localtime(&tv); if (NULL == t) return ""; return tzname[0]; // The location of the timezone string on Solaris. } double OS::LocalTimeOffset() { // On Solaris, struct tm does not contain a tm_gmtoff field. time_t utc = time(NULL); ASSERT(utc != -1); struct tm* loc = localtime(&utc); ASSERT(loc != NULL); return static_cast((mktime(loc) - utc) * msPerSecond); } // We keep the lowest and highest addresses mapped as a quick way of // determining that pointers are outside the heap (used mostly in assertions // and verification). The estimate is conservative, ie, not all addresses in // 'allocated' space are actually allocated to our heap. The range is // [lowest, highest), inclusive on the low and and exclusive on the high end. static void* lowest_ever_allocated = reinterpret_cast(-1); static void* highest_ever_allocated = reinterpret_cast(0); static void UpdateAllocatedSpaceLimits(void* address, int size) { lowest_ever_allocated = Min(lowest_ever_allocated, address); highest_ever_allocated = Max(highest_ever_allocated, reinterpret_cast(reinterpret_cast(address) + size)); } bool OS::IsOutsideAllocatedSpace(void* address) { return address < lowest_ever_allocated || address >= highest_ever_allocated; } size_t OS::AllocateAlignment() { return static_cast(getpagesize()); } void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { const size_t msize = RoundUp(requested, getpagesize()); int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); if (mbase == MAP_FAILED) { LOG(StringEvent("OS::Allocate", "mmap failed")); return NULL; } *allocated = msize; UpdateAllocatedSpaceLimits(mbase, msize); return mbase; } void OS::Free(void* address, const size_t size) { // TODO(1240712): munmap has a return value which is ignored here. int result = munmap(address, size); USE(result); ASSERT(result == 0); } #ifdef ENABLE_HEAP_PROTECTION void OS::Protect(void* address, size_t size) { // TODO(1240712): mprotect has a return value which is ignored here. mprotect(address, size, PROT_READ); } void OS::Unprotect(void* address, size_t size, bool is_executable) { // TODO(1240712): mprotect has a return value which is ignored here. int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); mprotect(address, size, prot); } #endif void OS::Sleep(int milliseconds) { useconds_t ms = static_cast(milliseconds); usleep(1000 * ms); } void OS::Abort() { // Redirect to std abort to signal abnormal program termination. abort(); } void OS::DebugBreak() { asm("int $3"); } class PosixMemoryMappedFile : public OS::MemoryMappedFile { public: PosixMemoryMappedFile(FILE* file, void* memory, int size) : file_(file), memory_(memory), size_(size) { } virtual ~PosixMemoryMappedFile(); virtual void* memory() { return memory_; } virtual int size() { return size_; } private: FILE* file_; void* memory_; int size_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { FILE* file = fopen(name, "r+"); if (file == NULL) return NULL; fseek(file, 0, SEEK_END); int size = ftell(file); void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { FILE* file = fopen(name, "w+"); if (file == NULL) return NULL; int result = fwrite(initial, size, 1, file); if (result < 1) { fclose(file); return NULL; } void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } PosixMemoryMappedFile::~PosixMemoryMappedFile() { if (memory_) munmap(memory_, size_); fclose(file_); } void OS::LogSharedLibraryAddresses() { } void OS::SignalCodeMovingGC() { } struct StackWalker { Vector& frames; int index; }; static int StackWalkCallback(uintptr_t pc, int signo, void* data) { struct StackWalker* walker = static_cast(data); Dl_info info; int i = walker->index; walker->frames[i].address = reinterpret_cast(pc); // Make sure line termination is in place. walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0'; Vector text = MutableCStrVector(walker->frames[i].text, OS::kStackWalkMaxTextLen); if (dladdr(reinterpret_cast(pc), &info) == 0) { OS::SNPrintF(text, "[0x%p]", pc); } else if ((info.dli_fname != NULL && info.dli_sname != NULL)) { // We have symbol info. OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc); } else { // No local symbol info. OS::SNPrintF(text, "%s'0x%p [0x%p]", info.dli_fname, pc - reinterpret_cast(info.dli_fbase), pc); } walker->index++; return 0; } int OS::StackWalk(Vector frames) { ucontext_t ctx; struct StackWalker walker = { frames, 0 }; if (getcontext(&ctx) < 0) return kStackWalkError; if (!walkcontext(&ctx, StackWalkCallback, &walker)) { return kStackWalkError; } return walker.index; } // Constants used for mmap. static const int kMmapFd = -1; static const int kMmapFdOffset = 0; VirtualMemory::VirtualMemory(size_t size) { address_ = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); size_ = size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { if (0 == munmap(address(), size())) address_ = MAP_FAILED; } } bool VirtualMemory::IsReserved() { return address_ != MAP_FAILED; } bool VirtualMemory::Commit(void* address, size_t size, bool executable) { int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0); if (MAP_FAILED == mmap(address, size, prot, MAP_PRIVATE | MAP_ANON | MAP_FIXED, kMmapFd, kMmapFdOffset)) { return false; } UpdateAllocatedSpaceLimits(address, size); return true; } bool VirtualMemory::Uncommit(void* address, size_t size) { return mmap(address, size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, kMmapFd, kMmapFdOffset) != MAP_FAILED; } class ThreadHandle::PlatformData : public Malloced { public: explicit PlatformData(ThreadHandle::Kind kind) { Initialize(kind); } void Initialize(ThreadHandle::Kind kind) { switch (kind) { case ThreadHandle::SELF: thread_ = pthread_self(); break; case ThreadHandle::INVALID: thread_ = kNoThread; break; } } pthread_t thread_; // Thread handle for pthread. }; ThreadHandle::ThreadHandle(Kind kind) { data_ = new PlatformData(kind); } void ThreadHandle::Initialize(ThreadHandle::Kind kind) { data_->Initialize(kind); } ThreadHandle::~ThreadHandle() { delete data_; } bool ThreadHandle::IsSelf() const { return pthread_equal(data_->thread_, pthread_self()); } bool ThreadHandle::IsValid() const { return data_->thread_ != kNoThread; } Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) { set_name("v8:"); } Thread::Thread(const char* name) : ThreadHandle(ThreadHandle::INVALID) { set_name(name); } Thread::~Thread() { } static void* ThreadEntry(void* arg) { Thread* thread = reinterpret_cast(arg); // This is also initialized by the first argument to pthread_create() but we // don't know which thread will run first (the original thread or the new // one) so we initialize it here too. thread->thread_handle_data()->thread_ = pthread_self(); ASSERT(thread->IsValid()); thread->Run(); return NULL; } void Thread::set_name(const char* name) { strncpy(name_, name, sizeof(name_)); name_[sizeof(name_) - 1] = '\0'; } void Thread::Start() { pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this); ASSERT(IsValid()); } void Thread::Join() { pthread_join(thread_handle_data()->thread_, NULL); } Thread::LocalStorageKey Thread::CreateThreadLocalKey() { pthread_key_t key; int result = pthread_key_create(&key, NULL); USE(result); ASSERT(result == 0); return static_cast(key); } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { pthread_key_t pthread_key = static_cast(key); int result = pthread_key_delete(pthread_key); USE(result); ASSERT(result == 0); } void* Thread::GetThreadLocal(LocalStorageKey key) { pthread_key_t pthread_key = static_cast(key); return pthread_getspecific(pthread_key); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { pthread_key_t pthread_key = static_cast(key); pthread_setspecific(pthread_key, value); } void Thread::YieldCPU() { sched_yield(); } class SolarisMutex : public Mutex { public: SolarisMutex() { pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&mutex_, &attr); } ~SolarisMutex() { pthread_mutex_destroy(&mutex_); } int Lock() { return pthread_mutex_lock(&mutex_); } int Unlock() { return pthread_mutex_unlock(&mutex_); } virtual bool TryLock() { int result = pthread_mutex_trylock(&mutex_); // Return false if the lock is busy and locking failed. if (result == EBUSY) { return false; } ASSERT(result == 0); // Verify no other errors. return true; } private: pthread_mutex_t mutex_; }; Mutex* OS::CreateMutex() { return new SolarisMutex(); } class SolarisSemaphore : public Semaphore { public: explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); } virtual ~SolarisSemaphore() { sem_destroy(&sem_); } virtual void Wait(); virtual bool Wait(int timeout); virtual void Signal() { sem_post(&sem_); } private: sem_t sem_; }; void SolarisSemaphore::Wait() { while (true) { int result = sem_wait(&sem_); if (result == 0) return; // Successfully got semaphore. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } #ifndef TIMEVAL_TO_TIMESPEC #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \ (ts)->tv_sec = (tv)->tv_sec; \ (ts)->tv_nsec = (tv)->tv_usec * 1000; \ } while (false) #endif #ifndef timeradd #define timeradd(a, b, result) \ do { \ (result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \ (result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \ if ((result)->tv_usec >= 1000000) { \ ++(result)->tv_sec; \ (result)->tv_usec -= 1000000; \ } \ } while (0) #endif bool SolarisSemaphore::Wait(int timeout) { const long kOneSecondMicros = 1000000; // NOLINT // Split timeout into second and nanosecond parts. struct timeval delta; delta.tv_usec = timeout % kOneSecondMicros; delta.tv_sec = timeout / kOneSecondMicros; struct timeval current_time; // Get the current time. if (gettimeofday(¤t_time, NULL) == -1) { return false; } // Calculate time for end of timeout. struct timeval end_time; timeradd(¤t_time, &delta, &end_time); struct timespec ts; TIMEVAL_TO_TIMESPEC(&end_time, &ts); // Wait for semaphore signalled or timeout. while (true) { int result = sem_timedwait(&sem_, &ts); if (result == 0) return true; // Successfully got semaphore. if (result == -1 && errno == ETIMEDOUT) return false; // Timeout. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } Semaphore* OS::CreateSemaphore(int count) { return new SolarisSemaphore(count); } #ifdef ENABLE_LOGGING_AND_PROFILING static Sampler* active_sampler_ = NULL; static pthread_t vm_tid_ = 0; static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) { USE(info); if (signal != SIGPROF) return; if (active_sampler_ == NULL || !active_sampler_->IsActive()) return; if (vm_tid_ != pthread_self()) return; TickSample sample_obj; TickSample* sample = CpuProfiler::TickSampleEvent(); if (sample == NULL) sample = &sample_obj; // Extracting the sample from the context is extremely machine dependent. ucontext_t* ucontext = reinterpret_cast(context); mcontext_t& mcontext = ucontext->uc_mcontext; sample->state = Top::current_vm_state(); #if V8_HOST_ARCH_IA32 sample->pc = reinterpret_cast
(mcontext.gregs[KDIREG_EIP]); sample->sp = reinterpret_cast
(mcontext.gregs[KDIREG_ESP]); sample->fp = reinterpret_cast
(mcontext.gregs[KDIREG_EBP]); #elif V8_HOST_ARCH_X64 sample->pc = reinterpret_cast
(mcontext.gregs[KDIREG_RIP]); sample->sp = reinterpret_cast
(mcontext.gregs[KDIREG_RSP]); sample->fp = reinterpret_cast
(mcontext.gregs[KDIREG_RBP]); #else UNIMPLEMENTED(); #endif active_sampler_->SampleStack(sample); active_sampler_->Tick(sample); } class Sampler::PlatformData : public Malloced { public: PlatformData() { signal_handler_installed_ = false; } bool signal_handler_installed_; struct sigaction old_signal_handler_; struct itimerval old_timer_value_; }; Sampler::Sampler(int interval) : interval_(interval), profiling_(false), active_(false), samples_taken_(0) { data_ = new PlatformData(); } Sampler::~Sampler() { delete data_; } void Sampler::Start() { // There can only be one active sampler at the time on POSIX // platforms. if (active_sampler_ != NULL) return; // Request profiling signals. struct sigaction sa; sa.sa_sigaction = ProfilerSignalHandler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_SIGINFO; if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return; data_->signal_handler_installed_ = true; // Set the itimer to generate a tick for each interval. itimerval itimer; itimer.it_interval.tv_sec = interval_ / 1000; itimer.it_interval.tv_usec = (interval_ % 1000) * 1000; itimer.it_value.tv_sec = itimer.it_interval.tv_sec; itimer.it_value.tv_usec = itimer.it_interval.tv_usec; setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_); // Set this sampler as the active sampler. active_sampler_ = this; active_ = true; } void Sampler::Stop() { // Restore old signal handler if (data_->signal_handler_installed_) { setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL); sigaction(SIGPROF, &data_->old_signal_handler_, 0); data_->signal_handler_installed_ = false; } // This sampler is no longer the active sampler. active_sampler_ = NULL; active_ = false; } #endif // ENABLE_LOGGING_AND_PROFILING } } // namespace v8::internal