false M3AAWG 781 Beach Street, Suite 302 San Francisco, California 94109 U.S.A. www.m3aawg.org M3AAWG As with all M3AAWG documents that we publish, please check the M3AAWG website (www.m3aawg.org) for updates to this paper.     © copyright by the ( ) M3AAWG M3AAWG Companion Document: : .0 The direct URL to this paper is: www.m3aawg.org/dns-crypto-recipes This document is intended to accompany and complement the companion document, “M3 AAWG Tutorial on Third Party Recursive Resolvers and Encrypting DNS Stub Resolver-to-Recursive Resolver Traffic” (www.m3aawg.org/dns-crypto-tutorial). This document was produced by the M3 AAWG Data and Identity Protection Committee. <!-- DEBUG contents= --> bold   bold   false false true false true true false <xsl:apply-templates select="xalan:nodeset($title)" mode="contents_item"/> 14pt 12pt 14pt 14pt 12pt fo:inline fo:block bold 8pt 10pt 0pt 6pt 12pt 6pt 12pt 8pt always H fo:inline fo:inline fo:block justify 0mm 6pt   7mm iVBORw0KGgoAAAANSUhEUgAAAjUAAAA8CAYAAACehUt5AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAA99pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuMy1jMDExIDY2LjE0NTY2MSwgMjAxMi8wMi8wNi0xNDo1NjoyNyAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyIgeG1wTU06T3JpZ2luYWxEb2N1bWVudElEPSJ1dWlkOmZhZjViZGQ1LWJhM2QtMTFkYS1hZDMxLWQzM2Q3NTE4MmYxYiIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDo1QjFGQUNFRDVCODYxMUU0OUZCN0FCODI3QzkxM0M3RiIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDo1QjFGQUNFQzVCODYxMUU0OUZCN0FCODI3QzkxM0M3RiIgeG1wOkNyZWF0b3JUb29sPSJBZG9iZSBQaG90b3Nob3AgQ1M2IChXaW5kb3dzKSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOkMwOEQ1MzE4OTE1NUU0MTE4ODdFRjlCOTFBMkJDOUNFIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOjg1QjAyNUI5RTdEQkUxMTFBMzhBOEE4OTAwQjRGMkQxIi8+IDxkYzpjcmVhdG9yPiA8cmRmOlNlcT4gPHJkZjpsaT5wYXJ0aWN1bGFyPC9yZGY6bGk+IDwvcmRmOlNlcT4gPC9kYzpjcmVhdG9yPiA8L3JkZjpEZXNjcmlwdGlvbj4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gPD94cGFja2V0IGVuZD0iciI/PgKyUlQAADIMSURBVHja7F0HmBZF0m6QIOqJgKdnBgMqwrl6xhP3QM9w5gDqmWBVQFBEQO/0Pw/Md+aEIHHF7ClGRMQEK+YEioAYQFFBUQRBQQT3r/ebd9jZ2e6e8M23ya7nab5lpqen01S9XV1V3WBxUdtyVb/pspbT5lyqHDlyVCMkPGZL+Wkk6XP5Fn91PeLIkaNCUHl5eY7R5P4Gw6mn7VzihtqRoxqlqZK2kdTCfY+OHDkqJPmg5gdZQbV23eHIkSNHjhw5qqvU0HWBI0eOHDly5MiBGkeOHDly5MiRo1pCjepz4xYXtd1cfk6S1FlSB0mbEMh9I+kVSWNbTpvztJsGjhw5cuTIUX0GNaVlLeXfowx3Z6uS4tdqpMalZe3k370Md5+Qei0moOktP7dIaqzJt5WkE5Ek34Pye7qAm1X5VOuOVz9eL9cvSm0YuAwD7H3O3nf7D+vi5JA2vSg/u4UunyntGZeyvFbyc6Th9kIpd2I1tOl38nO84fYsqcPr1VCHXTX96tPLUoePMn7f1vLzZ0l7S9pOUhtJAPxNJa3PbD8rz4h3kaR5kj6W9K6kN6Q+sx2rdOTIUd0GNUqBEZYa7q0QcPFnARDTqhnQbCb/PidpM0MOCIrF/PsHA6AJE8DNfEkX5lm70wmWwnS+pN51ENBAAHbS3LpA0riUxS6VdLVh/FbIOzcXAVpo75jukm413JsjddhJ6lDoMAdDJHXUXC8n4Mhi/HaSn1MkdZW0Y4xHAHA2ZWofKusr+XlW0iP4lf5Z4VinI0eOaiOltalpJukxARm/r0ZA04RMdbOYT4wnsBkp6WBJqCvK2DVX98rUe3FR22Z5CJAG8tPXcLub3N+4Ds6Nfobr+0h7/pymQBGGq+VntGVOnVYN7epluddW0l8KDBbbGQAN6Gnpo8/yLP9ASdB4zZJ0SUxAE0XQ6nST9Likb6T8MZI6ct47cuTIUZ0HNSDEnfifgI3G1VTX2yFQ42ZuOW0OtAJt5LenpGclfSvpF0nvyfUuylOv+wQVfOs86nagpHYWYX12XZoUIqw2Yx+ZaEAexY+iRkJHvQvcrv3lZ5eIbIXWqvW0VTGPtu0s6SnlaTIPKWD9N5BUIukl5Wm2/iVpC8dKHTlyVNdBDaiTpJsKXsvSsj7y71lJHxMAs9hwfY38zAxdzkel3i/i/rnC+JvUoXmB/raB1WOlPam2SaiJMNnO7EzgUSiKAy7Rtk0KBKrWVd42pY6wBTohRZkNJA2UP7EVfFg1z5PtJV0p6SrHSh05clQfQA3oHAEdZxYQ0EDI3ZxlkYuL2iKy6X6BS58K0JmXUlDB8PLwiGywUzilLkwIaQ9sK3rFmDf983jNiJSajHzahS3ALjGyNqYmohAE+5YWhnsjBfCtSdim5vID773rlbe16siRI0e/acrKpXuYgI+ZqqT41YwBDQxvH1bxDH7jgBl4KGGr6L+SWvEyzqLpl0ex50qKY1swQITQndVghJovwQU+jq3UGdKeQSkNe2Hv9KUk3bZFVym3n5S7OON2nZFA8PeSOlwndcj6nCITYLPZGpkADb4NaHbax3xkpaTnlXdkwXQAeeV5Ov3M76sJwTfKhR0ObM/2UdnY5MT93mFr5GtkrxN+8kHM5y5gP/wkz/RxbL0GqLRsqPy7Xm5ulRTfFPOZP6qKrexR8txU15F5jcF58u/ukn5UcHwpKf4pxjPr5741b+ymyjOjHKipWN0+Ih20h3TKlxkN0LrKMwzOaytAgAzi07xE4LFh6DaYeu+W0+aMT7n6h3twXC0VmO5fledFUpvp/Jj58DH04AeRiGAwLH2Hj2ew5jY0RdiiyUw7J+9qqJJpgNpwrCZlWAebgfAT0idfJShrS4KTrWNkBzC4UdJD8o5lEXkRv+l9FdgGk3f9QXmayOMkHZTVAsNA2M7qxr/3Fx6wpx+iwcInzgzMQdjROVBTM3SypOYck8UybmMjxg2LyieUZ5sJmsw57Sg9HSDpaP7dQvr4FBmHcssYQCbCw7lr4GqdBzVZRhQG83uUYCQLwhbFHhmUsw4/tjCgAQP8t6Qn8yi7u6TfJcg/sDZPBtqzFCV4pJ88k1bIQTNh0oT0zNizBgBlu4TPZG0wbANVwxKMEbRoL8YANABJ2PLsIGBmTAxAYwKgiB80WhKADbygoBX5pBqm47bKc0RYx8KU903Sd46qjUbI2OxjGTcsph8KABpH2dPfJf0zIs/FIUBTLyjrYxL2lDQ8Ay0NtAVZuffCABjqdgTAC676AHTgbfLB4qK2f0y5+j834WOHyHPta/F86JswP7aPTkgpLG2GsTurbF2rbQBlteH6kYibkxFYtBkIAyA8H7McXxhsH5EVcYTaSx/fl+V2p5T1raQblOf6jnEvdJwqbBXfaOARW+QWUYXVHDlKR024wDV9PxjTzq6bCk5XyRgcYfh+cP3K+tjoQpz9dLp0WHoj0tIyqNCuz6oyLafN+VBSkaSdJLWiwLwzkAUC4lkBNpsmLPpQMncd2aITn18bJwKjzh6Xoj212mCYwMQUxXi2BYRDQ5CVAbzNQPiOBMDjqhhgb7CU10XS94WaK7A1kgRwtTtXhIXQ3PhRlc8TnnBGiEesS0CzKUHpPCe/ag1hLmA+Q3P/WBXNvTeWfQN5HWVP+Pa/pny/T/p8p9AY7JS77plkfKby8/ytddQoj4nb0sKor5eOe0+VFD+fqNTSstZciZpUzsvIwDrkAXIgyEoExPyQY5gewW4HBmv/TFDUeZZ7vSiwdavI0xDbQ4TC17VsLvSx9PulynOH1m15/Ena00naMznFO6GpgcZGF4n5eHgsQTuQZ7t6Wto1nFqScwz3e0gdrk7qlZQAoK0KAWwbOIMW9IKIbOdKXW+vrglDMPZAgYrvxfHZQXmOCLMCjgj4tvbk3wOo0Wmt4SfmBURJ8c2BfNhyPUbSRpyPD8v9zwL3mxKYImI55gKOiHlS8vyieSd4IhwPHpf770bwO9ilYWv0T8rbHodhJ+JoTapkS1RathvBLK7P5LXeOcFVUvyIpfztCOinaOtSWrY3y/0DgYinNSwpzudYF9jFlFILgDGCjcapfF9wuxC2W9j+iLZnLC07PcdLS4pHG+4juCps1u6VPIsC17FViy3YOXJ9guFZ1G3jXL1Kin/W3Pf7/jm5P4PXYHMH26+xcm2u5hnMl6B2+CcuoGCI+6thjPRytqQ4jXnED1xsTFGeecQTubEuKf5efjdSni3T7whmMO/Bu5tZ+r8h+2A/zpUVXHQ8pbWh9bYeg9uPmMuYt29XsvHRz2t8s4vk//ca6uKPqY6+wLebFtR8QSH4tEHb0zAHTjzD4U9jApr1lBfpt6UlFybgGfmAmgDdGgImB8UFNSJg4BFiCnD2YW6ye0Zbui20JhSig2qRlgYTuofh9koKF3zwNxjyDOCHkVQorpF3I+Lz5YZ+6mZ5Z5x22bQt+DDhjbZE8oER64x4AbYOU3nYXUUYCD8UB7Rxq/MOZdesXladgKaaVpswenydDPjRHD/xtr387wpC5Ta5fqChDJsXzs3kO/2YL2jD9R+53l7KnkOQ8oKqamv2OAVCmMCfBpOpHxohqK+ltilMv8j9EfJ+f3v7L6xjiaqIr/UfhS300rJuku8uw1s68DloU98NvBsBKAEQ9jbU7R2FKOwlxd+lHDschbIrgeApUt40agYe4Xf9Pfsu2tC9tGxTAqOG8vdzlcBmBZ1MXjFZec4fQWGKtq+f264Mg5bSMtj03MWxR1vv1pR9jQY0g9+dSwGvi33VzDD3PpB3HiP1+FgzRjp6PDXvwQLAA76juDB4QP4P8HQ//w86K3fUUWmZrf/35MKrnWGegi/9Q8pZGbh+qNI7gbyUq0NJ8VLLvMb/p+cAqp62sPQXQNzD6befSoon5Rpjpha5QSkt2yDGxPWtsHe1MW155xMZMs0fQ/9PYvBrcwG/nStYmzDuTSBRW+g0C5i8n+7VI7kC0NER0p62Kd89mqtfrYYjT4NhfMRbWtq1JLDyT6plyVdL42uK4hDi6+xuuT8+933UNyopnsVVWTmFP7RqvqfTWypeMMU51LCEk7/qu45M9E9csR9MALBeQIAVUVuJSNswYL5I6cIDeCtaH4gckgNGen43iAsfaHIHsswNKeRP4HjGPYpklJT319h96gmp1wloRvIX70ZfdCLf2iYhPwyPWzkF1fQAMHiRIACaipNiL3a9MW5MbWu/hPVYQ6HeSukNYs8KgNlemr7alpq0CVLWfF5DX3Vnjm7yf9sROOjnNvx28a3vosznKQ7XzNH+eX4/4K1D+L+DOR4+0L5e7t8XMVf+ojzPYQCa/ynPC3IHArE+VG5gK/FZg4PQALbjEH67+6vs7Hie1PRXLhxEozw77QaqkEzqoPY5JFxadrzVtcw7TPKEiAZkzbRPDP0/1kfGgGcmo8/lZFbQQkyXvM8T5YdpY5YxXNUOshkI38b2LKNWRefB1YAfYGKPIbgyS7njVYUrYpAAlDpzpZyGbEEEg14zD3HlrgN2h0v9tklzJlOEgfAHUuZLMcpA314codE4ow7EP0rLY54U/vFvMkMfOMP1/LjQ6lAZNXLmg3d3ocC8X/K8w2tg0FMCoKWIgvgqybN6rZAuLdO5vh7FFf0bkvYiUw/bA3UmL4N32n5S5rzAXWyvz1eelvsPMdq2gAJ7XC7GT0nx+xFCqhm1Jevn5mVJ8d2hd0/JpdKyy3Kr8PzG7cecVkKpN8nv/LG7mAviOACsCUHNVwS2PXJ1q1jpx100DSYvuCdQdmPlaacXEMQeJtc6hPrQBz3DQpq4DQJjDOF+ueHdKzm+86g1OTSntcW2I/qnMi0s0AHR/SmHAVh3WjvHPWBu63u08UHlhdg4U+o2JpRjhuS5h7IZ4OcKVfVQ6Llr21Rahu038NB9M2rXYm1/dS/PxFC4B1dNJjpWea7Tps47lKpUE2E759QIUFS1xUVth0kaKmk/SY0D15tJOk9Vja/yYMyizyRT0NFdIlyC2gybtqZ/bTgQUOrQWZkDuL0i7Qnuxd9i0arg4M5WKasxImKllqZd2yrzFuHb0q63AsAKwvFOQ94GKsURHSSbgXBcQLu3srvZXyL1X6TqN2E742H+/UuuX/2Vc3702VrhFfTUKSleJWn5WsbsbfsNCglt3dZMv7WaCJ9vVQUn/1r7zsqAJgwKFsbUQp1OTcsEeoTZqBs1l2NCgCb87mUxAWMUsJnHb8AHg/9TyeJadaV2B/zhVoKJngnrAED0OMFEuxAA9be2/G3b3gG51IgA5nPlH+viaeKwAPyBz3+f08zFC2PSQFXY9q2uxkUB3tUlMNfnUlMWZSd4OvtnrAbQVMwTb4yW5frFvivj88GC86qGGXTaCuV5zdgMXy+TBh+lATTbK2+Pz1QPdBb2IH9ICGjWYWdjksJeYrlc+0gSGM1SCufGITXh2BiCsmGEViNs04CPwRQVdUdV/Wf16MjmjTUkpFWZbwF/zVT62C4TyTx0dEzKs5h6KnOk52EJgdWZKePxmBgwDAfvilnGqZZ7X6h6ECwrBo/BgqY7V8f95P9lCZ5uljMErpx2ZLlzVYXNwfs5zxxPcAUJ+/ff5hZmpWVPS9rBsDjrwNXweJZ7I3lM30CeplzVLlDm88+S9g2+x38SrDzF7RETHRTQXlTX2E0m2AOPLUm4OO1HADCCCdqN81Icojxc8z32IQAdybGYRxDqC+YjKNSHB4x7sf2ybW4BVFIMeQd7EmzbmcKPrJubL6Vlf+Z7tsy9S2eQDPBWdZ7+IaMx+I4gbD7laZxo7Qfwd0xE2YsIGpuqqraD7aUNB0nqQbkB2XtJRjOrpaa/ts4G1HgNQ2cdH6GyvLcSUi4tw54tDIM3sjL0kuLZKWqELbGg1gBqTACotqqqRxJUoUfwkMsogo1Ga8O9F0XozwyBAHzAtsi4NRqMj4dSmizv8dGO01y/0VJkqoM7eRyBSXPRWFXsYcdtVxMVVvtX0FIC6XAdAHgnG57ZjEwhSR1sBsIPyPviqtCPsb1GylmlfgsEdX1JMTw4kgbbwzf/big9GNIEDqa2A8K+jAakKgB8IJSwjQKtMtTu/6AdYJB88DKUv3cTDJ1NLydFAQgNwCdVhDscJbBdUzk1jtk31xKowybxIctzvn3ZJxpQ1jH07q0zHLuhkvaJFba/oj4wtIb9zyPy3AJJSwhA0YaksbGeY5u7s5+3p9B+Mie7PNAC0AGZdHIAAK0OCfW+oUXREMq8AZr5ANqb2rSXyY+eU+Zz5Xpp5unZGY4BvJG3zv3GIx9QxTHL8OdT2Oj9CsrXEVzEwxxjeUYtOlLTX5dnB2q8TntZ2YPRAQE/kfMm8CYAVqq7WLU7KQ2DBaC8xRXRGKJTnWAbT4FxqOSP6zZsM1S7zXAdzO0bw73OIvyKVM2R7dyq4TqBKdfeVt7eu442DTCFpDRGmdWySQ2Gj1fm86vGSht+SqDBCTKdLLQ0QcEXBYzAfG1bCvcpR1GE7Yf+oXRdgG+tkXQ5AQFsnPbLgVsvjL+fB+6r+/J7wTdxjQpuqXt5sVrHCrwd3VIxXz5Snp2WD8r9eCC6LUloIx8NpfUTtLMvedrBlgXC8rWr3Kp0ZejdB9TwuPmeqStz/en1qa8xGZBQNv1KwdqcgKi35nsfQ4DSm6D20Fw/+NuAnscYNF0Lc/e8+pxAoQ9blcMMwn4wtVR+/5u0JM9o5unEGux/f640j6U18WiZRiaWENDhvMXOOfDhaa7ypTc1/ZXjh40y7YaS4hGM+WDahoBPPuJavBqxAs3bMFiASllu1aVy21HNKeR8d8Kv5X6iwwpFwHRQ5iiY85XB9U4E6M/y7G1ErSZtzWnVPWOlTgCZJlsRX+VrouuVOQjcQCl7bFLDVYTjl+cAYo8zzJsDudKJQzYAYrNlgeZwkQEQ/RUgQ+r5cYy+tRkIv0NgGIdsRnUfSjlzHWaJpEWVYtKYeddMGvGOIgjpQUZcAX6wvVxa9iyF1MXy9y00WkVe365Cp8nsL3mH5bYBSss+J/DZJuSejIXPsQGAsUtC3rtGyjyR2sYS+Xue8mLeBGkawQoE9qzQPWwLbMwV8Bk1OmKefVMX/u90zbe0e26sSopfTFDqnexXhNNoQzDybKD/FkqZ+P5htnAHF3vDNVoaaDBuMvDxp0LXvsgB5tKyq7m4PYnzQ7f4fy3WPK0+guH8IZwPH1jGqpGq0Pa/Gbr7grTpsUBe8PdXlGcj1ynP+s3U9ldGhsJhOt8HEwY6WOl92Ncya5XCMDgC4CyV9LGkmZIWJAU0oUmtXeHjkEabnFNevBcdnShCcIsamLS+gaGOHpX22A4mncBx0pF/cGcasgGOWPY63PYxAa4p4S3CELDCKtxkb9BAxTdStBkID03QHztZ7r3i8ErewnMrboMHgYuvgenAPDuGwMMcruoBYrYlU+/DxVJbCsxgGkVQ7i/iRnMu3VrJfgdbMxAAnhBIF3DS296BLchcLgrDi6VSajsurrK9hBOyvXe/XwtGBt964wAACaaDAiAiSd8ANMLYHLGOWuV4cjgQnsenFUHfHOV7XXqxitCXszX1aUONSmfJt7vh3aupsZiWa1MSF/yaI9iY4nv4Z5VvoDJdqjyTjAkxjPd9kL1VISuePaiB54DH1D9P8XQqw+Bq0Gq0UmaDzVUqwliTAdbuNNxurJKfIZVve8BUbRGRh0S051dlD2w2IGXVniND1tFRPDE6Hy1NHHsM7K2bAHX3mDZDPS3zO0kE3h0s92Y5VJI3AWw8QxsLnzqvXWV7dLXcv3CtnYrn6eKrz7EVcTSZ9OjcNhU8foLJ8+z8NfBNQMuJ/X/YaD3GWChBoAUNaj4xYiC8/6a8bY7jQvdmcJUMTSQCof0t9O6G1NbUJNBsym/4mxxfDfdnSTF4BGwzDq8S/j+aRgR4ti5ezIsEM17eioU1NFfr5fhi1frMC2j0BlrGZSX5QnmOx8SJ31aT5EWVhscfbF6nSn3/TgDvj9MWksAr/8WxOjdiXNcN9NO7hax6owJ1yDfSiGOV53mUJMhcWsNgLS0uatuJaq6JLafNeS2PonpY2vFATJfam/ix6mxDzhZheZWUs7yapizUiib0/Z7UI453CWyirjQwwUNxcKeUMyNJpQCW5LkRSu/i77tYXm0Ba2A83Qy38eE9GqMOn0o5UEsfrLkNYQB7nfsjNEUmA2Fsy/2YoEtsXl/zHCaJRe24FRMm2EBgLPbJCTIvii4IQfiWBAAw7GCu5Yp1JrUxm1LgLqBtRblRA4cgc6VliA3ThaHqX2dYf7g3H5nTrJSWzSBAakUNUWOWmU5bDYFUWnY0FwlNQ3cHcQV+ifLcwL8iQF5XeUHWfA3jmhoar5P4nV3OBbKOAAwPJIgIRkIHUAvXG6H8/ThqU6hteUuufavpt/JcJGfvjLVSCmN40vblguQuQ38jtg/sOE+QX3iiLTfke1PuwzW9H/lYcGEJu6HuoSewfdWxBoENAD3mIEwn7lPe6etzKQv9hcAHOZ6oOy7Cy38z5/Mm5OFfqOjI/R3kuSWa6xhHfwcB31On0H0oQ/7YsIAdAiaR5EDArCMGKwIaP2R5Wq2Gr142UazQ9CLMsAIwhbwGGu5ejdP1vAzas0LZt1LSHtzpG+zp6Cy61dsYosmwbXQCT6F8DIZ7xlgpxiWbkd5Pqv7RQuUHgEvmJTGDz0wNXX9ceVul0zRpRU7IeLwBqnZo4LB6RkCxvQIxZM6kUEM0VnjBwRYDZ3CdTdsPCNFbDEzdp2tYv2Lyxm8plA/lfF9JrVFD8ghodVoHgsx9weeDsWumKtsp6dhO8rTLUwJaJ09wlxRfqrytTaycYSMGjyIYe77Nax1VMFBdPJoaAA1xaUlgvP227cb/32F57hmCwi2pAZjNZ97WjPPcSm33AJGNxwHM3Bpwe96VC4irGJfFLL88Lydo+lazPrrxuYjzsgM1TQv4/8maus9MOAb+d/BaZmNXUvwfzpVr+Q00I3iAxhnnSxVpzgqbx/Jm8m+UO44yYRfJ/4llXk9RnsG+7ptdyvQ4AXv4fm7rtMHiorYYaNicbBRSFxVZ1EQ4IK1TTHUiPuh/ROR6MqfGjWNH4xlzHW24u1swyqC07VKCmv7SvlRGWCJEu/ID0tGbIij3SlBWsTJ7DmGg23Jrp2DE4wxmGzRGYDJbxtUmMH7MZ6rCSDJI8ATZJs3BnVIu+rurScskZU4yPIc4JntqbmFetYkbFZhA9nMKMR3tLGXN1jyHfvhK6e1ppsoz+yfshw+U/swV0EFS3nMZzgtfq5mWXpP6TDRoTMHY4FHSQr7DJU555MiRo0JQeXl5gbafKtP/QSWkzIe7ZW4YXNu0GgHtRpkID6gp99Dc9o0JHylwe/oqsxv3nUm2RyTvN9IerOh0XlRQe6c9uHO4BdRAazZJI5R3NwAa0FNJjjmA0TePhDDV/WyDJiqLCMJBssV9ynpPvpOyG/BHEQJaTlSOHDlyVIPUsOBv8DwKoKb6SHO3VhoGBwQlVKGmPU3Y0TyQoljb0QkDCtye4GFsOm1GmlOebcH40h7cCa+DTwz3cHjm5gagYWx6ijrA+NukNTudWpkwmbaeENHzoRR1sKm7WylHjhw5clTNoMYDNlA5H6Vh0pkaBheAbHYhoxCDJkWZcCs0eYbtJ8JyzwK25wzLCn9inBgsGq0GjAwnGG7DiPi0FGUCYJnsT2C4d6YGrJkOVYWG5ukUdZhvaRe0MSeG6mAzEL4z5VyxhTPf1rEvR44cOaoJUOMBm9kUPP42UyEMg7PUasBe5CTD7TUpV/+K8WxutWS5oEDtiTq3akgexVu1TykP7oQBpcmwN2wwDOC0niHviDzslJIYDNsMhO9I+X4byPzjb4VJLS5qu62kXetRexpLKpK0ZT0dr60ltZa0QUS+dZlv6xhlbsq8LZ3Yznt81pO0h6S/STpYUofgoc8O1CQDNjAIPo4C4bJa3jeooykmyZMiKD/Po2zYa5i23I4Xgb1NAdpzuGV1D4+O1PYQ0hfYLjJ5YqQ6uJOxfcYZboMJBm20TFtPsEnJ58BH20Gb+zLKdFQE4efTaMBINi3mfhGeYPWGASu44Mr8kr8715Nm4SgROGE8L22qj2MIEA+vo2sj8l3IfJ9JP+xomQOwz/uAeTs5WJL6W9pHEmQwNMDw/IMmGp5kCIq3WO49LOkoSY3qcjur/4PyomaOqMWGwf6BiLYItrflU74IuR8IbHSE7ZXzCtAs27lVt2fgdVUIW6ERUZoSGSts+bQ35HkExsx5jNOvlnFSgTkCoG4yEB6WR5/aogbjfVnGsIAb6C0RaXwNfI6nBvp2oKof5H/f8EQ8op6CmtzYmbQ1ch18rmeMhUluoac8GzK4Pz+hHCUFM+tIgib+Vc43gMRZXLS9wIXbBuznxzPmK9VOjdyQawnnjpjceeF7/2IG74CQOJ8gJkw9RFhfRvCTBUjDOTIHGm4j3kxpBq/ByceIcaE78uEAHNwp7ZmWsEy4v88h8w8TDIa3Uva4MXdk0C5oegYbvpVTpQ4XKvPW08I8mTDmGjRWpiivCDRYlsUcoTv2xIh5dEx1CmFhxA1CYPxwubZTy2lzZtdVxiL1RzTiYDj9C+qhoMYZSIhBgu21kw2Lk8NUxanhubksffN/MrYrNHn972uU3F/txFNiwla+r0lGuIx/4dig0LwEL4VDz7l1vbEN3XhbV1ImrUbeWiYaopri3yBM+lkZtsdmS3Ov1OX7DNrzC4GaiQamKNNmMIy5i8iUJxjuz5LnJ2fQLhswwThdqsxnTY1iv6R9N9o/zpLl5JhHR9RVwuGLMMBGoMHp9URb4zsfvMrf/UWg7FmfBk0E5hpVse1rWnT4Wk6chQXvwCrG9xS2O/L7itKaOtKD6JMDgOYyGZsTw4CGYzZfErYLcTTLu3W5zU5TU3U1igijextuw3vr7gxfdyPRsY76SV1ujTgoM057YFhn80AakmF7RlKrsb7mHg7uvCjioEwd3am8sOVNNffOKbCWJljWcYZ7JsPuX1V+9jw+3WMRDLDlQSydPvV8cYEQ7ZO4CMCWBlaa3xiYOPpjrty/23AfAhJHuFwueWBHAE1b1IGyQyAIJO+xFLAXGzQKUQJmy8A88kPl/5VA7STDM3tR2wFaQwDwrLz/zVA+RH7Fob2jNWVszxX4fXL/DV7D3MGWDzRHMMjHNsQ9cn8V7yP/9poqrS0jBi/A4aC7S1l/kmfeDtQHNoO+TRwWQogSO4D1udOgpZkAwWvoo3bsPwAgaL6xnTJe8r9gGX8QFhzzJD0Unk80SMZcelTuTQlc350g4T25PobXELYC/T9Frj3Ka7C3g5fmULk2x1BvzL0Vcn+I5l4bgjyU04yaLxzfMkny/xxzvkHTeWWg/y6NAUhR9s8aYOQHmUX0a0TufcT2DcgzCDQKze42nLfog4flmemGb3axoR/wbV4YHAfNN/st6zPTaWqSa2ngmrssqxdJWTCANEUYhjHs8Rm8Bhofk2fQS1KH6Rm2Z4lFkKc6uFPKTBPjBSv7uzKcE4jc+0nCZyYkCfhnIYRet23bnU0gXt9WmGDqR/K/iJ/0CAXQuhFgFmEL7pLnTcEbdyOg8E+o70zmi9SF97oHriH5239/4f2mKZvVh0L3LYIS3w6tCwW9jtrxnRDaaBME0xvYqtFoPo40lLEly2jHvgXff4aLKgT93JMak+ACqwvre0wobR2nodI+RNYeH9LKqID2BgJ3quSDgPTtzvaGV1hgDqCf/bPchmnmSCNJAEUzCKD2ZBvBZ2CEPUnSxobxx2GeCDMCT9QPAbxC+TZkvt1CWiP029GqcgDQpswb1Nhux2tPy3O/N3TTKeznSkCEQh5Baa8gUNuYYBga4wUJ5hsAWBv+fXkenyPOKoO2vxPnCBZa72r6FvVvIQnjXsb2t2c9cPAljP2HS2qi+Wa7GN79+/A4sN/8uXk8v4npUm4Xp6mpqtXY3NK5oKERz9uOcEhDD0iZDxSwyftL+Um30nDcwDzL/ZvJVHS2Qr1SHtyJLahTk/QbAVZWYK2cB21ek1C7k9W7r7IAuwacJ7tL3sX1bHGBtr0igm8aGeZNXNn3kb//G6EtuVvyLJA8UyOE72EBhtxaeR42N8dZ1SYEaQBjPQIgTVFAwqtnF7bXtrV2ktRpMoQGtSqD5G/UM80ZYNBE48iW032NlpRVrKoe2jtT7hfl0exh5Id/l/IHSFk/0HX4jCBQoRYMbTqAAMjXTPoGwtC86Oy9bmV+aEdQ/jy2BdvC2JoG8Jso/99Po93ANsw0hgqAkTzsAQ+K0LLhdHDwy4Pk2S9i9gE8Tp+U5w+IOVaDKKQhS/rIMwsCdeigkjld+LZb4Ldv5jmFl/lzQeoBTdVYAp3BQZCpvCOP9iNgvgra0IDG5QZq3pops7doXJoZqA/sgeBUgXO9HnaamqqrHZO//nO6835CBIY4PUWyqRM/TlnmdGU/yRmq1/dSlLkqQgjPU+bTsFuoFAd3Spk44GxWgkeGFmBulEa1PUBgwk9n+O5xyu4JhVX+YzylvD5oaTYICL7gWELdv5QrVxtThJoe2wmP21yFq5lOYb3B5B+gMC9XFRG5e0hdm8fQgHzPuQDtQPOUdfHnScNAuWWSnsm4zc+SJ64XWJRgdY1TzhepyvZi/jifLP3ga9H8rafhUrdfQ3OkiPwa31kXH9CwLRDAOIUcCRqYsy39CZ42W1mCWVLTAkADsHSIzibFQmMIIu+lx5dt3m9LjdOLbNOCUF3fl1SS4N2+JuW7cP8F3tlRUvdQijrP0F9gtQ5dP5WA5hp530Af0LDuX1LLg+CzpxFEZ0LclnyNfNBpagJalqbK7kkTaXsiwrd/ynf3sqzs35dyj0tZ7hTNxPMJGpNCxQq63qLxOl/qNTSFCzk0JTfFyPeWlP121g2SMhdJvccpsw1UpbpmeTAptTVgzO9YvlnsYY+Hh1JWXnM1SAAsEGzYi18fjDb4PSjP5XSAXB9pYNbY+jifwh/q/31MNjjVrHnKrTChdZE6+dcbsZ2/oybn+ghtD86Ng3H85LDQS0CvEHgPp+3IbYXwKsLYYIyUZzvUk8DFBxilIe0Jtla+JuCB3RRABLZzVhMYhMnnL4NNAlvoOmq/TlAGJwZ5D2yaOlgWYs2pJYI24G/yrqRGtHcT2F1B/mUzb0A9AXwupbF1vuSf8r6RJQ/ME7qFrqGv3jD0VzDkSNh0oSsX6FcZ5kO5PH8xxw5tzcRzU8psS83j7EpI3VFuz9q09/kZ1WqFIth/fGu4d4wIqu1SAJpdOdAmLc2IQjVGhOrryrMF0RHacnTKPlpZQ1qaILCKIjDh0QXoUwjziyKywT7kJRn77euwlqZBgGmCgQ6nlsxPfgwNMLLDLQJ1JrUC2DYYzyB+WdcVkXOXaNLJoXwQzn4E6I6h9gxXFVu1/SyBz7B6x3bbS/z/oLT15rYdtnpmUVP0dtCWJUAdNG3rkPB1o8lvdpVnu/G95Sp0wKvUKRgo8+yAlgYGogsNfAT0rqWdKHNGIG+QnpH6LKc2CecSXmgoBt8ctnFuChoMJ+zvK9kPfeWdtojxfj3fCs2fDRlN2U9NYr7aN1Bubhk3bM+OZZpvKQt1AIhGn2GrDnYzYTsnaJo+gqbM0hfQci0zjEkSaif1mcc6fchF0PkO1IQ0CJZ7w7JceWsE1gplDtIGJt8/4/aMk3cuKHB/2oLxpXHvhirzwYhsS2LkyWecJqvobbDH6AZeCLrRsqL0CcJzmgCbPpLqoib2EOUZR64MMNtweod5L4gQJhgvqOthQPpglPo/BTXkSj6cmhi0NO9Z2rScAOxEw7tuJx+4iNqqMmlPzzyADQzfsc3wDwLEqVJe+OgNbBHdHEqLEr4HGrLH+F8fyEyU659qso8k4IEAPif0TJh8+5QosAoN2I+a60+qinhjb1gEOvodfXUhou3mwz6UZ0N1ncWIfXWgzkE6g9oeP7WL+c4y8kRlAm0yDoj90x0p8F3paBXn6UyO0XiNTdvKqPGgTVVTw5gk1UI9yvkBDef2/vapAzWeVgOqe5NB3M8qG9fcKBqizLY13aWOLRK0Bxqnv0e8q9D0uDJ7DKU9uDNKUzJWAMVPBW5XVB3uKNSLGbfmVBWttl2fzPhd6eeTJDXO8/toJKmTirf1li/5AOB+n9mGk6o4Q64YZ9hECNV7led5gaCBt2Vc14XUjoXTxAATb02NEaiXpU2+8DYZgsIdFobBMFZHIM1XuGJe+yplPrndNwBeFtZkSMIWDcYWADjsUbUQBtOhlAaw+9rTprZvRMqGRnxCIC80DS8YyvQF8NEWAQrNwa5hzYfPA+V98BaDDQu2Oy8xFAOD4GJqA3CMwEkpQSQAC8AMjN5hxN7R0qawBvJhzqtrEr4TQORq/hd2LPnEPlsp5QFQ70NAOAznRoXyoJ9xTlt7SzmHE/QHxwTb5S0soFQFwJlPX0p9+nNOjqLNjnKgpioj1dH9dCsuKDGc/90WIdUrQXE9lNntdJq86+VqaA80WzYbmAtSlAlGPqMmAEWAsA1m8rr5yMKEs+pXgDasGF+LkR3M5X5JnwsouU3SwTzRPArErIMI0NT2QPP1LVe1JxSybcIMEfjLj19ym4VZY+/8qbhaP8l/NbUAMCztmVV9pVww+smaFBT8fchn35TrtjG7hSv13aPOuKKBMZh8C7o9K34XOKRwU80jvuB/l/3cNniYppSH7WKkNgUaWj8yOOjzwNjpKKiZGcG26ghg9TtqPtpq5tKG5KcNqWEy9eWVXIBdYjo0le7p2DaDpxoMfk9JOV+WUah/w3eGA2f639pVBGT+c19Q65gmkvbNqiJsyEgp9w5Jm2n6CwvhjWO04RcuKgBARwWMun2tFvj+WHrphd/Rmt81QEzQTgoazPaGsAY+wIsdeuQ3bygsTBtxF46tYa2GT9heMKHpvlLXG0WorYpoD1bl59SS9typvPgIupN1cwd3pojlAk2J7pTzyTG807IAFYul3ggC103HkLOINh2jDkulDgeSsR8T4xEwz3OZYHQM1T/SAq7eIUybc5zATNsq82GuhV5c+PFLogwyr6X2pasww4u4yrcRAM1WqvJBqAUl2vGcFee7gweH5H+QAmOgqnoUSxHtjSAsoFmGK/qEgLHtDRQA2JYaTI1AK2r2elHT42/5IHTFfcyHyMbQmu6rqkbshS1GeH7NTnpMBQ1Eh7OOIyOMYKGpwVbQJspyfIuU4dsuwcD4TfkbAhXxpFayPdh+hxCFF86rEVXsS+3XaBqVr9a8b5Hcg0YL8WnugTCXa4nPdQNAwunY1LS1DAIVurxDEwR7lbfk72vZJoCA7WJ+61VACLfN7uP8wFyAp9108oAm7KcOCcpczuCM46kt7MPrcJEfyMXse/L3DdTINKI2sB+1hseGDPdv4oJpMufkm+RHuIYt10lJDLSdpqYiIJaOXi+EJ41FWM1SFerXMG0ec6V8PPPq6Huu3KurPT9atCfrKPvxDSa626ApGVaNc0a3BfWzyuYMrSQaG3gRDFIVe/FxqAEZJGJynE4A7AecO4ranWoHNFzxdY8LvIXJvUTmF+sAWArSrqp6Q8CfRhCySMWz9brOX53ijKvQvZuoBRxHnvWgCri104j1KPJ0fOPgJTACLeHqOAjCP2TCPH6fq2b05b9D74SwezSUTkrZF1jgwG5oVIxxArh6KOgSbMg7iWAMPBpeNfCYepnaCTx7uOS5McbcmE8gCffvSyz5lhL8AHAOlTHql1Jj8wG1Z79o7j3PNmE8rubvh5QL2O5BEMqvEr4PoOhILt4xJ7Dw2o2y4sgAoAEQvkxVhBmwlQltG7TWvYPbUNgiZZlLOGdfYn8NojYQoPHpUFlvc7Hh29HNJNg+l/Ola5L2/qY1NYzr0cOS5bYaqNaNXIXpCB/ePTFWuyYaUw02J7o+hJGazq6jp4zB5UlckBFUjwEJg/EavlbRBrRZAopXpA5Y6QTV1Q9Vd/A7eR8EwBVSl4kUBLvW0Ke0SqVTjYfL8Jnr/JjPHMIVXVB72VEZvOS4woSWA6p2XfA0XGujqu7f+3Q5BWbc+QoAAuPFn+KEtkfMFKrgAUz8LW/YU0wOZINA+hpbXzpBI89D+MH7bQuC/xly/cdQPmjoOsN7i5o5hKh/L1QcwMu6mmqmCmrJIyl2iWmTA2HYNGa5AKkHSNmbsN0A7fOCNhZhHqg8w+UwMBhJLcya0FxYrJlD0LRsRjDegPOhTWheTOK1hYZ6T2bQuAaaewAXh9DdfgdqN76jluyXlP1fznY/xgXEzqrCButblm2a1xcovbcdtD7QrPwUehc0OOM5l7cmeJtjA6k80mJnbrttzUXiDIMn1WHWVZsUgsYulYcr+7KXlhVZVjVTVElxpxphn6Vltqi9u0m9pgVWf5ey0/sTQYZBDfbXTdb1UI9tFbXdUyCwhX43GS4fKHV6wfDcXkTDOsI4byfPzq2B9pQqc9C9gVKnGxOWF24nYu5cUs1twmr59sCl/WjzU1MAHYIQWw2XqsLZRoRpOjVnMND+1qKFmae8wFgtsG2gHDly5KgAVF5e/pvffrJtf4yoCUBDsrlDD0jZnqdqAtAEtE9GzVJS12NpxxuqwnCspk7vvSewQplRk4CGffKrpLu4WsU2xFMqfgTkuIS+hrErAGQ7eV+RpBtsgMaRI0eOqpNswmSFMlscf1yDdZ5rqVfsk3NFkMJL4HkmbZYabCMMUYsM4wNDz3VFkKzUrNShVr7FUOZ9NShw35f64SwWk60P1I2fJiwW9gDQlGR1cGTSNv0gbYKhLrYvh9WWD5peZ3C5fFLqB3dI7HfDm2YPzqkkhzFChQ+bC2gOAdpwAOpSxzYdOXJUW8m8/VQPKGr7yVHdJbgdKy+GwcowwKvGOsCgFnZZy2jfUtv7DMAXtgDYy4dHFM5Yakzw/AsXBTBqhR3AXAaFzOI7nKfc9pMjR44KTNh+cmc/OaqTRBCxpIbrgO2dVXWoz6DF+ZLJkSNHjuodOZduR44cOXLkyJEDNY4cOXLkyJEjR7WF/O2nDbnvXd9oIzfEjhw5cuTI0W8L1CAA0DauOxw5clQA6khe84PrCkeOHBWS/l+AAQACYD7v73Ou8wAAAABJRU5ErkJggg== 215.9 279.4 Version Édition Table of Contents Sommaire Contents Descriptors 第 # 部分: Sub-part # Partie de sub # List of Tables List of Figures Table of Figures List of Recommendations Summary (continued) (continué)   abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ EB Garamond 12 12pt always always always blue underline 0mm pre wrap Code Courier New 12pt 14pt 14pt justify 8pt 8pt always 5mm bold 8pt 8pt 1mm bold 0mm 0mm true fixed 0mm 0mm always bold center 6pt 4mm bold bold solid black 1pt 1mm center center solid black 1pt 1mm solid black 1pt 1mm 1mm 1mm 10pt 12pt 12pt 80% 5mm super 0 0 80% 5mm super justify 12pt 6pt 12pt bold 12pt 12pt 10pt 8pt 8pt 0mm 4pt justify 125% 10mm5mm 5mm bold 2mm 0mm 4pt BlockQuote 12pt 12mm 12mm right center 12pt 12pt always center 100% 100% scale-to-fit uniform Courier New 11pt bold center 12pt always rgb(0, 255, 0) red underline red line-through STIX Two Math 135% 80% always always always 7pt super normal normal 0 0 9pt 12pt always 6pt super 1mm always center 12pt bold bold 12pt -11.7mm 11.7mm 12mm 12pt 12mm 12pt justify always 65% 7pt 30% always 6pt 30% 1mm 10pt 12pt 0pt 9pt 4pt 2.5pt solid rgb(0, 176, 80)2.5pt solid rgb(255, 0, 0)ace-tag_ 15 0 mm mm 100% mm mm 0pt solid black 1 true 0pt solid black 0pt solid black center 1mm before center after before left 1mm 1mm 10pt 0 0mm 0mm where   where key 10pt 0 true 0 true false   10 11 pt pt true A closing A C closing C 5mm 100% scale-down-to-fit uniform scale(-1 1) translate(-,0) 25   - . : = _ ========== = en < xmlns="http://www.w3.org/1998/Math/MathML" =" " > </ > <> () false : 100% 100% scale-down-to-fit uniform % 14 Figure 1 1 100% 100% scale-down-to-fit uniform 100% 100% scale-down-to-fit % uniform   false true false false : preface annex <xsl:apply-templates select="xalan:nodeset($title)" mode="contents_item"/> English Français Deutsche version Figures Tableaux Tables Deutsche version bookmarks bookmarks bookmarks pt pt Obligation Target Type Target Type Dependency 0pt rgb(33, 55, 92) rgb(252, 246, 222) rgb(233, 235, 239) left 0mm 0mm left bold inline block inline block block modified , 5mm , always always super 80% 50% 25 3 0   <> deprecated : normal 18pt _to true true   Date Type Change Pages   disregard-shifts , edition ( ) 10 BUTTON [] 3.5mm 100% scale-down-to-fit uniform 3.5mm 100% scale-down-to-fit uniform   3 333   admonition. month_ en false Janvier Février Mars Avril Mai Juin Juillet Août Septembre Octobre Novembre Décembre January February March April May June July August September October November December true   ; 1 1 [WARNING]: Document namespace: '' doesn't equal to xslt namespace '' English French Deutsch Chinese 58% 30% false 2mm rgb(255, 185, 185) 2mm rl-tb start end left start end 7mm One- First Two- Second Three- Third Four- Fourth Five- Fifth Six- Sixth Seven- Seventh Eight- Eighth Nine- Ninth Tenth Eleventh Twelfth Thirteenth Fourteenth Fifteenth Sixteenth Seventeenth Eighteenth Nineteenth Twenty- Twentieth Thirty- Thirtieth Forty- Fortieth Fifty- Fiftieth Sixty- Sixtieth Seventy- Seventieth Eighty- Eightieth Ninety- Ninetieth Hundred- Hundredth re e st nd rd th _