false
M3AAWG
781 Beach Street, Suite 302
■
San Francisco, California 94109 U.S.A.
■
www.m3aawg.org
M3AAWG
As with all M3AAWG documents that we publish, please check the M3AAWG website (www.m3aawg.org) for updates to this paper.
©
copyright by the
(
)
M3AAWG
M3AAWG Companion Document:
:
.0
The direct URL to this paper is: www.m3aawg.org/dns-crypto-recipes
This document is intended to accompany and complement the companion document, “M3 AAWG Tutorial on Third Party Recursive Resolvers and Encrypting DNS Stub Resolver-to-Recursive Resolver Traffic”
(www.m3aawg.org/dns-crypto-tutorial).
This document was produced by the M3 AAWG Data and Identity Protection Committee.
<!--
DEBUG
contents=
-->
bold
bold
false
false
true
false
true
true
false
-
14pt
12pt
14pt
14pt
12pt
fo:inline
fo:block
bold
8pt
10pt
0pt
6pt
12pt
6pt
12pt
8pt
always
H
fo:inline
fo:inline
fo:block
justify
0mm
6pt
7mm
iVBORw0KGgoAAAANSUhEUgAAAjUAAAA8CAYAAACehUt5AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAA99pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuMy1jMDExIDY2LjE0NTY2MSwgMjAxMi8wMi8wNi0xNDo1NjoyNyAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyIgeG1wTU06T3JpZ2luYWxEb2N1bWVudElEPSJ1dWlkOmZhZjViZGQ1LWJhM2QtMTFkYS1hZDMxLWQzM2Q3NTE4MmYxYiIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDo1QjFGQUNFRDVCODYxMUU0OUZCN0FCODI3QzkxM0M3RiIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDo1QjFGQUNFQzVCODYxMUU0OUZCN0FCODI3QzkxM0M3RiIgeG1wOkNyZWF0b3JUb29sPSJBZG9iZSBQaG90b3Nob3AgQ1M2IChXaW5kb3dzKSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOkMwOEQ1MzE4OTE1NUU0MTE4ODdFRjlCOTFBMkJDOUNFIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOjg1QjAyNUI5RTdEQkUxMTFBMzhBOEE4OTAwQjRGMkQxIi8+IDxkYzpjcmVhdG9yPiA8cmRmOlNlcT4gPHJkZjpsaT5wYXJ0aWN1bGFyPC9yZGY6bGk+IDwvcmRmOlNlcT4gPC9kYzpjcmVhdG9yPiA8L3JkZjpEZXNjcmlwdGlvbj4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gPD94cGFja2V0IGVuZD0iciI/PgKyUlQAADIMSURBVHja7F0HmBZF0m6QIOqJgKdnBgMqwrl6xhP3QM9w5gDqmWBVQFBEQO/0Pw/Md+aEIHHF7ClGRMQEK+YEioAYQFFBUQRBQQT3r/ebd9jZ2e6e8M23ya7nab5lpqen01S9XV1V3WBxUdtyVb/pspbT5lyqHDlyVCMkPGZL+Wkk6XP5Fn91PeLIkaNCUHl5eY7R5P4Gw6mn7VzihtqRoxqlqZK2kdTCfY+OHDkqJPmg5gdZQbV23eHIkSNHjhw5qqvU0HWBI0eOHDly5MiBGkeOHDly5MiRo1pCjepz4xYXtd1cfk6S1FlSB0mbEMh9I+kVSWNbTpvztJsGjhw5cuTIUX0GNaVlLeXfowx3Z6uS4tdqpMalZe3k370Md5+Qei0moOktP7dIaqzJt5WkE5Ek34Pye7qAm1X5VOuOVz9eL9cvSm0YuAwD7H3O3nf7D+vi5JA2vSg/u4UunyntGZeyvFbyc6Th9kIpd2I1tOl38nO84fYsqcPr1VCHXTX96tPLUoePMn7f1vLzZ0l7S9pOUhtJAPxNJa3PbD8rz4h3kaR5kj6W9K6kN6Q+sx2rdOTIUd0GNUqBEZYa7q0QcPFnARDTqhnQbCb/PidpM0MOCIrF/PsHA6AJE8DNfEkX5lm70wmWwnS+pN51ENBAAHbS3LpA0riUxS6VdLVh/FbIOzcXAVpo75jukm413JsjddhJ6lDoMAdDJHXUXC8n4Mhi/HaSn1MkdZW0Y4xHAHA2ZWofKusr+XlW0iP4lf5Z4VinI0eOaiOltalpJukxARm/r0ZA04RMdbOYT4wnsBkp6WBJqCvK2DVX98rUe3FR22Z5CJAG8tPXcLub3N+4Ds6Nfobr+0h7/pymQBGGq+VntGVOnVYN7epluddW0l8KDBbbGQAN6Gnpo8/yLP9ASdB4zZJ0SUxAE0XQ6nST9Likb6T8MZI6ct47cuTIUZ0HNSDEnfifgI3G1VTX2yFQ42ZuOW0OtAJt5LenpGclfSvpF0nvyfUuylOv+wQVfOs86nagpHYWYX12XZoUIqw2Yx+ZaEAexY+iRkJHvQvcrv3lZ5eIbIXWqvW0VTGPtu0s6SnlaTIPKWD9N5BUIukl5Wm2/iVpC8dKHTlyVNdBDaiTpJsKXsvSsj7y71lJHxMAs9hwfY38zAxdzkel3i/i/rnC+JvUoXmB/raB1WOlPam2SaiJMNnO7EzgUSiKAy7Rtk0KBKrWVd42pY6wBTohRZkNJA2UP7EVfFg1z5PtJV0p6SrHSh05clQfQA3oHAEdZxYQ0EDI3ZxlkYuL2iKy6X6BS58K0JmXUlDB8PLwiGywUzilLkwIaQ9sK3rFmDf983jNiJSajHzahS3ALjGyNqYmohAE+5YWhnsjBfCtSdim5vID773rlbe16siRI0e/acrKpXuYgI+ZqqT41YwBDQxvH1bxDH7jgBl4KGGr6L+SWvEyzqLpl0ex50qKY1swQITQndVghJovwQU+jq3UGdKeQSkNe2Hv9KUk3bZFVym3n5S7OON2nZFA8PeSOlwndcj6nCITYLPZGpkADb4NaHbax3xkpaTnlXdkwXQAeeV5Ov3M76sJwTfKhR0ObM/2UdnY5MT93mFr5GtkrxN+8kHM5y5gP/wkz/RxbL0GqLRsqPy7Xm5ulRTfFPOZP6qKrexR8txU15F5jcF58u/ukn5UcHwpKf4pxjPr5741b+ymyjOjHKipWN0+Ih20h3TKlxkN0LrKMwzOaytAgAzi07xE4LFh6DaYeu+W0+aMT7n6h3twXC0VmO5fledFUpvp/Jj58DH04AeRiGAwLH2Hj2ew5jY0RdiiyUw7J+9qqJJpgNpwrCZlWAebgfAT0idfJShrS4KTrWNkBzC4UdJD8o5lEXkRv+l9FdgGk3f9QXmayOMkHZTVAsNA2M7qxr/3Fx6wpx+iwcInzgzMQdjROVBTM3SypOYck8UybmMjxg2LyieUZ5sJmsw57Sg9HSDpaP7dQvr4FBmHcssYQCbCw7lr4GqdBzVZRhQG83uUYCQLwhbFHhmUsw4/tjCgAQP8t6Qn8yi7u6TfJcg/sDZPBtqzFCV4pJ88k1bIQTNh0oT0zNizBgBlu4TPZG0wbANVwxKMEbRoL8YANABJ2PLsIGBmTAxAYwKgiB80WhKADbygoBX5pBqm47bKc0RYx8KU903Sd46qjUbI2OxjGTcsph8KABpH2dPfJf0zIs/FIUBTLyjrYxL2lDQ8Ay0NtAVZuffCABjqdgTAC676AHTgbfLB4qK2f0y5+j834WOHyHPta/F86JswP7aPTkgpLG2GsTurbF2rbQBlteH6kYibkxFYtBkIAyA8H7McXxhsH5EVcYTaSx/fl+V2p5T1raQblOf6jnEvdJwqbBXfaOARW+QWUYXVHDlKR024wDV9PxjTzq6bCk5XyRgcYfh+cP3K+tjoQpz9dLp0WHoj0tIyqNCuz6oyLafN+VBSkaSdJLWiwLwzkAUC4lkBNpsmLPpQMncd2aITn18bJwKjzh6Xoj212mCYwMQUxXi2BYRDQ5CVAbzNQPiOBMDjqhhgb7CU10XS94WaK7A1kgRwtTtXhIXQ3PhRlc8TnnBGiEesS0CzKUHpPCe/ag1hLmA+Q3P/WBXNvTeWfQN5HWVP+Pa/pny/T/p8p9AY7JS77plkfKby8/ytddQoj4nb0sKor5eOe0+VFD+fqNTSstZciZpUzsvIwDrkAXIgyEoExPyQY5gewW4HBmv/TFDUeZZ7vSiwdavI0xDbQ4TC17VsLvSx9PulynOH1m15/Ena00naMznFO6GpgcZGF4n5eHgsQTuQZ7t6Wto1nFqScwz3e0gdrk7qlZQAoK0KAWwbOIMW9IKIbOdKXW+vrglDMPZAgYrvxfHZQXmOCLMCjgj4tvbk3wOo0Wmt4SfmBURJ8c2BfNhyPUbSRpyPD8v9zwL3mxKYImI55gKOiHlS8vyieSd4IhwPHpf770bwO9ilYWv0T8rbHodhJ+JoTapkS1RathvBLK7P5LXeOcFVUvyIpfztCOinaOtSWrY3y/0DgYinNSwpzudYF9jFlFILgDGCjcapfF9wuxC2W9j+iLZnLC07PcdLS4pHG+4juCps1u6VPIsC17FViy3YOXJ9guFZ1G3jXL1Kin/W3Pf7/jm5P4PXYHMH26+xcm2u5hnMl6B2+CcuoGCI+6thjPRytqQ4jXnED1xsTFGeecQTubEuKf5efjdSni3T7whmMO/Bu5tZ+r8h+2A/zpUVXHQ8pbWh9bYeg9uPmMuYt29XsvHRz2t8s4vk//ca6uKPqY6+wLebFtR8QSH4tEHb0zAHTjzD4U9jApr1lBfpt6UlFybgGfmAmgDdGgImB8UFNSJg4BFiCnD2YW6ye0Zbui20JhSig2qRlgYTuofh9koKF3zwNxjyDOCHkVQorpF3I+Lz5YZ+6mZ5Z5x22bQt+DDhjbZE8oER64x4AbYOU3nYXUUYCD8UB7Rxq/MOZdesXladgKaaVpswenydDPjRHD/xtr387wpC5Ta5fqChDJsXzs3kO/2YL2jD9R+53l7KnkOQ8oKqamv2OAVCmMCfBpOpHxohqK+ltilMv8j9EfJ+f3v7L6xjiaqIr/UfhS300rJuku8uw1s68DloU98NvBsBKAEQ9jbU7R2FKOwlxd+lHDschbIrgeApUt40agYe4Xf9Pfsu2tC9tGxTAqOG8vdzlcBmBZ1MXjFZec4fQWGKtq+f264Mg5bSMtj03MWxR1vv1pR9jQY0g9+dSwGvi33VzDD3PpB3HiP1+FgzRjp6PDXvwQLAA76juDB4QP4P8HQ//w86K3fUUWmZrf/35MKrnWGegi/9Q8pZGbh+qNI7gbyUq0NJ8VLLvMb/p+cAqp62sPQXQNzD6befSoon5Rpjpha5QSkt2yDGxPWtsHe1MW155xMZMs0fQ/9PYvBrcwG/nStYmzDuTSBRW+g0C5i8n+7VI7kC0NER0p62Kd89mqtfrYYjT4NhfMRbWtq1JLDyT6plyVdL42uK4hDi6+xuuT8+933UNyopnsVVWTmFP7RqvqfTWypeMMU51LCEk7/qu45M9E9csR9MALBeQIAVUVuJSNswYL5I6cIDeCtaH4gckgNGen43iAsfaHIHsswNKeRP4HjGPYpklJT319h96gmp1wloRvIX70ZfdCLf2iYhPwyPWzkF1fQAMHiRIACaipNiL3a9MW5MbWu/hPVYQ6HeSukNYs8KgNlemr7alpq0CVLWfF5DX3Vnjm7yf9sROOjnNvx28a3vosznKQ7XzNH+eX4/4K1D+L+DOR4+0L5e7t8XMVf+ojzPYQCa/ynPC3IHArE+VG5gK/FZg4PQALbjEH67+6vs7Hie1PRXLhxEozw77QaqkEzqoPY5JFxadrzVtcw7TPKEiAZkzbRPDP0/1kfGgGcmo8/lZFbQQkyXvM8T5YdpY5YxXNUOshkI38b2LKNWRefB1YAfYGKPIbgyS7njVYUrYpAAlDpzpZyGbEEEg14zD3HlrgN2h0v9tklzJlOEgfAHUuZLMcpA314codE4ow7EP0rLY54U/vFvMkMfOMP1/LjQ6lAZNXLmg3d3ocC8X/K8w2tg0FMCoKWIgvgqybN6rZAuLdO5vh7FFf0bkvYiUw/bA3UmL4N32n5S5rzAXWyvz1eelvsPMdq2gAJ7XC7GT0nx+xFCqhm1Jevn5mVJ8d2hd0/JpdKyy3Kr8PzG7cecVkKpN8nv/LG7mAviOACsCUHNVwS2PXJ1q1jpx100DSYvuCdQdmPlaacXEMQeJtc6hPrQBz3DQpq4DQJjDOF+ueHdKzm+86g1OTSntcW2I/qnMi0s0AHR/SmHAVh3WjvHPWBu63u08UHlhdg4U+o2JpRjhuS5h7IZ4OcKVfVQ6Llr21Rahu038NB9M2rXYm1/dS/PxFC4B1dNJjpWea7Tps47lKpUE2E759QIUFS1xUVth0kaKmk/SY0D15tJOk9Vja/yYMyizyRT0NFdIlyC2gybtqZ/bTgQUOrQWZkDuL0i7Qnuxd9i0arg4M5WKasxImKllqZd2yrzFuHb0q63AsAKwvFOQ94GKsURHSSbgXBcQLu3srvZXyL1X6TqN2E742H+/UuuX/2Vc3702VrhFfTUKSleJWn5WsbsbfsNCglt3dZMv7WaCJ9vVQUn/1r7zsqAJgwKFsbUQp1OTcsEeoTZqBs1l2NCgCb87mUxAWMUsJnHb8AHg/9TyeJadaV2B/zhVoKJngnrAED0OMFEuxAA9be2/G3b3gG51IgA5nPlH+viaeKwAPyBz3+f08zFC2PSQFXY9q2uxkUB3tUlMNfnUlMWZSd4OvtnrAbQVMwTb4yW5frFvivj88GC86qGGXTaCuV5zdgMXy+TBh+lATTbK2+Pz1QPdBb2IH9ICGjWYWdjksJeYrlc+0gSGM1SCufGITXh2BiCsmGEViNs04CPwRQVdUdV/Wf16MjmjTUkpFWZbwF/zVT62C4TyTx0dEzKs5h6KnOk52EJgdWZKePxmBgwDAfvilnGqZZ7X6h6ECwrBo/BgqY7V8f95P9lCZ5uljMErpx2ZLlzVYXNwfs5zxxPcAUJ+/ff5hZmpWVPS9rBsDjrwNXweJZ7I3lM30CeplzVLlDm88+S9g2+x38SrDzF7RETHRTQXlTX2E0m2AOPLUm4OO1HADCCCdqN81Icojxc8z32IQAdybGYRxDqC+YjKNSHB4x7sf2ybW4BVFIMeQd7EmzbmcKPrJubL6Vlf+Z7tsy9S2eQDPBWdZ7+IaMx+I4gbD7laZxo7Qfwd0xE2YsIGpuqqraD7aUNB0nqQbkB2XtJRjOrpaa/ts4G1HgNQ2cdH6GyvLcSUi4tw54tDIM3sjL0kuLZKWqELbGg1gBqTACotqqqRxJUoUfwkMsogo1Ga8O9F0XozwyBAHzAtsi4NRqMj4dSmizv8dGO01y/0VJkqoM7eRyBSXPRWFXsYcdtVxMVVvtX0FIC6XAdAHgnG57ZjEwhSR1sBsIPyPviqtCPsb1GylmlfgsEdX1JMTw4kgbbwzf/big9GNIEDqa2A8K+jAakKgB8IJSwjQKtMtTu/6AdYJB88DKUv3cTDJ1NLydFAQgNwCdVhDscJbBdUzk1jtk31xKowybxIctzvn3ZJxpQ1jH07q0zHLuhkvaJFba/oj4wtIb9zyPy3AJJSwhA0YaksbGeY5u7s5+3p9B+Mie7PNAC0AGZdHIAAK0OCfW+oUXREMq8AZr5ANqb2rSXyY+eU+Zz5Xpp5unZGY4BvJG3zv3GIx9QxTHL8OdT2Oj9CsrXEVzEwxxjeUYtOlLTX5dnB2q8TntZ2YPRAQE/kfMm8CYAVqq7WLU7KQ2DBaC8xRXRGKJTnWAbT4FxqOSP6zZsM1S7zXAdzO0bw73OIvyKVM2R7dyq4TqBKdfeVt7eu442DTCFpDRGmdWySQ2Gj1fm86vGSht+SqDBCTKdLLQ0QcEXBYzAfG1bCvcpR1GE7Yf+oXRdgG+tkXQ5AQFsnPbLgVsvjL+fB+6r+/J7wTdxjQpuqXt5sVrHCrwd3VIxXz5Snp2WD8r9eCC6LUloIx8NpfUTtLMvedrBlgXC8rWr3Kp0ZejdB9TwuPmeqStz/en1qa8xGZBQNv1KwdqcgKi35nsfQ4DSm6D20Fw/+NuAnscYNF0Lc/e8+pxAoQ9blcMMwn4wtVR+/5u0JM9o5unEGux/f640j6U18WiZRiaWENDhvMXOOfDhaa7ypTc1/ZXjh40y7YaS4hGM+WDahoBPPuJavBqxAs3bMFiASllu1aVy21HNKeR8d8Kv5X6iwwpFwHRQ5iiY85XB9U4E6M/y7G1ErSZtzWnVPWOlTgCZJlsRX+VrouuVOQjcQCl7bFLDVYTjl+cAYo8zzJsDudKJQzYAYrNlgeZwkQEQ/RUgQ+r5cYy+tRkIv0NgGIdsRnUfSjlzHWaJpEWVYtKYeddMGvGOIgjpQUZcAX6wvVxa9iyF1MXy9y00WkVe365Cp8nsL3mH5bYBSss+J/DZJuSejIXPsQGAsUtC3rtGyjyR2sYS+Xue8mLeBGkawQoE9qzQPWwLbMwV8Bk1OmKefVMX/u90zbe0e26sSopfTFDqnexXhNNoQzDybKD/FkqZ+P5htnAHF3vDNVoaaDBuMvDxp0LXvsgB5tKyq7m4PYnzQ7f4fy3WPK0+guH8IZwPH1jGqpGq0Pa/Gbr7grTpsUBe8PdXlGcj1ynP+s3U9ldGhsJhOt8HEwY6WOl92Ncya5XCMDgC4CyV9LGkmZIWJAU0oUmtXeHjkEabnFNevBcdnShCcIsamLS+gaGOHpX22A4mncBx0pF/cGcasgGOWPY63PYxAa4p4S3CELDCKtxkb9BAxTdStBkID03QHztZ7r3i8ErewnMrboMHgYuvgenAPDuGwMMcruoBYrYlU+/DxVJbCsxgGkVQ7i/iRnMu3VrJfgdbMxAAnhBIF3DS296BLchcLgrDi6VSajsurrK9hBOyvXe/XwtGBt964wAACaaDAiAiSd8ANMLYHLGOWuV4cjgQnsenFUHfHOV7XXqxitCXszX1aUONSmfJt7vh3aupsZiWa1MSF/yaI9iY4nv4Z5VvoDJdqjyTjAkxjPd9kL1VISuePaiB54DH1D9P8XQqw+Bq0Gq0UmaDzVUqwliTAdbuNNxurJKfIZVve8BUbRGRh0S051dlD2w2IGXVniND1tFRPDE6Hy1NHHsM7K2bAHX3mDZDPS3zO0kE3h0s92Y5VJI3AWw8QxsLnzqvXWV7dLXcv3CtnYrn6eKrz7EVcTSZ9OjcNhU8foLJ8+z8NfBNQMuJ/X/YaD3GWChBoAUNaj4xYiC8/6a8bY7jQvdmcJUMTSQCof0t9O6G1NbUJNBsym/4mxxfDfdnSTF4BGwzDq8S/j+aRgR4ti5ezIsEM17eioU1NFfr5fhi1frMC2j0BlrGZSX5QnmOx8SJ31aT5EWVhscfbF6nSn3/TgDvj9MWksAr/8WxOjdiXNcN9NO7hax6owJ1yDfSiGOV53mUJMhcWsNgLS0uatuJaq6JLafNeS2PonpY2vFATJfam/ix6mxDzhZheZWUs7yapizUiib0/Z7UI453CWyirjQwwUNxcKeUMyNJpQCW5LkRSu/i77tYXm0Ba2A83Qy38eE9GqMOn0o5UEsfrLkNYQB7nfsjNEUmA2Fsy/2YoEtsXl/zHCaJRe24FRMm2EBgLPbJCTIvii4IQfiWBAAw7GCu5Yp1JrUxm1LgLqBtRblRA4cgc6VliA3ThaHqX2dYf7g3H5nTrJSWzSBAakUNUWOWmU5bDYFUWnY0FwlNQ3cHcQV+ifLcwL8iQF5XeUHWfA3jmhoar5P4nV3OBbKOAAwPJIgIRkIHUAvXG6H8/ThqU6hteUuufavpt/JcJGfvjLVSCmN40vblguQuQ38jtg/sOE+QX3iiLTfke1PuwzW9H/lYcGEJu6HuoSewfdWxBoENAD3mIEwn7lPe6etzKQv9hcAHOZ6oOy7Cy38z5/Mm5OFfqOjI/R3kuSWa6xhHfwcB31On0H0oQ/7YsIAdAiaR5EDArCMGKwIaP2R5Wq2Gr142UazQ9CLMsAIwhbwGGu5ejdP1vAzas0LZt1LSHtzpG+zp6Cy61dsYosmwbXQCT6F8DIZ7xlgpxiWbkd5Pqv7RQuUHgEvmJTGDz0wNXX9ceVul0zRpRU7IeLwBqnZo4LB6RkCxvQIxZM6kUEM0VnjBwRYDZ3CdTdsPCNFbDEzdp2tYv2Lyxm8plA/lfF9JrVFD8ghodVoHgsx9weeDsWumKtsp6dhO8rTLUwJaJ09wlxRfqrytTaycYSMGjyIYe77Nax1VMFBdPJoaAA1xaUlgvP227cb/32F57hmCwi2pAZjNZ97WjPPcSm33AJGNxwHM3Bpwe96VC4irGJfFLL88Lydo+lazPrrxuYjzsgM1TQv4/8maus9MOAb+d/BaZmNXUvwfzpVr+Q00I3iAxhnnSxVpzgqbx/Jm8m+UO44yYRfJ/4llXk9RnsG+7ptdyvQ4AXv4fm7rtMHiorYYaNicbBRSFxVZ1EQ4IK1TTHUiPuh/ROR6MqfGjWNH4xlzHW24u1swyqC07VKCmv7SvlRGWCJEu/ID0tGbIij3SlBWsTJ7DmGg23Jrp2DE4wxmGzRGYDJbxtUmMH7MZ6rCSDJI8ATZJs3BnVIu+rurScskZU4yPIc4JntqbmFetYkbFZhA9nMKMR3tLGXN1jyHfvhK6e1ppsoz+yfshw+U/swV0EFS3nMZzgtfq5mWXpP6TDRoTMHY4FHSQr7DJU555MiRo0JQeXl5gbafKtP/QSWkzIe7ZW4YXNu0GgHtRpkID6gp99Dc9o0JHylwe/oqsxv3nUm2RyTvN9IerOh0XlRQe6c9uHO4BdRAazZJI5R3NwAa0FNJjjmA0TePhDDV/WyDJiqLCMJBssV9ynpPvpOyG/BHEQJaTlSOHDlyVIPUsOBv8DwKoKb6SHO3VhoGBwQlVKGmPU3Y0TyQoljb0QkDCtye4GFsOm1GmlOebcH40h7cCa+DTwz3cHjm5gagYWx6ijrA+NukNTudWpkwmbaeENHzoRR1sKm7WylHjhw5clTNoMYDNlA5H6Vh0pkaBheAbHYhoxCDJkWZcCs0eYbtJ8JyzwK25wzLCn9inBgsGq0GjAwnGG7DiPi0FGUCYJnsT2C4d6YGrJkOVYWG5ukUdZhvaRe0MSeG6mAzEL4z5VyxhTPf1rEvR44cOaoJUOMBm9kUPP42UyEMg7PUasBe5CTD7TUpV/+K8WxutWS5oEDtiTq3akgexVu1TykP7oQBpcmwN2wwDOC0niHviDzslJIYDNsMhO9I+X4byPzjb4VJLS5qu62kXetRexpLKpK0ZT0dr60ltZa0QUS+dZlv6xhlbsq8LZ3Yznt81pO0h6S/STpYUofgoc8O1CQDNjAIPo4C4bJa3jeooykmyZMiKD/Po2zYa5i23I4Xgb1NAdpzuGV1D4+O1PYQ0hfYLjJ5YqQ6uJOxfcYZboMJBm20TFtPsEnJ58BH20Gb+zLKdFQE4efTaMBINi3mfhGeYPWGASu44Mr8kr8715Nm4SgROGE8L22qj2MIEA+vo2sj8l3IfJ9JP+xomQOwz/uAeTs5WJL6W9pHEmQwNMDw/IMmGp5kCIq3WO49LOkoSY3qcjur/4PyomaOqMWGwf6BiLYItrflU74IuR8IbHSE7ZXzCtAs27lVt2fgdVUIW6ERUZoSGSts+bQ35HkExsx5jNOvlnFSgTkCoG4yEB6WR5/aogbjfVnGsIAb6C0RaXwNfI6nBvp2oKof5H/f8EQ8op6CmtzYmbQ1ch18rmeMhUluoac8GzK4Pz+hHCUFM+tIgib+Vc43gMRZXLS9wIXbBuznxzPmK9VOjdyQawnnjpjceeF7/2IG74CQOJ8gJkw9RFhfRvCTBUjDOTIHGm4j3kxpBq/ByceIcaE78uEAHNwp7ZmWsEy4v88h8w8TDIa3Uva4MXdk0C5oegYbvpVTpQ4XKvPW08I8mTDmGjRWpiivCDRYlsUcoTv2xIh5dEx1CmFhxA1CYPxwubZTy2lzZtdVxiL1RzTiYDj9C+qhoMYZSIhBgu21kw2Lk8NUxanhubksffN/MrYrNHn972uU3F/txFNiwla+r0lGuIx/4dig0LwEL4VDz7l1vbEN3XhbV1ImrUbeWiYaopri3yBM+lkZtsdmS3Ov1OX7DNrzC4GaiQamKNNmMIy5i8iUJxjuz5LnJ2fQLhswwThdqsxnTY1iv6R9N9o/zpLl5JhHR9RVwuGLMMBGoMHp9URb4zsfvMrf/UWg7FmfBk0E5hpVse1rWnT4Wk6chQXvwCrG9xS2O/L7itKaOtKD6JMDgOYyGZsTw4CGYzZfErYLcTTLu3W5zU5TU3U1igijextuw3vr7gxfdyPRsY76SV1ujTgoM057YFhn80AakmF7RlKrsb7mHg7uvCjioEwd3am8sOVNNffOKbCWJljWcYZ7JsPuX1V+9jw+3WMRDLDlQSydPvV8cYEQ7ZO4CMCWBlaa3xiYOPpjrty/23AfAhJHuFwueWBHAE1b1IGyQyAIJO+xFLAXGzQKUQJmy8A88kPl/5VA7STDM3tR2wFaQwDwrLz/zVA+RH7Fob2jNWVszxX4fXL/DV7D3MGWDzRHMMjHNsQ9cn8V7yP/9poqrS0jBi/A4aC7S1l/kmfeDtQHNoO+TRwWQogSO4D1udOgpZkAwWvoo3bsPwAgaL6xnTJe8r9gGX8QFhzzJD0Unk80SMZcelTuTQlc350g4T25PobXELYC/T9Frj3Ka7C3g5fmULk2x1BvzL0Vcn+I5l4bgjyU04yaLxzfMkny/xxzvkHTeWWg/y6NAUhR9s8aYOQHmUX0a0TufcT2DcgzCDQKze42nLfog4flmemGb3axoR/wbV4YHAfNN/st6zPTaWqSa2ngmrssqxdJWTCANEUYhjHs8Rm8Bhofk2fQS1KH6Rm2Z4lFkKc6uFPKTBPjBSv7uzKcE4jc+0nCZyYkCfhnIYRet23bnU0gXt9WmGDqR/K/iJ/0CAXQuhFgFmEL7pLnTcEbdyOg8E+o70zmi9SF97oHriH5239/4f2mKZvVh0L3LYIS3w6tCwW9jtrxnRDaaBME0xvYqtFoPo40lLEly2jHvgXff4aLKgT93JMak+ACqwvre0wobR2nodI+RNYeH9LKqID2BgJ3quSDgPTtzvaGV1hgDqCf/bPchmnmSCNJAEUzCKD2ZBvBZ2CEPUnSxobxx2GeCDMCT9QPAbxC+TZkvt1CWiP029GqcgDQpswb1Nhux2tPy3O/N3TTKeznSkCEQh5Baa8gUNuYYBga4wUJ5hsAWBv+fXkenyPOKoO2vxPnCBZa72r6FvVvIQnjXsb2t2c9cPAljP2HS2qi+Wa7GN79+/A4sN/8uXk8v4npUm4Xp6mpqtXY3NK5oKERz9uOcEhDD0iZDxSwyftL+Um30nDcwDzL/ZvJVHS2Qr1SHtyJLahTk/QbAVZWYK2cB21ek1C7k9W7r7IAuwacJ7tL3sX1bHGBtr0igm8aGeZNXNn3kb//G6EtuVvyLJA8UyOE72EBhtxaeR42N8dZ1SYEaQBjPQIgTVFAwqtnF7bXtrV2ktRpMoQGtSqD5G/UM80ZYNBE48iW032NlpRVrKoe2jtT7hfl0exh5Id/l/IHSFk/0HX4jCBQoRYMbTqAAMjXTPoGwtC86Oy9bmV+aEdQ/jy2BdvC2JoG8Jso/99Po93ANsw0hgqAkTzsAQ+K0LLhdHDwy4Pk2S9i9gE8Tp+U5w+IOVaDKKQhS/rIMwsCdeigkjld+LZb4Ldv5jmFl/lzQeoBTdVYAp3BQZCpvCOP9iNgvgra0IDG5QZq3pops7doXJoZqA/sgeBUgXO9HnaamqqrHZO//nO6835CBIY4PUWyqRM/TlnmdGU/yRmq1/dSlLkqQgjPU+bTsFuoFAd3Spk44GxWgkeGFmBulEa1PUBgwk9n+O5xyu4JhVX+YzylvD5oaTYICL7gWELdv5QrVxtThJoe2wmP21yFq5lOYb3B5B+gMC9XFRG5e0hdm8fQgHzPuQDtQPOUdfHnScNAuWWSnsm4zc+SJ64XWJRgdY1TzhepyvZi/jifLP3ga9H8rafhUrdfQ3OkiPwa31kXH9CwLRDAOIUcCRqYsy39CZ42W1mCWVLTAkADsHSIzibFQmMIIu+lx5dt3m9LjdOLbNOCUF3fl1SS4N2+JuW7cP8F3tlRUvdQijrP0F9gtQ5dP5WA5hp530Af0LDuX1LLg+CzpxFEZ0LclnyNfNBpagJalqbK7kkTaXsiwrd/ynf3sqzs35dyj0tZ7hTNxPMJGpNCxQq63qLxOl/qNTSFCzk0JTfFyPeWlP121g2SMhdJvccpsw1UpbpmeTAptTVgzO9YvlnsYY+Hh1JWXnM1SAAsEGzYi18fjDb4PSjP5XSAXB9pYNbY+jifwh/q/31MNjjVrHnKrTChdZE6+dcbsZ2/oybn+ghtD86Ng3H85LDQS0CvEHgPp+3IbYXwKsLYYIyUZzvUk8DFBxilIe0Jtla+JuCB3RRABLZzVhMYhMnnL4NNAlvoOmq/TlAGJwZ5D2yaOlgWYs2pJYI24G/yrqRGtHcT2F1B/mUzb0A9AXwupbF1vuSf8r6RJQ/ME7qFrqGv3jD0VzDkSNh0oSsX6FcZ5kO5PH8xxw5tzcRzU8psS83j7EpI3VFuz9q09/kZ1WqFIth/fGu4d4wIqu1SAJpdOdAmLc2IQjVGhOrryrMF0RHacnTKPlpZQ1qaILCKIjDh0QXoUwjziyKywT7kJRn77euwlqZBgGmCgQ6nlsxPfgwNMLLDLQJ1JrUC2DYYzyB+WdcVkXOXaNLJoXwQzn4E6I6h9gxXFVu1/SyBz7B6x3bbS/z/oLT15rYdtnpmUVP0dtCWJUAdNG3rkPB1o8lvdpVnu/G95Sp0wKvUKRgo8+yAlgYGogsNfAT0rqWdKHNGIG+QnpH6LKc2CecSXmgoBt8ctnFuChoMJ+zvK9kPfeWdtojxfj3fCs2fDRlN2U9NYr7aN1Bubhk3bM+OZZpvKQt1AIhGn2GrDnYzYTsnaJo+gqbM0hfQci0zjEkSaif1mcc6fchF0PkO1IQ0CJZ7w7JceWsE1gplDtIGJt8/4/aMk3cuKHB/2oLxpXHvhirzwYhsS2LkyWecJqvobbDH6AZeCLrRsqL0CcJzmgCbPpLqoib2EOUZR64MMNtweod5L4gQJhgvqOthQPpglPo/BTXkSj6cmhi0NO9Z2rScAOxEw7tuJx+4iNqqMmlPzzyADQzfsc3wDwLEqVJe+OgNbBHdHEqLEr4HGrLH+F8fyEyU659qso8k4IEAPif0TJh8+5QosAoN2I+a60+qinhjb1gEOvodfXUhou3mwz6UZ0N1ncWIfXWgzkE6g9oeP7WL+c4y8kRlAm0yDoj90x0p8F3paBXn6UyO0XiNTdvKqPGgTVVTw5gk1UI9yvkBDef2/vapAzWeVgOqe5NB3M8qG9fcKBqizLY13aWOLRK0Bxqnv0e8q9D0uDJ7DKU9uDNKUzJWAMVPBW5XVB3uKNSLGbfmVBWttl2fzPhd6eeTJDXO8/toJKmTirf1li/5AOB+n9mGk6o4Q64YZ9hECNV7led5gaCBt2Vc14XUjoXTxAATb02NEaiXpU2+8DYZgsIdFobBMFZHIM1XuGJe+yplPrndNwBeFtZkSMIWDcYWADjsUbUQBtOhlAaw+9rTprZvRMqGRnxCIC80DS8YyvQF8NEWAQrNwa5hzYfPA+V98BaDDQu2Oy8xFAOD4GJqA3CMwEkpQSQAC8AMjN5hxN7R0qawBvJhzqtrEr4TQORq/hd2LPnEPlsp5QFQ70NAOAznRoXyoJ9xTlt7SzmHE/QHxwTb5S0soFQFwJlPX0p9+nNOjqLNjnKgpioj1dH9dCsuKDGc/90WIdUrQXE9lNntdJq86+VqaA80WzYbmAtSlAlGPqMmAEWAsA1m8rr5yMKEs+pXgDasGF+LkR3M5X5JnwsouU3SwTzRPArErIMI0NT2QPP1LVe1JxSybcIMEfjLj19ym4VZY+/8qbhaP8l/NbUAMCztmVV9pVww+smaFBT8fchn35TrtjG7hSv13aPOuKKBMZh8C7o9K34XOKRwU80jvuB/l/3cNniYppSH7WKkNgUaWj8yOOjzwNjpKKiZGcG26ghg9TtqPtpq5tKG5KcNqWEy9eWVXIBdYjo0le7p2DaDpxoMfk9JOV+WUah/w3eGA2f639pVBGT+c19Q65gmkvbNqiJsyEgp9w5Jm2n6CwvhjWO04RcuKgBARwWMun2tFvj+WHrphd/Rmt81QEzQTgoazPaGsAY+wIsdeuQ3bygsTBtxF46tYa2GT9heMKHpvlLXG0WorYpoD1bl59SS9typvPgIupN1cwd3pojlAk2J7pTzyTG807IAFYul3ggC103HkLOINh2jDkulDgeSsR8T4xEwz3OZYHQM1T/SAq7eIUybc5zATNsq82GuhV5c+PFLogwyr6X2pasww4u4yrcRAM1WqvJBqAUl2vGcFee7gweH5H+QAmOgqnoUSxHtjSAsoFmGK/qEgLHtDRQA2JYaTI1AK2r2elHT42/5IHTFfcyHyMbQmu6rqkbshS1GeH7NTnpMBQ1Eh7OOIyOMYKGpwVbQJspyfIuU4dsuwcD4TfkbAhXxpFayPdh+hxCFF86rEVXsS+3XaBqVr9a8b5Hcg0YL8WnugTCXa4nPdQNAwunY1LS1DAIVurxDEwR7lbfk72vZJoCA7WJ+61VACLfN7uP8wFyAp9108oAm7KcOCcpczuCM46kt7MPrcJEfyMXse/L3DdTINKI2sB+1hseGDPdv4oJpMufkm+RHuIYt10lJDLSdpqYiIJaOXi+EJ41FWM1SFerXMG0ec6V8PPPq6Huu3KurPT9atCfrKPvxDSa626ApGVaNc0a3BfWzyuYMrSQaG3gRDFIVe/FxqAEZJGJynE4A7AecO4ranWoHNFzxdY8LvIXJvUTmF+sAWArSrqp6Q8CfRhCySMWz9brOX53ijKvQvZuoBRxHnvWgCri104j1KPJ0fOPgJTACLeHqOAjCP2TCPH6fq2b05b9D74SwezSUTkrZF1jgwG5oVIxxArh6KOgSbMg7iWAMPBpeNfCYepnaCTx7uOS5McbcmE8gCffvSyz5lhL8AHAOlTHql1Jj8wG1Z79o7j3PNmE8rubvh5QL2O5BEMqvEr4PoOhILt4xJ7Dw2o2y4sgAoAEQvkxVhBmwlQltG7TWvYPbUNgiZZlLOGdfYn8NojYQoPHpUFlvc7Hh29HNJNg+l/Ola5L2/qY1NYzr0cOS5bYaqNaNXIXpCB/ePTFWuyYaUw02J7o+hJGazq6jp4zB5UlckBFUjwEJg/EavlbRBrRZAopXpA5Y6QTV1Q9Vd/A7eR8EwBVSl4kUBLvW0Ke0SqVTjYfL8Jnr/JjPHMIVXVB72VEZvOS4woSWA6p2XfA0XGujqu7f+3Q5BWbc+QoAAuPFn+KEtkfMFKrgAUz8LW/YU0wOZINA+hpbXzpBI89D+MH7bQuC/xly/cdQPmjoOsN7i5o5hKh/L1QcwMu6mmqmCmrJIyl2iWmTA2HYNGa5AKkHSNmbsN0A7fOCNhZhHqg8w+UwMBhJLcya0FxYrJlD0LRsRjDegPOhTWheTOK1hYZ6T2bQuAaaewAXh9DdfgdqN76jluyXlP1fznY/xgXEzqrCButblm2a1xcovbcdtD7QrPwUehc0OOM5l7cmeJtjA6k80mJnbrttzUXiDIMn1WHWVZsUgsYulYcr+7KXlhVZVjVTVElxpxphn6Vltqi9u0m9pgVWf5ey0/sTQYZBDfbXTdb1UI9tFbXdUyCwhX43GS4fKHV6wfDcXkTDOsI4byfPzq2B9pQqc9C9gVKnGxOWF24nYu5cUs1twmr59sCl/WjzU1MAHYIQWw2XqsLZRoRpOjVnMND+1qKFmae8wFgtsG2gHDly5KgAVF5e/pvffrJtf4yoCUBDsrlDD0jZnqdqAtAEtE9GzVJS12NpxxuqwnCspk7vvSewQplRk4CGffKrpLu4WsU2xFMqfgTkuIS+hrErAGQ7eV+RpBtsgMaRI0eOqpNswmSFMlscf1yDdZ5rqVfsk3NFkMJL4HkmbZYabCMMUYsM4wNDz3VFkKzUrNShVr7FUOZ9NShw35f64SwWk60P1I2fJiwW9gDQlGR1cGTSNv0gbYKhLrYvh9WWD5peZ3C5fFLqB3dI7HfDm2YPzqkkhzFChQ+bC2gOAdpwAOpSxzYdOXJUW8m8/VQPKGr7yVHdJbgdKy+GwcowwKvGOsCgFnZZy2jfUtv7DMAXtgDYy4dHFM5Yakzw/AsXBTBqhR3AXAaFzOI7nKfc9pMjR44KTNh+cmc/OaqTRBCxpIbrgO2dVXWoz6DF+ZLJkSNHjuodOZduR44cOXLkyJEDNY4cOXLkyJEjR7WF/O2nDbnvXd9oIzfEjhw5cuTI0W8L1CAA0DauOxw5clQA6khe84PrCkeOHBWS/l+AAQACYD7v73Ou8wAAAABJRU5ErkJggg==
215.9
279.4
Version
Édition
Table of Contents
Sommaire
Contents
Descriptors
第 # 部分:
Sub-part #
Partie de sub #
List of Tables
List of Figures
Table of Figures
List of Recommendations
Summary
(continued)
(continué)
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
EB Garamond 12
12pt
always
always
always
blue
underline
0mm
pre
wrap
Code
Courier New
12pt
14pt
14pt
justify
8pt
8pt
always
5mm
bold
8pt
8pt
1mm
bold
0mm
0mm
true
fixed
0mm
0mm
always
bold
center
6pt
4mm
bold
bold
solid black 1pt
1mm
center
center
solid black 1pt
1mm
solid black 1pt
1mm
1mm
1mm
10pt
12pt
12pt
80%
5mm
super
0
0
80%
5mm
super
justify
12pt
6pt
12pt
bold
12pt
12pt
10pt
8pt
8pt
0mm
4pt
justify
125%
10mm5mm
5mm
bold
2mm
0mm
4pt
BlockQuote
12pt
12mm
12mm
right
center
12pt
12pt
always
center
100%
100%
scale-to-fit
uniform
Courier New
11pt
bold
center
12pt
always
rgb(0, 255, 0)
red
underline
red
line-through
STIX Two Math
135%
80%
always
always
always
7pt
super
normal
normal
0
0
9pt
12pt
always
6pt
super
1mm
always
center
12pt
bold
bold
12pt
-11.7mm
11.7mm
12mm
12pt
12mm
12pt
justify
always
65%
7pt
30%
always
6pt
30%
1mm
10pt
12pt
0pt
9pt
4pt
2.5pt solid rgb(0, 176, 80)2.5pt solid rgb(255, 0, 0)ace-tag_
15
0
mm
mm
100%
mm
mm
0pt solid black
1
true
0pt solid black
0pt solid black
center
1mm
before
center
after
before
left
1mm
1mm
10pt
0
0mm
0mm
where
where
key
10pt
0
|
true
|
0
true
false
10
11
pt
pt
true
A
closing
A
C
closing
C
5mm
100%
scale-down-to-fit
uniform
-
.
:
=
_
==========
=
en
<
xmlns="http://www.w3.org/1998/Math/MathML"
="
"
>
</
>
<>
()
false
:
100%
100%
scale-down-to-fit
uniform
%
14
Figure
1
1
100%
100%
scale-down-to-fit
uniform
100%
100%
scale-down-to-fit
%
uniform
false
true
false
false
:
preface
annex
-
English
Français
Deutsche
version
Figures
Tableaux
Tables
Deutsche
version
bookmarks
bookmarks
bookmarks
pt
pt
Obligation
Target Type
Target Type
Dependency
0pt
rgb(33, 55, 92)
rgb(252, 246, 222)
rgb(233, 235, 239)
left
0mm
0mm
left
bold
inline
block
inline
block
block
modified
、—
, —
5mm
,
—
always
always
super
80%
50%
25
3
0
<>
deprecated
:
normal
18pt
_to
true
true
Date
Type
Change
Pages
disregard-shifts
,
edition
(
)
10
BUTTON
[]
3.5mm
100%
scale-down-to-fit
uniform
3.5mm
100%
scale-down-to-fit
uniform
3
|
333 |
admonition.
month_
en
false
Janvier
Février
Mars
Avril
Mai
Juin
Juillet
Août
Septembre
Octobre
Novembre
Décembre
January
February
March
April
May
June
July
August
September
October
November
December
true
;
1
1
-
[WARNING]: Document namespace: '' doesn't equal to xslt namespace ''
English
French
Deutsch
Chinese
58%
30%
false
2mm
rgb(255, 185, 185)
2mm
rl-tb
start
end
left
start
end
7mm
One-
First
Two-
Second
Three-
Third
Four-
Fourth
Five-
Fifth
Six-
Sixth
Seven-
Seventh
Eight-
Eighth
Nine-
Ninth
Tenth
Eleventh
Twelfth
Thirteenth
Fourteenth
Fifteenth
Sixteenth
Seventeenth
Eighteenth
Nineteenth
Twenty-
Twentieth
Thirty-
Thirtieth
Forty-
Fortieth
Fifty-
Fiftieth
Sixty-
Sixtieth
Seventy-
Seventieth
Eighty-
Eightieth
Ninety-
Ninetieth
Hundred-
Hundredth
re
e
st
nd
rd
th
_