Class: AutoC::TreeSet
- Inherits:
-
Collection
- Object
- Code
- Type
- Collection
- AutoC::TreeSet
- Includes:
- Iterators::Bidirectional, Sets
- Defined in:
- lib/autoc/collection/tree_set.rb
Overview
TreeSet< E > is a sorted container holding unique elements.
The TreeSet implements the Red-Black Tree algorithm.
This code is an adaptation of the rbtree code from the NLNetLabs LDNS project.
The collection’s C++ counterpart is std::set<> template class.
Generated C interface
Collection management
void typeCopy(Type * dst, Type * src) |
Create a new set dst filled with the contents of src. A copy operation is performed on every element in src. NOTE: Previous contents of dst is overwritten. |
void typeCtor(Type * self) |
Create a new empty set self. NOTE: Previous contents of self is overwritten. |
void typeDtor(Type * self) |
Destroy set self. Stored elements are destroyed as well by calling the respective destructors. |
int typeEqual(Type * lt, Type * rt) |
Return non-zero value if sets lt and rt are considered equal by contents and zero value otherwise. |
size_t typeIdentify(Type * self) |
Return hash code for set self. |
Basic operations
int typeContains(Type * self, E what) |
Return non-zero value if set self contains an element considered equal to the element what and zero value otherwise. |
int typeEmpty(Type * self) |
Return non-zero value if set self contains no elements and zero value otherwise. |
E typeGet(Type * self, E what) |
Return a copy of the element in self considered equal to the element what. WARNING: self must contain such element otherwise the behavior is undefined. See typeContains(). |
E typePeekLowest(Type * self) |
Return a copy of the lowest element in self. WARNING: self must not be empty otherwise the behavior is undefined. See typeEmpty(). |
E typePeekHighest(Type * self) |
Return a copy of the highest element in self. WARNING: self must not be empty otherwise the behavior is undefined. See typeEmpty(). |
void typePurge(Type * self) |
Remove and destroy all elements stored in self. |
int typePut(Type * self, E what) |
Put a copy of the element what into self only if there is no such element in self which is considered equal to what. Return non-zero value on successful element put (that is there was not such element in self) and zero value otherwise. |
int typeReplace(Type * self, E with) |
If self contains an element which is considered equal to the element with, replace that element with a copy of with, otherwise do nothing. Replaced element is destroyed. Return non-zero value if the replacement was actually performed and zero value otherwise. |
int typeRemove(Type * self, E what) |
Remove and destroy an element in self which is considered equal to the element what. Return non-zero value on successful element removal and zero value otherwise. |
size_t typeSize(Type * self) |
Return number of elements stored in self. |
Logical operations
void typeExclude(Type * self, Type * other) |
Perform the difference operation that is self will retain only the elements not contained in other. Removed elements are destroyed. |
void typeInclude(Type * self, Type * other) |
Perform the union operation that is self will contain the elements from both self and other. self receives the copies of extra elements in other. |
void typeInvert(Type * self, Type * other) |
Perform the symmetric difference operation that is self will retain the elements contained in either self or other, but not in both. Removed elements are destroyed, extra elements are copied. |
void typeRetain(Type * self, Type * other) |
Perform the intersection operation that is self will retain only the elements contained in both self and other. Removed elements are destroyed. |
Iteration
void itCtor(IteratorType * it, Type * self) |
Create a new ascending iterator it on tree self. See itCtorEx(). NOTE: Previous contents of it is overwritten. |
void itCtorEx(IteratorType * it, Type * self, int ascending) |
Create a new iterator it on tree self. Non-zero value of ascending specifies an ascending (lowest to highest element traversal) iterator, zero value specifies a descending (highest to lowest element traversal) iterator. NOTE: Previous contents of it is overwritten. |
int itMove(IteratorType * it) |
Advance iterator position of it and return non-zero value if new position is valid and zero value otherwise. |
E itGet(IteratorType * it) |
Return a copy of current element pointed to by the iterator it. WARNING: current position must be valid otherwise the behavior is undefined. See itMove(). |
Instance Attribute Summary
Attributes inherited from Collection
Attributes inherited from Type
Instance Method Summary collapse
-
#initialize(*args) ⇒ TreeSet
constructor
A new instance of TreeSet.
- #write_impls(stream, define) ⇒ Object
- #write_intf_decls(stream, declare, define) ⇒ Object
- #write_intf_types(stream) ⇒ Object
Methods inherited from Collection
#==, #comparable?, #constructible?, #copyable?, #destructible?, #entities, #hash, #hashable?, #initializable?
Methods inherited from Type
#==, #abort, #assert, #calloc, coerce, #comparable?, #constructible?, #copyable?, #destructible?, #entities, #extern, #free, #hash, #hashable?, #initializable?, #inline, #malloc, #method_missing, #orderable?, #prefix, #private?, #public?, #sortable?, #static, #static?, #write_decls, #write_defs, #write_intf
Methods inherited from Code
#attach, #entities, #priority, #source_size, #write_decls, #write_defs, #write_intf
Constructor Details
#initialize(*args) ⇒ TreeSet
Returns a new instance of TreeSet
175 176 177 178 |
# File 'lib/autoc/collection/tree_set.rb', line 175 def initialize(*args) super key_requirement(element) end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class AutoC::Type
Instance Method Details
#write_impls(stream, define) ⇒ Object
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
# File 'lib/autoc/collection/tree_set.rb', line 212 def write_impls(stream, define) super stream << %$ #define #{isRed}(x) (x->color) #define #{isBlack}(x) !#{isRed}(x) #define #{setRed}(x) (x->color = 1) #define #{setBlack}(x) (x->color = 0) #define #{compare}(lt, rt) (#{element.equal(:lt, :rt)} ? 0 : (#{element.less(:lt, :rt)} ? -1 : +1)) static #{node} #{nullNode} = {0, NULL, NULL, NULL}; static #{node}* #{null} = &#{nullNode}; static void #{destroyNode}(#{node}* node) { #{assert}(node); #{assert}(node != #{null}); #{element.dtor("node->element")}; #{free}(node); } #{define} #{ctor.definition} { #{assert}(self); self->size = 0; self->root = #{null}; } static void #{destroy}(#{node}* node) { if(node != #{null}) { #{destroy}(node->left); #{destroy}(node->right); #{destroyNode}(node); } } #{define} #{dtor.definition} { #{assert}(self); #{destroy}(self->root); /* FIXME recursive algorithm might be inefficient */ } #{define} void #{purge}(#{type_ref} self) { #{assert}(self); #{dtor}(self); #{ctor}(self); } static void #{rotateLeft}(#{type_ref} self, #{node}* node) { #{node}* right = node->right; node->right = right->left; if(right->left != #{null}) right->left->parent = node; right->parent = node->parent; if(node->parent != #{null}) { if(node == node->parent->left) { node->parent->left = right; } else { node->parent->right = right; } } else { self->root = right; } right->left = node; node->parent = right; } static void #{rotateRight}(#{type_ref} self, #{node}* node) { #{node}* left = node->left; node->left = left->right; if(left->right != #{null}) left->right->parent = node; left->parent = node->parent; if(node->parent != #{null}) { if(node == node->parent->right) { node->parent->right = left; } else { node->parent->left = left; } } else { self->root = left; } left->right = node; node->parent = left; } static void #{insertFixup}(#{type_ref} self, #{node}* node) { #{node}* uncle; while(node != self->root && #{isRed}(node->parent)) { if(node->parent == node->parent->parent->left) { uncle = node->parent->parent->right; if(#{isRed}(uncle)) { #{setBlack}(node->parent); #{setBlack}(uncle); #{setRed}(node->parent->parent); node = node->parent->parent; } else { if(node == node->parent->right) { node = node->parent; #{rotateLeft}(self, node); } #{setBlack}(node->parent); #{setRed}(node->parent->parent); #{rotateRight}(self, node->parent->parent); } } else { uncle = node->parent->parent->left; if(#{isRed}(uncle)) { #{setBlack}(node->parent); #{setBlack}(uncle); #{setRed}(node->parent->parent); node = node->parent->parent; } else { if(node == node->parent->left) { node = node->parent; #{rotateRight}(self, node); } #{setBlack}(node->parent); #{setRed}(node->parent->parent); #{rotateLeft}(self, node->parent->parent); } } } #{setBlack}(self->root); } static void #{deleteFixup}(#{type_ref} self, #{node}* child, #{node}* child_parent) { #{node}* sibling; int go_up = 1; if(child_parent->right == child) sibling = child_parent->left; else sibling = child_parent->right; while(go_up) { if(child_parent == #{null}) return; if(#{isRed}(sibling)) { #{setRed}(child_parent); #{setBlack}(sibling); if(child_parent->right == child) #{rotateRight}(self, child_parent); else #{rotateLeft}(self, child_parent); if(child_parent->right == child) sibling = child_parent->left; else sibling = child_parent->right; } if(#{isBlack}(child_parent) && #{isBlack}(sibling) && #{isBlack}(sibling->left) && #{isBlack}(sibling->right)) { if(sibling != #{null}) #{setRed}(sibling); child = child_parent; child_parent = child_parent->parent; if(child_parent->right == child) sibling = child_parent->left; else sibling = child_parent->right; } else go_up = 0; } if(#{isRed}(child_parent) && #{isBlack}(sibling) && #{isBlack}(sibling->left) && #{isBlack}(sibling->right)) { if(sibling != #{null}) #{setRed}(sibling); #{setBlack}(child_parent); return; } if(child_parent->right == child && #{isBlack}(sibling) && #{isRed}(sibling->right) && #{isBlack}(sibling->left)) { #{setRed}(sibling); #{setBlack}(sibling->right); #{rotateLeft}(self, sibling); if(child_parent->right == child) sibling = child_parent->left; else sibling = child_parent->right; } else if(child_parent->left == child && #{isBlack}(sibling) && #{isRed}(sibling->left) && #{isBlack}(sibling->right)) { #{setRed}(sibling); #{setBlack}(sibling->left); #{rotateRight}(self, sibling); if(child_parent->right == child) sibling = child_parent->left; else sibling = child_parent->right; } sibling->color = child_parent->color; #{setBlack}(child_parent); if(child_parent->right == child) { #{setBlack}(sibling->left); #{rotateRight}(self, child_parent); } else { #{setBlack}(sibling->right); #{rotateLeft}(self, child_parent); } } static #{node}* #{findNode}(#{type_ref} self, #{element.type} element) { int r; #{node}* node; #{assert}(self); node = self->root; while(node != #{null}) { if((r = #{compare}(element, node->element)) == 0) { return node; } if(r < 0) { node = node->left; } else { node = node->right; } } return NULL; } #{define} int #{contains}(#{type_ref} self, #{element.type} element) { #{assert}(self); return #{findNode}(self, element) != NULL; } #{define} #{element.type} #{get}(#{type_ref} self, #{element.type} element) { #{node} *node; #{element.type} result; #{assert}(self); #{assert}(#{contains}(self, element)); node = #{findNode}(self, element); #{element.copy("result", "node->element")}; /* Here we rely on NULL pointer dereference to manifest the failure! */ return result; } #{define} int #{put}(#{type_ref} self, #{element.type} element) { int r; #{node}* data; #{node}* node; #{node}* parent; #{assert}(self); node = self->root; parent = #{null}; while(node != #{null}) { if((r = #{compare}(element, node->element)) == 0) { return 0; } parent = node; if (r < 0) { node = node->left; } else { node = node->right; } } data = #{malloc}(sizeof(#{node})); #{assert}(data); #{element.copy("data->element", "element")}; data->parent = parent; data->left = data->right = #{null}; #{setRed}(data); ++self->size; if(parent != #{null}) { if(r < 0) { parent->left = data; } else { parent->right = data; } } else { self->root = data; } #{insertFixup}(self, data); return 1; } #{define} int #{replace}(#{type_ref} self, #{element.type} element) { int removed; #{assert}(self); /* FIXME removing followed by putting might be inefficient */ if((removed = #{remove}(self, element))) #{put}(self, element); return removed; } static void #{swapColors}(#{node}* x, #{node}* y) { int t = x->color; #{assert}(x); #{assert}(y); x->color = y->color; y->color = t; } static void #{swapNodes}(#{node}** x, #{node}** y) { #{node}* t = *x; *x = *y; *y = t; } static void #{changeParent}(#{type_ref} self, #{node}* parent, #{node}* old_node, #{node}* new_node) { if(parent == #{null}) { if(self->root == old_node) self->root = new_node; return; } if(parent->left == old_node) parent->left = new_node; if(parent->right == old_node) parent->right = new_node; } static void #{changeChild}(#{node}* child, #{node}* old_node, #{node}* new_node) { if(child == #{null}) return; if(child->parent == old_node) child->parent = new_node; } int #{remove}(#{type_ref} self, #{element.type} element) { #{node}* to_delete; #{node}* child; #{assert}(self); if((to_delete = #{findNode}(self, element)) == NULL) return 0; if(to_delete->left != #{null} && to_delete->right != #{null}) { #{node} *smright = to_delete->right; while(smright->left != #{null}) smright = smright->left; #{swapColors}(to_delete, smright); #{changeParent}(self, to_delete->parent, to_delete, smright); if(to_delete->right != smright) #{changeParent}(self, smright->parent, smright, to_delete); #{changeChild}(smright->left, smright, to_delete); #{changeChild}(smright->left, smright, to_delete); #{changeChild}(smright->right, smright, to_delete); #{changeChild}(smright->right, smright, to_delete); #{changeChild}(to_delete->left, to_delete, smright); if(to_delete->right != smright) #{changeChild}(to_delete->right, to_delete, smright); if(to_delete->right == smright) { to_delete->right = to_delete; smright->parent = smright; } #{swapNodes}(&to_delete->parent, &smright->parent); #{swapNodes}(&to_delete->left, &smright->left); #{swapNodes}(&to_delete->right, &smright->right); } if(to_delete->left != #{null}) child = to_delete->left; else child = to_delete->right; #{changeParent}(self, to_delete->parent, to_delete, child); #{changeChild}(child, to_delete, to_delete->parent); if(#{isRed}(to_delete)) {} else if(#{isRed}(child)) { if(child != #{null}) #{setBlack}(child); } else #{deleteFixup}(self, child, to_delete->parent); #{destroyNode}(to_delete); --self->size; return 1; } static #{node}* #{lowestNode}(#{type_ref} self) { #{node}* node; #{assert}(self); node = self->root; if(self->root != #{null}) { for(node = self->root; node->left != #{null}; node = node->left); } return node; } static #{node}* #{highestNode}(#{type_ref} self) { #{node}* node; #{assert}(self); node = self->root; if(self->root != #{null}) { for(node = self->root; node->right != #{null}; node = node->right); } return node; } static #{node}* #{nextNode}(#{node}* node) { #{node}* parent; #{assert}(node); if(node->right != #{null}) { for(node = node->right; node->left != #{null}; node = node->left); } else { parent = node->parent; while(parent != #{null} && node == parent->right) { node = parent; parent = parent->parent; } node = parent; } return node; } static #{node}* #{prevNode}(#{node}* node) { #{node}* parent; #{assert}(node); if(node->left != #{null}) { for(node = node->left; node->right != #{null}; node = node->right); } else { parent = node->parent; while(parent != #{null} && node == parent->left) { node = parent; parent = parent->parent; } node = parent; } return node; } #{define} #{element.type} #{peekLowest}(#{type_ref} self) { #{node}* node; #{element.type} result; #{assert}(self); #{assert}(!#{empty}(self)); node = #{lowestNode}(self); #{assert}(node); #{assert}(node != #{null}); #{element.copy("result", "node->element")}; return result; } #{define} #{element.type} #{peekHighest}(#{type_ref} self) { #{node}* node; #{element.type} result; #{assert}(self); #{assert}(!#{empty}(self)); node = #{highestNode}(self); #{assert}(node); #{assert}(node != #{null}); #{element.copy("result", "node->element")}; return result; } #{define} void #{itCtorEx}(#{it_ref} self, #{type_ref} tree, int ascending) { #{assert}(self); #{assert}(tree); self->node = (self->ascending = ascending) ? #{lowestNode}(tree) : #{highestNode}(tree); self->start = 1; } #{define} int #{itMove}(#{it_ref} self) { #{assert}(self); if(self->start) { self->start = 0; } else { self->node = self->ascending ? #{nextNode}(self->node) : #{prevNode}(self->node); } return self->node != #{null}; } static #{element.type_ref} #{itGetRef}(#{it_ref} self) { #{assert}(self); #{assert}(self->node); #{assert}(self->node != #{null}); return &self->node->element; } #{define} #{element.type} #{itGet}(#{it_ref} self) { #{element.type} result; #{assert}(self); #{element.copy("result", "*#{itGetRef}(self)")}; return result; } $ end |
#write_intf_decls(stream, declare, define) ⇒ Object
204 205 206 207 208 209 210 |
# File 'lib/autoc/collection/tree_set.rb', line 204 def write_intf_decls(stream, declare, define) super stream << %$ #{declare} #{element.type} #{peekLowest}(#{type_ref}); #{declare} #{element.type} #{peekHighest}(#{type_ref}); $ end |
#write_intf_types(stream) ⇒ Object
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# File 'lib/autoc/collection/tree_set.rb', line 180 def write_intf_types(stream) super stream << %$ typedef struct #{type} #{type}; typedef struct #{node} #{node}; typedef struct #{it} #{it}; struct #{type} { #{node}* root; size_t size; }; struct #{it} { int start, ascending; #{node}* node; }; struct #{node} { int color; #{node}* left; #{node}* right; #{node}* parent; #{element.type} element; }; $ end |