require "ostruct" module TensorStream # Base class that defines a tensor like interface class Tensor include OpHelper extend OpHelper include TensorMixins attr_reader :graph, :value attr_accessor :name, :data_type, :shape, :rank, :native_buffer, :is_const, :internal, :source, :given_name, :outputs, :op def inspect end def internal? !!@internal end def dtype @data_type end def consumers op.consumers end def self.reset_counters @const_counter = 0 @var_counter = 0 @placeholder_counter = 0 end def device @op.device end def collect(&block) @value.collect(&block) end def to_s @name end def eval(options = {}) Session.default_session.run(self, options) end def to_h { } end def to_i @value end def to_a @value end def to_f @value end def first _op(:index, self, 0) end def to_math(name_only = false, max_depth = 99, _unused = 0) return @name if max_depth.zero? || name_only || @value.nil? if @value.is_a?(Array) @value.collect { |v| v.is_a?(Tensor) ? v.to_math(name_only, max_depth - 1) : v } else is_const ? @value : @name end end def auto_math(tensor, name_only = false, max_depth = 99, cur_depth = 0) tensor.is_a?(Tensor) ? tensor.to_math(name_only, max_depth, cur_depth) : tensor end def self.detect_type(value) if !!value == value :boolean elsif value.is_a?(String) :string elsif value.is_a?(Float) :float32 elsif value.is_a?(Integer) :int32 elsif value.is_a?(Array) detect_type(value[0]) elsif value.is_a?(Tensor) value.data_type else :float32 end end def self.cast_dtype(val, dtype) return val if dtype.nil? return val if val.is_a?(Tensor) if val.is_a?(Array) return val.collect do |v| cast_dtype(v, dtype) end end dtype = dtype[:dtype] if dtype.is_a?(Hash) case dtype.to_sym when :float64, :float32, :float16, :float if !!val == val val ? 1.0 : 0.0 else val.to_f end when :string val.to_s when :uint32, :int32, :uint64, :uint16, :int16, :int64, :uint8, :int if !!val == val val ? 1 : 0 else val.to_i end when :boolean !!val when :unknown val else raise "unknown data_type #{dtype} passed" end end def breakpoint!(&_block) self end def print!(message) _op(:print, self, self, message: message) end protected def setup_initial_state(options) @outputs = [] @graph = options[:__graph] || TensorStream.get_default_graph @source = format_source(caller_locations) end def propagate_outputs # nop end def hashify_tensor(tensor) if tensor.is_a?(Tensor) tensor.to_h elsif tensor.is_a?(Array) tensor.collect { |t| hashify_tensor(t) } else tensor end end def _reshape(arr, shape) if arr.is_a?(Array) return arr if shape.size < 2 slice = shape.shift arr.each_slice(slice).collect do |s| _reshape(s, shape) end else return arr if shape.empty? slice = shape.shift return arr if slice.nil? Array.new(slice) do _reshape(arr, shape.dup) end end end def build_name @is_const ? "Const#{graph.get_const_counter}:#{@rank}" : "Variable#{graph.get_var_counter}:#{@rank}" end end end