# frozen_string_literal: true require 'rumale/tree/decision_tree_classifier' module Rumale module Tree # ExtraTreeClassifier is a class that implements extra randomized tree for classification. # # @example # estimator = # Rumale::Tree::ExtraTreeClassifier.new( # criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # # *Reference* # - P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," Machine Learning, vol. 63 (1), pp. 3--42, 2006. class ExtraTreeClassifier < DecisionTreeClassifier # Return the class labels. # @return [Numo::Int32] (size: n_classes) attr_reader :classes # Return the importance for each feature. # @return [Numo::DFloat] (size: n_features) attr_reader :feature_importances # Return the learned tree. # @return [Node] attr_reader :tree # Return the random generator for random selection of feature index. # @return [Random] attr_reader :rng # Return the labels assigned each leaf. # @return [Numo::Int32] (size: n_leafs) attr_reader :leaf_labels # Create a new classifier with extra randomized tree algorithm. # # @param criterion [String] The function to evaluate spliting point. Supported criteria are 'gini' and 'entropy'. # @param max_depth [Integer] The maximum depth of the tree. # If nil is given, extra tree grows without concern for depth. # @param max_leaf_nodes [Integer] The maximum number of leaves on extra tree. # If nil is given, number of leaves is not limited. # @param min_samples_leaf [Integer] The minimum number of samples at a leaf node. # @param max_features [Integer] The number of features to consider when searching optimal split point. # If nil is given, split process considers all features. # @param random_seed [Integer] The seed value using to initialize the random generator. # It is used to randomly determine the order of features when deciding spliting point. def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, max_features: max_features, random_seed: random_seed) check_params_integer(min_samples_leaf: min_samples_leaf) check_params_string(criterion: criterion) check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, max_features: max_features) super end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [ExtraTreeClassifier] The learned classifier itself. def fit(x, y) check_sample_array(x) check_label_array(y) check_sample_label_size(x, y) super end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) check_sample_array(x) super end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) check_sample_array(x) super end # Dump marshal data. # @return [Hash] The marshal data about ExtraTreeClassifier def marshal_dump super end # Load marshal data. # @return [nil] def marshal_load(obj) super end private def best_split(features, y, whole_impurity) threshold = @rng.rand(features.min..features.max) l_ids = features.le(threshold).where r_ids = features.gt(threshold).where l_impurity = l_ids.empty? ? 0.0 : impurity(y[l_ids, true]) r_impurity = r_ids.empty? ? 0.0 : impurity(y[r_ids, true]) gain = whole_impurity - l_impurity * l_ids.size.fdiv(y.shape[0]) - r_impurity * r_ids.size.fdiv(y.shape[0]) [l_impurity, r_impurity, threshold, gain] end end end end