# ******************************************************************************* # OpenStudio(R), Copyright (c) 2008-2021, Alliance for Sustainable Energy, LLC. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # (1) Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # (3) Neither the name of the copyright holder nor the names of any contributors # may be used to endorse or promote products derived from this software without # specific prior written permission from the respective party. # # (4) Other than as required in clauses (1) and (2), distributions in any form # of modifications or other derivative works may not use the "OpenStudio" # trademark, "OS", "os", or any other confusingly similar designation without # specific prior written permission from Alliance for Sustainable Energy, LLC. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND ANY CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S), ANY CONTRIBUTORS, THE # UNITED STATES GOVERNMENT, OR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF # THEIR EMPLOYEES, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ******************************************************************************* # start the measure class AddSimplePvToShadingSurfacesByType < OpenStudio::Measure::EnergyPlusMeasure # define the name that a user will see def name return 'Add Simple PV to Specified Shading Surfaces' end # human readable description def description return 'This measure will add Simple PV objects to site, building or space/zone shading surfaces. This will not create any new geometry, but will just make PV objects out of existing shading geometry. Optionally a cost can be added for the PV.' end # human readable description of modeling approach def modeler_description return 'This measure will add PV objects for all site, building, or zone shading surfaces. Site and Building surfaces exist in both OpenStudio and EnergyPlus. Space shading surfaces in OpenStudio are translated to zone shading surfaces in EnergyPlus. The necessary PV objects will be added for each surface, as well as a number of shared PV resources. A number of arguments will expose various PV settings. The recurring cost objects added are not directly associated with the PV objects. If the PV objects are removed the cost will remain.' end # define the arguments that the user will input def arguments(workspace) args = OpenStudio::Measure::OSArgumentVector.new # make an argument for shading surfaces chs = OpenStudio::StringVector.new chs << 'Site Shading' chs << 'Building Shading' chs << 'Space/Zone Shading' shading_type = OpenStudio::Measure::OSArgument.makeChoiceArgument('shading_type', chs, true) shading_type.setDisplayName('Choose the Type of Shading Surfaces to add PV to') shading_type.setDefaultValue('Building Shading') args << shading_type # Fraction of surfaces to contain PV fraction_surfacearea_with_pv = OpenStudio::Measure::OSArgument.makeDoubleArgument('fraction_surfacearea_with_pv', true) fraction_surfacearea_with_pv.setDisplayName('Fraction of Included Surface Area with PV') fraction_surfacearea_with_pv.setDefaultValue(0.5) args << fraction_surfacearea_with_pv # Value for Cell Efficiency value_for_cell_efficiency = OpenStudio::Measure::OSArgument.makeDoubleArgument('value_for_cell_efficiency', true) value_for_cell_efficiency.setDisplayName('Fractional Value for Cell Efficiency') value_for_cell_efficiency.setDefaultValue(0.12) args << value_for_cell_efficiency # make an argument for material and installation cost material_cost = OpenStudio::Measure::OSArgument.makeDoubleArgument('material_cost', true) material_cost.setDisplayName('Material and Installation Costs for the PV') material_cost.setUnits('$') material_cost.setDefaultValue(0.0) args << material_cost # make an argument for expected life expected_life = OpenStudio::Measure::OSArgument.makeIntegerArgument('expected_life', true) expected_life.setDisplayName('Expected Life') expected_life.setUnits('whole years') expected_life.setDefaultValue(20) args << expected_life # make an argument for o&m cost om_cost = OpenStudio::Measure::OSArgument.makeDoubleArgument('om_cost', true) om_cost.setDisplayName('O & M Costs for the PV.') om_cost.setUnits('$') om_cost.setDefaultValue(0.0) args << om_cost # make an argument for o&m frequency om_frequency = OpenStudio::Measure::OSArgument.makeIntegerArgument('om_frequency', true) om_frequency.setDisplayName('O & M Frequency') om_frequency.setUnits('whole years') om_frequency.setDefaultValue(1) args << om_frequency return args end # define what happens when the measure is run def run(workspace, runner, user_arguments) super(workspace, runner, user_arguments) # use the built-in error checking if !runner.validateUserArguments(arguments(workspace), user_arguments) return false end # assign the user inputs to variables shading_type = runner.getStringArgumentValue('shading_type', user_arguments) fraction_surfacearea_with_pv = runner.getDoubleArgumentValue('fraction_surfacearea_with_pv', user_arguments) value_for_cell_efficiency = runner.getDoubleArgumentValue('value_for_cell_efficiency', user_arguments) material_cost = runner.getDoubleArgumentValue('material_cost', user_arguments) expected_life = runner.getIntegerArgumentValue('expected_life', user_arguments) om_cost = runner.getDoubleArgumentValue('om_cost', user_arguments) om_frequency = runner.getIntegerArgumentValue('om_frequency', user_arguments) # set flags to use later costs_requested = false # check the surface type for reasonableness if shading_type == 'Site Shading' pv_shading_surfaces = workspace.getObjectsByType('Shading:Site:Detailed'.to_IddObjectType) elsif shading_type == 'Building Shading' pv_shading_surfaces = workspace.getObjectsByType('Shading:Building:Detailed'.to_IddObjectType) elsif shading_type == 'Space/Zone Shading' pv_shading_surfaces = workspace.getObjectsByType('Shading:Zone:Detailed'.to_IddObjectType) else runner.registerError("You shouldn't see this, something went wrong with choice arguments.") return false end if pv_shading_surfaces.empty? runner.registerAsNotApplicable("The model does not contain any #{shading_type} surfaces. The model will not be altered.") return true end if (fraction_surfacearea_with_pv < 0) || (fraction_surfacearea_with_pv > 1) runner.registerError('Please pick a value between or equal to 0 and 1 for the fraction of surface to receive PV.') return false end if (value_for_cell_efficiency < 0) || (value_for_cell_efficiency > 1) runner.registerError('Please pick a value between or equal to 0 and 1 for the PV cell efficiency.') return false end # check costs for reasonableness if material_cost.abs + om_cost.abs == 0 runner.registerInfo('No costs were requested for the PV.') else costs_requested = true end # check lifecycle arguments for reasonableness if (expected_life < 1) && (expected_life > 100) runner.registerError('Choose an integer greater than 0 and less than or equal to 100 for Expected Life.') end if om_frequency < 1 runner.registerError('Choose an integer greater than 0 for O & M Frequency.') end # short def to make numbers pretty (converts 4125001.25641 to 4,125,001.26 or 4,125,001). The definition be called through this measure def neat_numbers(number, roundto = 2) # round to 0 or 2) if roundto == 2 number = format '%.2f', number else number = number.round end # regex to add commas number.to_s.reverse.gsub(/([0-9]{3}(?=([0-9])))/, '\\1,').reverse end # reporting initial condition of model gen_pv = workspace.getObjectsByType('Generator:Photovoltaic'.to_IddObjectType) runner.registerInitialCondition("The initial building had #{gen_pv.size} PV generator objects.") # cancel out of model appears to already have PV. current script doesn't handle this, but could be added later if !gen_pv.empty? runner.registerError("This model appears to already have some PV objects. The measure isn't designed to work on models that already have PV.") return false end # array to hold new IDF objects needed for PV string_objects = [] # add PhotovoltaicPerformance:Simple object string_objects << " PhotovoltaicPerformance:Simple, pvPerformanceObject, !- Name #{fraction_surfacearea_with_pv}, !- Fraction of Surface Area with Active Solar Cells {dimensionless} Fixed, !- Conversion Efficiency Input Mode #{value_for_cell_efficiency}; !- Value for Cell Efficiency if Fixed " # add Generator:Photovoltaic objects # array to hold names of generators for ElectricLoadCenter:Generators object generator_list = [] pv_shading_surfaces.each do |shading_surface| # set the fields to the values you want surface_name = shading_surface.getString(0).to_s gen_name = "gen #{surface_name}".to_s # add name to generator list array generator_list << gen_name # make Generator:Photovoltaic object string_objects << " Generator:Photovoltaic, #{gen_name}, !- Name #{surface_name}, !- Surface Name ** change to match your surface PhotovoltaicPerformance:Simple, !- Photovoltaic Performance Object Type pvPerformanceObject, !- Module Performance Name Decoupled, !- Heat Transfer Integration Mode 1.0, !- Number of Modules in Parallel {dimensionless} 1.0; !- Number of Modules in Series {dimensionless} " end if generator_list.empty? # put in a failure here if generator_list.size = 0 exit end # add pv Always On Schedule string_objects << " Schedule:Compact, pv_script always On, !- Name Fraction, !- Schedule Type Limits Name Through: 12/31, !- Field 1 For: AllDays, !- Field 2 Until: 24:00,1.0; !- Field 3 " # add ElectricLoadCenter objects build_elec_load_ctr_gen = [] # start of build_elec_load_ctr_gen string build_elec_load_ctr_gen << " ElectricLoadCenter:Generators, PV list, !- Name " # middle of build_elec_load_ctr_gen string if generator_list.size > 1 for generator in generator_list[0...-1] build_elec_load_ctr_gen << " #{generator}, !- Generator Name Generator:Photovoltaic, !- Generator Object Type 20000, !- Generator Rated Electric Power Output pv_script always On, !- Generator Availability Schedule Name , !- Generator Rated Thermal to Electrical Power Ratio " end end # last object special for ; vs , of build_elec_load_ctr_gen string build_elec_load_ctr_gen << " #{generator_list.reverse[0]}, !- Generator Name Generator:Photovoltaic, !- Generator Object Type 20000, !- Generator Rated Electric Power Output pv_script always On, !- Generator Availability Schedule Name ; !- Generator Rated Thermal to Electrical Power Ratio " # merging the ElectricLoadCenter:Generators object into a single string string_objects << build_elec_load_ctr_gen.join('') string_objects << " ElectricLoadCenter:Inverter:Simple, Simple Ideal Inverter, !- Name pv_script always On, !- Availability Schedule Name , !- Zone Name 0.0, !- Radiative Fraction 0.95; !- Inverter Efficiency " string_objects << " ElectricLoadCenter:Distribution, Simple Electric Load Center, !- Name PV list, !- Generator List Name Baseload, !- Generator Operation Scheme Type 0, !- Demand Limit Scheme Purchased Electric Demand Limit {W} , !- Track Schedule Name Scheme Schedule Name , !- Track Meter Scheme Meter Name DirectCurrentWithInverter, !- Electrical Buss Type Simple Ideal Inverter; !- Inverter Object Name " # add PV related variable requests string_objects << 'Output:Variable,*,PV Generator DC Power,hourly;' string_objects << 'Output:Variable,*,PV Generator DC Energy,hourly;' string_objects << 'Output:Variable,*,Inverter AC Energy Output,hourly;' string_objects << 'Output:Variable,*,Inverter AC Power Output,hourly;' string_objects << 'Output:Variable,*,PV Array Efficiency,hourly;' string_objects << 'Output:Meter,Photovoltaic:ElectricityProduced,hourly;' # add all of the strings to workspace # this script won't behave well if added multiple times in the workflow. Need to address name conflicts string_objects.each do |string_object| idfObject = OpenStudio::IdfObject.load(string_object) object = idfObject.get wsObject = workspace.addObject(object) end if costs_requested # add mat cost lcc_mat_string = " LifeCycleCost:RecurringCosts, LCC_Mat - #{shading_type} PV, !- Name Replacement, !- Category #{material_cost}, !- Cost ServicePeriod, !- Start of Costs 0, !- Years from Start , !- Months from Start #{expected_life}; !- Repeat Period Years " idfObject = OpenStudio::IdfObject.load(lcc_mat_string) object = idfObject.get wsObject = workspace.addObject(object) lcc_mat = wsObject.get runner.registerInfo("Added construction cost of $#{neat_numbers(material_cost, 0)}, with an expected life of #{lcc_mat.getString(6)} years.") # add o&m cost lcc_om_string = " LifeCycleCost:RecurringCosts, LCC_Mat - #{shading_type} PV, !- Name Replacement, !- Category #{om_cost}, !- Cost ServicePeriod, !- Start of Costs 0, !- Years from Start , !- Months from Start #{om_frequency}; !- Repeat Period Years " idfObject = OpenStudio::IdfObject.load(lcc_om_string) object = idfObject.get wsObject = workspace.addObject(object) lcc_om = wsObject.get runner.registerInfo("Added O & M cost of $#{neat_numbers(om_cost, 0)}, at a frequency of #{lcc_om.getString(6)} year(s).") end # reporting final condition of model final_gen_pv = workspace.getObjectsByType('Generator:Photovoltaic'.to_IddObjectType) runner.registerFinalCondition("The final building has #{final_gen_pv.size} PV generator objects.") return true end end # this allows the measure to be used by the application AddSimplePvToShadingSurfacesByType.new.registerWithApplication