require 'csv' require 'tempfile' module OpenTox class Dataset # associations like has_many, belongs_to deteriorate performance field :feature_ids, type: Array, default: [] field :compound_ids, type: Array, default: [] field :data_entries, type: Array, default: [] field :source, type: String # Readers # Get all compounds def compounds @compounds ||= self.compound_ids.collect{|id| OpenTox::Compound.find id} @compounds end # Get all features def features @features ||= self.feature_ids.collect{|id| OpenTox::Feature.find(id)} @features end # Find data entry values for a given compound and feature # @param compound [OpenTox::Compound] OpenTox Compound object # @param feature [OpenTox::Feature] OpenTox Feature object # @return [Array] Data entry values def values(compound, feature) rows = compound_ids.each_index.select{|r| compound_ids[r] == compound.id } col = feature_ids.index feature.id rows.collect{|row| data_entries[row][col]} end # Writers # Set compounds def compounds=(compounds) self.compound_ids = compounds.collect{|c| c.id} end # Set features def features=(features) self.feature_ids = features.collect{|f| f.id} end # Dataset operations # Split a dataset into n folds # @param [Integer] number of folds # @return [Array] Array with folds [training_dataset,test_dataset] def folds n unique_compound_data = {} compound_ids.each_with_index do |cid,i| unique_compound_data[cid] ||= [] unique_compound_data[cid] << data_entries[i] end unique_compound_ids = unique_compound_data.keys len = unique_compound_ids.size indices = (0..len-1).to_a.shuffle mid = (len/n) chunks = [] start = 0 1.upto(n) do |i| last = start+mid last = last-1 unless len%n >= i test_idxs = indices[start..last] || [] test_cids = test_idxs.collect{|i| unique_compound_ids[i]} training_idxs = indices-test_idxs training_cids = training_idxs.collect{|i| unique_compound_ids[i]} chunk = [training_cids,test_cids].collect do |unique_cids| cids = [] data_entries = [] unique_cids.each do |cid| unique_compound_data[cid].each do |de| cids << cid data_entries << de end end dataset = self.class.new(:compound_ids => cids, :feature_ids => self.feature_ids, :data_entries => data_entries, :source => self.id ) dataset.compounds.each do |compound| compound.dataset_ids << dataset.id compound.save end dataset.save dataset end start = last+1 chunks << chunk end chunks end # Diagnostics def duplicates feature=self.features.first col = feature_ids.index feature.id dups = {} compound_ids.each_with_index do |cid,i| rows = compound_ids.each_index.select{|r| compound_ids[r] == cid } values = rows.collect{|row| data_entries[row][col]} dups[cid] = values if values.size > 1 end dups end def correlation_plot training_dataset # TODO: create/store svg R.assign "features", data_entries R.assign "activities", training_dataset.data_entries.collect{|de| de.first} R.eval "featurePlot(features,activities)" end def density_plot # TODO: create/store svg R.assign "acts", data_entries.collect{|r| r.first }#.compact R.eval "plot(density(-log(acts),na.rm= TRUE), main='-log(#{features.first.name})')" end # Serialisation # converts dataset to csv format including compound smiles as first column, other column headers are feature names # @return [String] def to_csv(inchi=false) CSV.generate() do |csv| #{:force_quotes=>true} csv << [inchi ? "InChI" : "SMILES"] + features.collect{|f| f.name} compounds.each_with_index do |c,i| csv << [inchi ? c.inchi : c.smiles] + data_entries[i] end end end # Parsers # Create a dataset from file (csv,sdf,...) # @param filename [String] # @return [String] dataset uri # TODO #def self.from_sdf_file #end # Create a dataset from CSV file # TODO: document structure def self.from_csv_file file, source=nil, bioassay=true#, layout={} source ||= file name = File.basename(file,".*") dataset = self.find_by(:source => source, :name => name) if dataset $logger.debug "Skipping import of #{file}, it is already in the database (id: #{dataset.id})." else $logger.debug "Parsing #{file}." table = CSV.read file, :skip_blanks => true, :encoding => 'windows-1251:utf-8' dataset = self.new(:source => source, :name => name) dataset.parse_table table, bioassay#, layout end dataset end # parse data in tabular format (e.g. from csv) # does a lot of guesswork in order to determine feature types def parse_table table, bioassay=true time = Time.now # features feature_names = table.shift.collect{|f| f.strip} warnings << "Duplicate features in table header." unless feature_names.size == feature_names.uniq.size compound_format = feature_names.shift.strip bad_request_error "#{compound_format} is not a supported compound format. Accepted formats: SMILES, InChI." unless compound_format =~ /SMILES|InChI/i numeric = [] # guess feature types feature_names.each_with_index do |f,i| metadata = {:name => f} values = table.collect{|row| val=row[i+1].to_s.strip; val.blank? ? nil : val }.uniq.compact types = values.collect{|v| v.numeric? ? true : false}.uniq if values.size == 0 # empty feature elsif values.size > 5 and types.size == 1 and types.first == true # 5 max classes metadata["numeric"] = true numeric[i] = true else metadata["nominal"] = true metadata["accept_values"] = values numeric[i] = false end if bioassay if metadata["numeric"] feature = NumericBioAssay.find_or_create_by(metadata) elsif metadata["nominal"] feature = NominalBioAssay.find_or_create_by(metadata) end else metadata.merge({:measured => false, :calculated => true}) if metadata["numeric"] feature = NumericFeature.find_or_create_by(metadata) elsif metadata["nominal"] feature = NominalFeature.find_or_create_by(metadata) end end feature_ids << feature.id if feature end $logger.debug "Feature values: #{Time.now-time}" time = Time.now r = -1 compound_time = 0 value_time = 0 # compounds and values self.data_entries = [] table.each_with_index do |vals,i| ct = Time.now identifier = vals.shift.strip warnings << "No feature values for compound at position #{i+2}." if vals.compact.empty? begin case compound_format when /SMILES/i compound = OpenTox::Compound.from_smiles(identifier) when /InChI/i compound = OpenTox::Compound.from_inchi(identifier) end rescue compound = nil end if compound.nil? # compound parsers may return nil warnings << "Cannot parse #{compound_format} compound '#{identifier}' at position #{i+2}, all entries are ignored." next end compound.dataset_ids << self.id unless compound.dataset_ids.include? self.id compound_time += Time.now-ct r += 1 unless vals.size == feature_ids.size # way cheaper than accessing features warnings << "Number of values at position #{i+2} is different than header size (#{vals.size} vs. #{features.size}), all entries are ignored." next end compound_ids << compound.id table.first.size == 0 ? self.data_entries << Array.new(0) : self.data_entries << Array.new(table.first.size-1) vals.each_with_index do |v,j| if v.blank? warnings << "Empty value for compound '#{identifier}' (row #{r+2}) and feature '#{feature_names[j]}' (column #{j+2})." next elsif numeric[j] v = v.to_f else v = v.strip end self.data_entries.last[j] = v #i = compound.feature_ids.index feature_ids[j] compound.features[feature_ids[j].to_s] ||= [] compound.features[feature_ids[j].to_s] << v compound.save end end compounds.duplicates.each do |compound| positions = [] compounds.each_with_index{|c,i| positions << i+1 if !c.blank? and c.inchi and c.inchi == compound.inchi} warnings << "Duplicate compound #{compound.smiles} at rows #{positions.join(', ')}. Entries are accepted, assuming that measurements come from independent experiments." end $logger.debug "Value parsing: #{Time.now-time} (Compound creation: #{compound_time})" time = Time.now save $logger.debug "Saving: #{Time.now-time}" end # Fill unset data entries # @param any value def fill_nil_with n (0 .. compound_ids.size-1).each do |i| data_entries[i] ||= [] (0 .. feature_ids.size-1).each do |j| data_entries[i][j] ||= n end end end end # Dataset for lazar predictions class LazarPrediction < Dataset field :creator, type: String field :prediction_feature_id, type: String def prediction_feature Feature.find prediction_feature_id end end # Dataset for descriptors (physchem) class DescriptorDataset < Dataset field :feature_calculation_algorithm, type: String end class ScaledDataset < DescriptorDataset field :centers, type: Array, default: [] field :scales, type: Array, default: [] def original_value value, i value * scales[i] + centers[i] end end # Dataset for fminer descriptors class FminerDataset < DescriptorDataset field :training_algorithm, type: String field :training_dataset_id, type: BSON::ObjectId field :training_feature_id, type: BSON::ObjectId field :training_parameters, type: Hash end end