#include #include #include #ifdef PRIsVALUE # define RB_OBJ_CLASSNAME(obj) rb_obj_class(obj) # define RB_OBJ_STRING(obj) (obj) #else # define PRIsVALUE "s" # define RB_OBJ_CLASSNAME(obj) rb_obj_classname(obj) # define RB_OBJ_STRING(obj) StringValueCStr(obj) #endif VALUE cFiddleFunction; #define MAX_ARGS (SIZE_MAX / (sizeof(void *) + sizeof(fiddle_generic)) - 1) #define Check_Max_Args(name, len) \ Check_Max_Args_(name, len, "") #define Check_Max_Args_Long(name, len) \ Check_Max_Args_(name, len, "l") #define Check_Max_Args_(name, len, fmt) \ do { \ if ((size_t)(len) >= MAX_ARGS) { \ rb_raise(rb_eTypeError, \ "%s is so large " \ "that it can cause integer overflow (%"fmt"d)", \ (name), (len)); \ } \ } while (0) static void deallocate(void *p) { ffi_cif *cif = p; if (cif->arg_types) xfree(cif->arg_types); xfree(cif); } static size_t function_memsize(const void *p) { /* const */ffi_cif *ptr = (ffi_cif *)p; size_t size = 0; size += sizeof(*ptr); #if !defined(FFI_NO_RAW_API) || !FFI_NO_RAW_API size += ffi_raw_size(ptr); #endif return size; } const rb_data_type_t function_data_type = { .wrap_struct_name = "fiddle/function", .function = { .dmark = 0, .dfree = deallocate, .dsize = function_memsize }, .flags = FIDDLE_DEFAULT_TYPED_DATA_FLAGS, }; static VALUE allocate(VALUE klass) { ffi_cif * cif; return TypedData_Make_Struct(klass, ffi_cif, &function_data_type, cif); } VALUE rb_fiddle_new_function(VALUE address, VALUE arg_types, VALUE ret_type) { VALUE argv[3]; argv[0] = address; argv[1] = arg_types; argv[2] = ret_type; return rb_class_new_instance(3, argv, cFiddleFunction); } static VALUE normalize_argument_types(const char *name, VALUE arg_types, bool *is_variadic) { VALUE normalized_arg_types; int i; int n_arg_types; *is_variadic = false; Check_Type(arg_types, T_ARRAY); n_arg_types = RARRAY_LENINT(arg_types); Check_Max_Args(name, n_arg_types); normalized_arg_types = rb_ary_new_capa(n_arg_types); for (i = 0; i < n_arg_types; i++) { VALUE arg_type = RARRAY_AREF(arg_types, i); int c_arg_type; arg_type = rb_fiddle_type_ensure(arg_type); c_arg_type = NUM2INT(arg_type); if (c_arg_type == TYPE_VARIADIC) { if (i != n_arg_types - 1) { rb_raise(rb_eArgError, "Fiddle::TYPE_VARIADIC must be the last argument type: " "%"PRIsVALUE, arg_types); } *is_variadic = true; break; } else { (void)INT2FFI_TYPE(c_arg_type); /* raise */ } rb_ary_push(normalized_arg_types, INT2FIX(c_arg_type)); } /* freeze to prevent inconsistency at calling #to_int later */ OBJ_FREEZE(normalized_arg_types); return normalized_arg_types; } static VALUE initialize(int argc, VALUE argv[], VALUE self) { ffi_cif * cif; VALUE ptr, arg_types, ret_type, abi, kwargs; VALUE name = Qnil; VALUE need_gvl = Qfalse; int c_ret_type; bool is_variadic = false; ffi_abi c_ffi_abi; void *cfunc; rb_scan_args(argc, argv, "31:", &ptr, &arg_types, &ret_type, &abi, &kwargs); rb_iv_set(self, "@closure", ptr); if (!NIL_P(kwargs)) { enum { kw_name, kw_need_gvl, kw_max_, }; static ID kw[kw_max_]; VALUE args[kw_max_]; if (!kw[0]) { kw[kw_name] = rb_intern_const("name"); kw[kw_need_gvl] = rb_intern_const("need_gvl"); } rb_get_kwargs(kwargs, kw, 0, kw_max_, args); if (args[kw_name] != Qundef) { name = args[kw_name]; #ifdef HAVE_RB_STR_TO_INTERNED_STR if (RB_TYPE_P(name, RUBY_T_STRING)) { name = rb_str_to_interned_str(name); } #endif } if (args[kw_need_gvl] != Qundef) { need_gvl = args[kw_need_gvl]; } } rb_iv_set(self, "@name", name); rb_iv_set(self, "@need_gvl", need_gvl); ptr = rb_Integer(ptr); cfunc = NUM2PTR(ptr); PTR2NUM(cfunc); c_ffi_abi = NIL_P(abi) ? FFI_DEFAULT_ABI : NUM2INT(abi); abi = INT2FIX(c_ffi_abi); ret_type = rb_fiddle_type_ensure(ret_type); c_ret_type = NUM2INT(ret_type); (void)INT2FFI_TYPE(c_ret_type); /* raise */ ret_type = INT2FIX(c_ret_type); arg_types = normalize_argument_types("argument types", arg_types, &is_variadic); #ifndef HAVE_FFI_PREP_CIF_VAR if (is_variadic) { rb_raise(rb_eNotImpError, "ffi_prep_cif_var() is required in libffi " "for variadic arguments"); } #endif rb_iv_set(self, "@ptr", ptr); rb_iv_set(self, "@argument_types", arg_types); rb_iv_set(self, "@return_type", ret_type); rb_iv_set(self, "@abi", abi); rb_iv_set(self, "@is_variadic", is_variadic ? Qtrue : Qfalse); TypedData_Get_Struct(self, ffi_cif, &function_data_type, cif); cif->arg_types = NULL; return self; } struct nogvl_ffi_call_args { ffi_cif *cif; void (*fn)(void); void **values; fiddle_generic retval; }; static void * nogvl_ffi_call(void *ptr) { struct nogvl_ffi_call_args *args = ptr; ffi_call(args->cif, args->fn, &args->retval, args->values); return NULL; } static VALUE function_call(int argc, VALUE argv[], VALUE self) { struct nogvl_ffi_call_args args = { 0 }; fiddle_generic *generic_args; VALUE cfunc; VALUE abi; VALUE arg_types; VALUE cPointer; VALUE is_variadic; VALUE need_gvl; int n_arg_types; int n_fixed_args = 0; int n_call_args = 0; int i; int i_call; VALUE converted_args = Qnil; VALUE alloc_buffer = 0; cfunc = rb_iv_get(self, "@ptr"); abi = rb_iv_get(self, "@abi"); arg_types = rb_iv_get(self, "@argument_types"); cPointer = rb_const_get(mFiddle, rb_intern("Pointer")); is_variadic = rb_iv_get(self, "@is_variadic"); need_gvl = rb_iv_get(self, "@need_gvl"); n_arg_types = RARRAY_LENINT(arg_types); n_fixed_args = n_arg_types; if (RTEST(is_variadic)) { if (argc < n_arg_types) { rb_error_arity(argc, n_arg_types, UNLIMITED_ARGUMENTS); } if (((argc - n_arg_types) % 2) != 0) { rb_raise(rb_eArgError, "variadic arguments must be type and value pairs: " "%"PRIsVALUE, rb_ary_new_from_values(argc, argv)); } n_call_args = n_arg_types + ((argc - n_arg_types) / 2); } else { if (argc != n_arg_types) { rb_error_arity(argc, n_arg_types, n_arg_types); } n_call_args = n_arg_types; } Check_Max_Args("the number of arguments", n_call_args); TypedData_Get_Struct(self, ffi_cif, &function_data_type, args.cif); if (is_variadic && args.cif->arg_types) { xfree(args.cif->arg_types); args.cif->arg_types = NULL; } if (!args.cif->arg_types) { VALUE fixed_arg_types = arg_types; VALUE return_type; int c_return_type; ffi_type *ffi_return_type; ffi_type **ffi_arg_types; ffi_status result; arg_types = rb_ary_dup(fixed_arg_types); for (i = n_fixed_args; i < argc; i += 2) { VALUE arg_type = argv[i]; int c_arg_type; arg_type = rb_fiddle_type_ensure(arg_type); c_arg_type = NUM2INT(arg_type); (void)INT2FFI_TYPE(c_arg_type); /* raise */ rb_ary_push(arg_types, INT2FIX(c_arg_type)); } return_type = rb_iv_get(self, "@return_type"); c_return_type = FIX2INT(return_type); ffi_return_type = INT2FFI_TYPE(c_return_type); ffi_arg_types = xcalloc(n_call_args + 1, sizeof(ffi_type *)); for (i_call = 0; i_call < n_call_args; i_call++) { VALUE arg_type; int c_arg_type; arg_type = RARRAY_AREF(arg_types, i_call); c_arg_type = FIX2INT(arg_type); ffi_arg_types[i_call] = INT2FFI_TYPE(c_arg_type); } ffi_arg_types[i_call] = NULL; if (is_variadic) { #ifdef HAVE_FFI_PREP_CIF_VAR result = ffi_prep_cif_var(args.cif, FIX2INT(abi), n_fixed_args, n_call_args, ffi_return_type, ffi_arg_types); #else /* This code is never used because ffi_prep_cif_var() * availability check is done in #initialize. */ result = FFI_BAD_TYPEDEF; #endif } else { result = ffi_prep_cif(args.cif, FIX2INT(abi), n_call_args, ffi_return_type, ffi_arg_types); } if (result != FFI_OK) { xfree(ffi_arg_types); args.cif->arg_types = NULL; rb_raise(rb_eRuntimeError, "error creating CIF %d", result); } } generic_args = ALLOCV(alloc_buffer, sizeof(fiddle_generic) * n_call_args + sizeof(void *) * (n_call_args + 1)); args.values = (void **)((char *)generic_args + sizeof(fiddle_generic) * n_call_args); for (i = 0, i_call = 0; i < argc && i_call < n_call_args; i++, i_call++) { VALUE arg_type; int c_arg_type; VALUE original_src; VALUE src; arg_type = RARRAY_AREF(arg_types, i_call); c_arg_type = FIX2INT(arg_type); if (i >= n_fixed_args) { i++; } src = argv[i]; if (c_arg_type == TYPE_VOIDP) { if (NIL_P(src)) { src = INT2FIX(0); } else if (cPointer != CLASS_OF(src)) { src = rb_funcall(cPointer, rb_intern("[]"), 1, src); if (NIL_P(converted_args)) { converted_args = rb_ary_new(); } rb_ary_push(converted_args, src); } src = rb_Integer(src); } original_src = src; VALUE2GENERIC(c_arg_type, src, &generic_args[i_call]); if (src != original_src) { if (NIL_P(converted_args)) { converted_args = rb_ary_new(); } rb_ary_push(converted_args, src); } args.values[i_call] = (void *)&generic_args[i_call]; } args.values[i_call] = NULL; args.fn = (void(*)(void))(VALUE)NUM2PTR(cfunc); if (RTEST(need_gvl)) { ffi_call(args.cif, args.fn, &(args.retval), args.values); } else { (void)rb_thread_call_without_gvl(nogvl_ffi_call, &args, 0, 0); } { int errno_keep = errno; #if defined(_WIN32) DWORD error = WSAGetLastError(); int socket_error = WSAGetLastError(); rb_funcall(mFiddle, rb_intern("win32_last_error="), 1, ULONG2NUM(error)); rb_funcall(mFiddle, rb_intern("win32_last_socket_error="), 1, INT2NUM(socket_error)); #endif rb_funcall(mFiddle, rb_intern("last_error="), 1, INT2NUM(errno_keep)); } ALLOCV_END(alloc_buffer); return GENERIC2VALUE(rb_iv_get(self, "@return_type"), args.retval); } void Init_fiddle_function(void) { /* * Document-class: Fiddle::Function * * == Description * * A representation of a C function * * == Examples * * === 'strcpy' * * @libc = Fiddle.dlopen "/lib/libc.so.6" * #=> # * f = Fiddle::Function.new( * @libc['strcpy'], * [Fiddle::TYPE_VOIDP, Fiddle::TYPE_VOIDP], * Fiddle::TYPE_VOIDP) * #=> # * buff = "000" * #=> "000" * str = f.call(buff, "123") * #=> # * str.to_s * => "123" * * === ABI check * * @libc = Fiddle.dlopen "/lib/libc.so.6" * #=> # * f = Fiddle::Function.new(@libc['strcpy'], [TYPE_VOIDP, TYPE_VOIDP], TYPE_VOIDP) * #=> # * f.abi == Fiddle::Function::DEFAULT * #=> true */ cFiddleFunction = rb_define_class_under(mFiddle, "Function", rb_cObject); /* * Document-const: DEFAULT * * Default ABI * */ rb_define_const(cFiddleFunction, "DEFAULT", INT2NUM(FFI_DEFAULT_ABI)); #ifdef HAVE_CONST_FFI_STDCALL /* * Document-const: STDCALL * * FFI implementation of WIN32 stdcall convention * */ rb_define_const(cFiddleFunction, "STDCALL", INT2NUM(FFI_STDCALL)); #endif rb_define_alloc_func(cFiddleFunction, allocate); /* * Document-method: call * * Calls the constructed Function, with +args+. * Caller must ensure the underlying function is called in a * thread-safe manner if running in a multi-threaded process. * * Note that it is not thread-safe to use this method to * directly or indirectly call many Ruby C-extension APIs unless * you don't pass +need_gvl: true+ to Fiddle::Function#new. * * For an example see Fiddle::Function * */ rb_define_method(cFiddleFunction, "call", function_call, -1); /* * Document-method: new * call-seq: new(ptr, * args, * ret_type, * abi = DEFAULT, * name: nil, * need_gvl: false) * * Constructs a Function object. * * +ptr+ is a referenced function, of a Fiddle::Handle * * +args+ is an Array of arguments, passed to the +ptr+ function * * +ret_type+ is the return type of the function * * +abi+ is the ABI of the function * * +name+ is the name of the function * * +need_gvl+ is whether GVL is needed to call the function * */ rb_define_method(cFiddleFunction, "initialize", initialize, -1); }