/* Copyright (c) 2007-2016 Contributors as noted in the AUTHORS file This file is part of libzmq, the ZeroMQ core engine in C++. libzmq is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. As a special exception, the Contributors give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you must extend this exception to your version of the library. libzmq is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include "precompiled.hpp" #include "socket_poller.hpp" #include "err.hpp" zmq::socket_poller_t::socket_poller_t () : tag (0xCAFEBABE), signaler (NULL), need_rebuild (true), use_signaler (false), poll_size(0) #if defined ZMQ_POLL_BASED_ON_POLL , pollfds (NULL) #elif defined ZMQ_POLL_BASED_ON_SELECT , maxfd(0) #endif { #if defined ZMQ_POLL_BASED_ON_SELECT #if defined ZMQ_HAVE_WINDOWS // On Windows fd_set contains array of SOCKETs, each 4 bytes. // For large fd_sets memset() could be expensive and it is unnecessary. // It is enough to set fd_count to 0, exactly what FD_ZERO() macro does. FD_ZERO (&pollset_in); FD_ZERO (&pollset_out); FD_ZERO (&pollset_err); #else memset(&pollset_in, 0, sizeof(pollset_in)); memset(&pollset_out, 0, sizeof(pollset_out)); memset(&pollset_err, 0, sizeof(pollset_err)); #endif #endif } zmq::socket_poller_t::~socket_poller_t () { // Mark the socket_poller as dead tag = 0xdeadbeef; for (items_t::iterator it = items.begin(); it != items.end(); ++it) { if (it->socket && it->socket->check_tag()) { int thread_safe; size_t thread_safe_size = sizeof(int); if (it->socket->getsockopt (ZMQ_THREAD_SAFE, &thread_safe, &thread_safe_size) == 0 && thread_safe) it->socket->remove_signaler (signaler); } } if (signaler != NULL) { delete signaler; signaler = NULL; } #if defined ZMQ_POLL_BASED_ON_POLL if (pollfds) { free (pollfds); pollfds = NULL; } #endif } bool zmq::socket_poller_t::check_tag () { return tag == 0xCAFEBABE; } int zmq::socket_poller_t::add (socket_base_t *socket_, void* user_data_, short events_) { for (items_t::iterator it = items.begin (); it != items.end (); ++it) { if (it->socket == socket_) { errno = EINVAL; return -1; } } int thread_safe; size_t thread_safe_size = sizeof(int); int rc = socket_->getsockopt (ZMQ_THREAD_SAFE, &thread_safe, &thread_safe_size); zmq_assert (rc == 0); if (thread_safe) { if (signaler == NULL) signaler = new signaler_t (); rc = socket_->add_signaler (signaler); zmq_assert (rc == 0); } item_t item = {socket_, 0, user_data_, events_ #if defined ZMQ_POLL_BASED_ON_POLL ,-1 #endif }; items.push_back (item); need_rebuild = true; return 0; } int zmq::socket_poller_t::add_fd (fd_t fd_, void *user_data_, short events_) { for (items_t::iterator it = items.begin (); it != items.end (); ++it) { if (!it->socket && it->fd == fd_) { errno = EINVAL; return -1; } } item_t item = {NULL, fd_, user_data_, events_ #if defined ZMQ_POLL_BASED_ON_POLL ,-1 #endif }; items.push_back (item); need_rebuild = true; return 0; } int zmq::socket_poller_t::modify (socket_base_t *socket_, short events_) { items_t::iterator it; for (it = items.begin (); it != items.end (); ++it) { if (it->socket == socket_) break; } if (it == items.end()) { errno = EINVAL; return -1; } it->events = events_; need_rebuild = true; return 0; } int zmq::socket_poller_t::modify_fd (fd_t fd_, short events_) { items_t::iterator it; for (it = items.begin (); it != items.end (); ++it) { if (!it->socket && it->fd == fd_) break; } if (it == items.end()) { errno = EINVAL; return -1; } it->events = events_; need_rebuild = true; return 0; } int zmq::socket_poller_t::remove (socket_base_t *socket_) { items_t::iterator it; for (it = items.begin (); it != items.end (); ++it) { if (it->socket == socket_) break; } if (it == items.end()) { errno = EINVAL; return -1; } items.erase(it); need_rebuild = true; int thread_safe; size_t thread_safe_size = sizeof(int); if (socket_->getsockopt (ZMQ_THREAD_SAFE, &thread_safe, &thread_safe_size) == 0 && thread_safe) socket_->remove_signaler (signaler); return 0; } int zmq::socket_poller_t::remove_fd (fd_t fd_) { items_t::iterator it; for (it = items.begin (); it != items.end (); ++it) { if (!it->socket && it->fd == fd_) break; } if (it == items.end()) { errno = EINVAL; return -1; } items.erase (it); need_rebuild = true; return 0; } void zmq::socket_poller_t::rebuild () { #if defined ZMQ_POLL_BASED_ON_POLL if (pollfds) { free (pollfds); pollfds = NULL; } use_signaler = false; poll_size = 0; for (items_t::iterator it = items.begin (); it != items.end (); ++it) { if (it->events) { if (it->socket) { int thread_safe; size_t thread_safe_size = sizeof(int); int rc = it->socket->getsockopt (ZMQ_THREAD_SAFE, &thread_safe, &thread_safe_size); zmq_assert (rc == 0); if (thread_safe) { if (!use_signaler) { use_signaler = true; poll_size++; } } else poll_size++; } else poll_size++; } } if (poll_size == 0) return; pollfds = (pollfd*) malloc (poll_size * sizeof (pollfd)); alloc_assert (pollfds); int item_nbr = 0; if (use_signaler) { item_nbr = 1; pollfds[0].fd = signaler->get_fd(); pollfds[0].events = POLLIN; } for (items_t::iterator it = items.begin (); it != items.end (); ++it) { if (it->events) { if (it->socket) { int thread_safe; size_t thread_safe_size = sizeof(int); int rc = it->socket->getsockopt (ZMQ_THREAD_SAFE, &thread_safe, &thread_safe_size); zmq_assert (rc == 0); if (!thread_safe) { size_t fd_size = sizeof (zmq::fd_t); rc = it->socket->getsockopt (ZMQ_FD, &pollfds [item_nbr].fd, &fd_size); zmq_assert (rc == 0); pollfds [item_nbr].events = POLLIN; item_nbr++; } } else { pollfds [item_nbr].fd = it->fd; pollfds [item_nbr].events = (it->events & ZMQ_POLLIN ? POLLIN : 0) | (it->events & ZMQ_POLLOUT ? POLLOUT : 0) | (it->events & ZMQ_POLLPRI ? POLLPRI : 0); it->pollfd_index = item_nbr; item_nbr++; } } } #elif defined ZMQ_POLL_BASED_ON_SELECT FD_ZERO (&pollset_in); FD_ZERO (&pollset_out); FD_ZERO (&pollset_err); // Ensure we do not attempt to select () on more than FD_SETSIZE // file descriptors. zmq_assert (items.size () <= FD_SETSIZE); poll_size = 0; use_signaler = false; for (items_t::iterator it = items.begin (); it != items.end (); ++it) { if (it->socket) { int thread_safe; size_t thread_safe_size = sizeof(int); int rc = it->socket->getsockopt (ZMQ_THREAD_SAFE, &thread_safe, &thread_safe_size); zmq_assert (rc == 0); if (thread_safe && it->events) { use_signaler = true; FD_SET (signaler->get_fd (), &pollset_in); poll_size = 1; break; } } } maxfd = 0; // Build the fd_sets for passing to select (). for (items_t::iterator it = items.begin (); it != items.end (); ++it) { if (it->events) { // If the poll item is a 0MQ socket we are interested in input on the // notification file descriptor retrieved by the ZMQ_FD socket option. if (it->socket) { int thread_safe; size_t thread_safe_size = sizeof(int); int rc = it->socket->getsockopt (ZMQ_THREAD_SAFE, &thread_safe, &thread_safe_size); zmq_assert (rc == 0); if (!thread_safe) { zmq::fd_t notify_fd; size_t fd_size = sizeof (zmq::fd_t); rc = it->socket->getsockopt (ZMQ_FD, ¬ify_fd, &fd_size); zmq_assert (rc == 0); FD_SET (notify_fd, &pollset_in); if (maxfd < notify_fd) maxfd = notify_fd; poll_size++; } } // Else, the poll item is a raw file descriptor. Convert the poll item // events to the appropriate fd_sets. else { if (it->events & ZMQ_POLLIN) FD_SET (it->fd, &pollset_in); if (it->events & ZMQ_POLLOUT) FD_SET (it->fd, &pollset_out); if (it->events & ZMQ_POLLERR) FD_SET (it->fd, &pollset_err); if (maxfd < it->fd) maxfd = it->fd; poll_size++; } } } #endif need_rebuild = false; } void zmq::socket_poller_t::zero_trail_events ( zmq::socket_poller_t::event_t *events_, int n_events_, int found) { for (int i = found; i < n_events_; ++i) { events_[i].socket = NULL; events_[i].fd = 0; events_[i].user_data = NULL; events_[i].events = 0; } } #if defined ZMQ_POLL_BASED_ON_POLL int zmq::socket_poller_t::check_events (zmq::socket_poller_t::event_t *events_, int n_events_) #elif defined ZMQ_POLL_BASED_ON_SELECT int zmq::socket_poller_t::check_events (zmq::socket_poller_t::event_t *events_, int n_events_, fd_set& inset, fd_set& outset, fd_set& errset) #endif { int found = 0; for (items_t::iterator it = items.begin (); it != items.end () && found < n_events_; ++it) { // The poll item is a 0MQ socket. Retrieve pending events // using the ZMQ_EVENTS socket option. if (it->socket) { size_t events_size = sizeof (uint32_t); uint32_t events; if (it->socket->getsockopt (ZMQ_EVENTS, &events, &events_size) == -1) { return -1; } if (it->events & events) { events_[found].socket = it->socket; events_[found].user_data = it->user_data; events_[found].events = it->events & events; ++found; } } // Else, the poll item is a raw file descriptor, simply convert // the events to zmq_pollitem_t-style format. else { #if defined ZMQ_POLL_BASED_ON_POLL short revents = pollfds [it->pollfd_index].revents; short events = 0; if (revents & POLLIN) events |= ZMQ_POLLIN; if (revents & POLLOUT) events |= ZMQ_POLLOUT; if (revents & POLLPRI) events |= ZMQ_POLLPRI; if (revents & ~(POLLIN | POLLOUT | POLLPRI)) events |= ZMQ_POLLERR; #elif defined ZMQ_POLL_BASED_ON_SELECT short events = 0; if (FD_ISSET (it->fd, &inset)) events |= ZMQ_POLLIN; if (FD_ISSET (it->fd, &outset)) events |= ZMQ_POLLOUT; if (FD_ISSET (it->fd, &errset)) events |= ZMQ_POLLERR; #endif //POLL_SELECT if (events) { events_[found].socket = NULL; events_[found].user_data = it->user_data; events_[found].fd = it->fd; events_[found].events = events; ++found; } } } return found; } //Return 0 if timeout is expired otherwise 1 int zmq::socket_poller_t::adjust_timeout (zmq::clock_t& clock, long timeout_, uint64_t& now, uint64_t& end, bool& first_pass) { // If socket_poller_t::timeout is zero, exit immediately whether there // are events or not. if (timeout_ == 0) return 0; // At this point we are meant to wait for events but there are none. // If timeout is infinite we can just loop until we get some events. if (timeout_ < 0) { if (first_pass) first_pass = false; return 1; } // The timeout is finite and there are no events. In the first pass // we get a timestamp of when the polling have begun. (We assume that // first pass have taken negligible time). We also compute the time // when the polling should time out. now = clock.now_ms (); if (first_pass) { end = now + timeout_; first_pass = false; return 1; } // Find out whether timeout have expired. if (now >= end) return 0; return 1; } int zmq::socket_poller_t::wait (zmq::socket_poller_t::event_t *events_, int n_events_, long timeout_) { if (items.empty () && timeout_ < 0) { errno = EFAULT; return -1; } if (need_rebuild) rebuild (); if (unlikely (poll_size == 0)) { // We'll report an error (timed out) as if the list was non-empty and // no event occurred within the specified timeout. Otherwise the caller // needs to check the return value AND the event to avoid using the // nullified event data. errno = EAGAIN; if (timeout_ == 0) return -1; #if defined ZMQ_HAVE_WINDOWS Sleep (timeout_ > 0 ? timeout_ : INFINITE); return -1; #elif defined ZMQ_HAVE_ANDROID usleep (timeout_ * 1000); return -1; #elif defined ZMQ_HAVE_OSX usleep (timeout_ * 1000); errno = EAGAIN; return -1; #else usleep (timeout_ * 1000); return -1; #endif } #if defined ZMQ_POLL_BASED_ON_POLL zmq::clock_t clock; uint64_t now = 0; uint64_t end = 0; bool first_pass = true; while (true) { // Compute the timeout for the subsequent poll. int timeout; if (first_pass) timeout = 0; else if (timeout_ < 0) timeout = -1; else timeout = end - now; // Wait for events. while (true) { int rc = poll (pollfds, poll_size, timeout); if (rc == -1 && errno == EINTR) { return -1; } errno_assert (rc >= 0); break; } // Receive the signal from pollfd if (use_signaler && pollfds[0].revents & POLLIN) signaler->recv (); // Check for the events. int found = check_events (events_, n_events_); if (found) { if (found > 0) zero_trail_events (events_, n_events_, found); return found; } // Adjust timeout or break if (adjust_timeout (clock, timeout_, now, end, first_pass) == 0) break; } errno = EAGAIN; return -1; #elif defined ZMQ_POLL_BASED_ON_SELECT zmq::clock_t clock; uint64_t now = 0; uint64_t end = 0; bool first_pass = true; fd_set inset, outset, errset; while (true) { // Compute the timeout for the subsequent poll. timeval timeout; timeval *ptimeout; if (first_pass) { timeout.tv_sec = 0; timeout.tv_usec = 0; ptimeout = &timeout; } else if (timeout_ < 0) ptimeout = NULL; else { timeout.tv_sec = (long) ((end - now) / 1000); timeout.tv_usec = (long) ((end - now) % 1000 * 1000); ptimeout = &timeout; } // Wait for events. Ignore interrupts if there's infinite timeout. while (true) { #if defined ZMQ_HAVE_WINDOWS // On Windows we don't need to copy the whole fd_set. // SOCKETS are continuous from the beginning of fd_array in fd_set. // We just need to copy fd_count elements of fd_array. // We gain huge memcpy() improvement if number of used SOCKETs is much lower than FD_SETSIZE. memcpy (&inset, &pollset_in, (char *) (pollset_in.fd_array + pollset_in.fd_count ) - (char *) &pollset_in ); memcpy (&outset, &pollset_out, (char *) (pollset_out.fd_array + pollset_out.fd_count) - (char *) &pollset_out); memcpy (&errset, &pollset_err, (char *) (pollset_err.fd_array + pollset_err.fd_count) - (char *) &pollset_err); int rc = select (0, &inset, &outset, &errset, ptimeout); if (unlikely (rc == SOCKET_ERROR)) { errno = zmq::wsa_error_to_errno (WSAGetLastError ()); wsa_assert (errno == ENOTSOCK); return -1; } #else memcpy (&inset, &pollset_in, sizeof (fd_set)); memcpy (&outset, &pollset_out, sizeof (fd_set)); memcpy (&errset, &pollset_err, sizeof (fd_set)); int rc = select (maxfd + 1, &inset, &outset, &errset, ptimeout); if (unlikely (rc == -1)) { errno_assert (errno == EINTR || errno == EBADF); return -1; } #endif break; } if (use_signaler && FD_ISSET (signaler->get_fd (), &inset)) signaler->recv (); // Check for the events. int found = check_events(events_, n_events_, inset, outset, errset); if (found) { if (found > 0) zero_trail_events (events_, n_events_, found); return found; } // Adjust timeout or break if (adjust_timeout (clock, timeout_, now, end, first_pass) == 0) break; } errno = EAGAIN; return -1; #else // Exotic platforms that support neither poll() nor select(). errno = ENOTSUP; return -1; #endif }