Sha256: 8bd0cb3fae572e5e22e150435a9c1e4ebd517b91f6d4938a67e1b6a6e8780d9e
Contents?: true
Size: 1.68 KB
Versions: 4
Compression:
Stored size: 1.68 KB
Contents
module TensorStream # High level machine learning functions class NN extend TensorStream::OpHelper def self.softmax(logits, axis: nil, name: nil) _op(:softmax, logits, nil, axis: axis, name: name) end def self.relu(features, name: nil) TensorStream.max(features, 0, name: "relu_#{name}") end def self.sigmoid(input, name: nil) TensorStream.sigmoid(input, name) end def self.softmax_cross_entropy_with_logits(labels: nil, logits: nil, name: nil) TensorStream.name_scope(name, default: 'softmax_cross_entropy_with_logits', values: [logits, labels]) do |name| tf = TensorStream logits = tf.convert_to_tensor(logits, name: 'logits') labels = tf.convert_to_tensor(labels, name: 'labels') labels = tf.cast(labels, logits.dtype) softmax_logits = -tf.log(softmax(logits)) * labels tf.reduce_sum(softmax_logits, tf.rank(logits) - 1) end end def self.sigmoid_cross_entropy_with_logits(labels: nil, logits: nil, name: nil) TensorStream.name_scope(name, default: 'logistic_loss', values: [logits, labels]) do |name| tf = TensorStream logits = tf.convert_to_tensor(logits, name: 'logits') labels = tf.convert_to_tensor(labels, name: 'labels') zeros = tf.zeros_like(logits, dtype: logits.dtype) cond = (logits >= zeros) relu_logits = tf.where(cond, logits, zeros) neg_abs_logits = tf.where(cond, -logits, logits) return tf.add( relu_logits - logits * labels, tf.log1p(tf.exp(neg_abs_logits)), name: name) end end end # tensorflow compatibility def self.nn TensorStream::NN end end
Version data entries
4 entries across 4 versions & 1 rubygems