5.3. Completion

This section describes about the following completion features:

  • How it works
  • How to use
  • How to learn

5.3.1. How it works

The completion feature uses three searches to compute completed words:

  1. Prefix RK search against registered words.
  2. Cooccurrence search against learned data.
  3. Prefix search against registered words. (optional)

5.3.2. How to use

Groonga provides suggest command to use completion. --type complete option requests completion.

For example, here is an command to get completion results by "en":

Execution example:

suggest --table item_query --column kana --types complete --frequency_threshold 1 --query en
# [
#   [
#     0,
#     1337566253.89858,
#     0.000355720520019531
#   ],
#   {
#     "complete": [
#       [
#         1
#       ],
#       [
#         [
#           "_key",
#           "ShortText"
#         ],
#         [
#           "_score",
#           "Int32"
#         ]
#       ],
#       [
#         "engine",
#         1
#       ]
#     ]
#   }
# ]

5.3.3. How it learns

Cooccurrence search uses learned data. They are based on query logs, access logs and so on. To create learned data, groonga needs user input sequence with time stamp and user submit input with time stamp.

For example, an user wants to search by "engine". The user inputs the query with the following sequence:

  1. 2011-08-10T13:33:23+09:00: e
  2. 2011-08-10T13:33:23+09:00: en
  3. 2011-08-10T13:33:24+09:00: eng
  4. 2011-08-10T13:33:24+09:00: engi
  5. 2011-08-10T13:33:24+09:00: engin
  6. 2011-08-10T13:33:25+09:00: engine (submit!)

Groonga can be learned from the input sequence by the following command:

load --table event_query --each 'suggest_preparer(_id, type, item, sequence, time, pair_query)'
[
{"sequence": "1", "time": 1312950803.86057, "item": "e"},
{"sequence": "1", "time": 1312950803.96857, "item": "en"},
{"sequence": "1", "time": 1312950804.26057, "item": "eng"},
{"sequence": "1", "time": 1312950804.56057, "item": "engi"},
{"sequence": "1", "time": 1312950804.76057, "item": "engin"},
{"sequence": "1", "time": 1312950805.86057, "item": "engine", "type": "submit"}
]

5.3.4. How to update RK reading data

Groonga requires registered word and its reading for RK search, so load such data in the advance.

Here is the example to register "日本" which means Japanese in english.

Execution example:

load --table event_query --each 'suggest_preparer(_id, type, item, sequence, time, pair_query)'
[
{"sequence": "1", "time": 1312950805.86058, "item": "日本", "type": "submit"}
]
# [[0, 1337566253.89858, 0.000355720520019531], 1]

Here is the example to update RK data to complete "日本".

Execution example:

load --table item_query
[
{"_key":"日本", "kana":["ニホン", "ニッポン"]}
]
# [[0, 1337566253.89858, 0.000355720520019531], 1]

Then you can complete registered word "日本" by RK input - "nihon".

Execution example:

suggest --table item_query --column kana --types complete --frequency_threshold 1 --query nihon
# [
#   [
#     0,
#     1337566253.89858,
#     0.000355720520019531
#   ],
#   {
#     "complete": [
#       [
#         1
#       ],
#       [
#         [
#           "_key",
#           "ShortText"
#         ],
#         [
#           "_score",
#           "Int32"
#         ]
#       ],
#       [
#         "日本",
#         2
#       ]
#     ]
#   }
# ]

Without loading above RK data, you can't complete registered word "日本" by query - "nihon".

As the column type of item_query table is VECTOR_COLUMN, you can register multiple readings for registered word.

This is the reason that you can also complete the registered word "日本" by query - "nippon".

Execution example:

suggest --table item_query --column kana --types complete --frequency_threshold 1 --query nippon
# [
#   [
#     0,
#     1337566253.89858,
#     0.000355720520019531
#   ],
#   {
#     "complete": [
#       [
#         1
#       ],
#       [
#         [
#           "_key",
#           "ShortText"
#         ],
#         [
#           "_score",
#           "Int32"
#         ]
#       ],
#       [
#         "日本",
#         2
#       ]
#     ]
#   }
# ]

This feature is very convenient because you can search registered word even though Japanese IM is disabled.

If there are multiple candidates as completed result, you can customize priority to set the value of "boost" column in item_query table.

Here is the example to customize priority for RK search.

Execution example:

load --table event_query --each 'suggest_preparer(_id, type, item, sequence, time, pair_query)'
[
{"sequence": "1", "time": 1312950805.86059, "item": "日本語", "type": "submit"}
{"sequence": "1", "time": 1312950805.86060, "item": "日本人", "type": "submit"}
]
# [[0, 1337566253.89858, 0.000355720520019531], 2]
load --table item_query
[
{"_key":"日本語", "kana":"ニホンゴ"}
{"_key":"日本人", "kana":"ニホンジン"}
]
# [[0, 1337566253.89858, 0.000355720520019531], 2]
suggest --table item_query --column kana --types complete --frequency_threshold 1 --query nihon
# [
#   [
#     0,
#     1337566253.89858,
#     0.000355720520019531
#   ],
#   {
#     "complete": [
#       [
#         3
#       ],
#       [
#         [
#           "_key",
#           "ShortText"
#         ],
#         [
#           "_score",
#           "Int32"
#         ]
#       ],
#       [
#         "日本",
#         2
#       ],
#       [
#         "日本人",
#         2
#       ],
#       [
#         "日本語",
#         2
#       ]
#     ]
#   }
# ]
load --table item_query
[
{"_key":"日本人", "boost": 100},
]
# [[0, 1337566253.89858, 0.000355720520019531], 1]
suggest --table item_query --column kana --types complete --frequency_threshold 1 --query nihon
# [
#   [
#     0,
#     1337566253.89858,
#     0.000355720520019531
#   ],
#   {
#     "complete": [
#       [
#         3
#       ],
#       [
#         [
#           "_key",
#           "ShortText"
#         ],
#         [
#           "_score",
#           "Int32"
#         ]
#       ],
#       [
#         "日本人",
#         102
#       ],
#       [
#         "日本",
#         2
#       ],
#       [
#         "日本語",
#         2
#       ]
#     ]
#   }
# ]