/* Copyright (c) 2022, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include "../internal.h" #include "../x509v3/internal.h" #include "internal.h" // This file computes the X.509 policy tree, as described in RFC 5280, section // 6.1. It differs in that: // // (1) It does not track "qualifier_set". This is not needed as it is not // output by this implementation. // // (2) It builds a directed acyclic graph, rather than a tree. When a given // policy matches multiple parents, RFC 5280 makes a separate node for // each parent. This representation condenses them into one node with // multiple parents. Thus we refer to this structure as a "policy graph", // rather than a "policy tree". // // (3) "expected_policy_set" is not tracked explicitly and built temporarily // as part of building the graph. // // (4) anyPolicy nodes are not tracked explicitly. // // (5) Some pruning steps are deferred to when policies are evaluated, as a // reachability pass. // An X509_POLICY_NODE is a node in the policy graph. It corresponds to a node // from RFC 5280, section 6.1.2, step (a), but we store some fields differently. typedef struct x509_policy_node_st { // policy is the "valid_policy" field from RFC 5280. ASN1_OBJECT *policy; // parent_policies, if non-empty, is the list of "valid_policy" values for all // nodes which are a parent of this node. In this case, no entry in this list // will be anyPolicy. This list is in no particular order and may contain // duplicates if the corresponding certificate had duplicate mappings. // // If empty, this node has a single parent, anyPolicy. The node is then a root // policies, and is in authorities-constrained-policy-set if it has a path to // a leaf node. // // Note it is not possible for a policy to have both anyPolicy and a // concrete policy as a parent. Section 6.1.3, step (d.1.ii) only runs if // there was no match in step (d.1.i). We do not need to represent a parent // list of, say, {anyPolicy, OID1, OID2}. STACK_OF(ASN1_OBJECT) *parent_policies; // mapped is one if this node matches a policy mapping in the certificate and // zero otherwise. int mapped; // reachable is one if this node is reachable from some valid policy in the // end-entity certificate. It is computed during |has_explicit_policy|. int reachable; } X509_POLICY_NODE; DEFINE_STACK_OF(X509_POLICY_NODE) // An X509_POLICY_LEVEL is the collection of nodes at the same depth in the // policy graph. This structure can also be used to represent a level's // "expected_policy_set" values. See |process_policy_mappings|. typedef struct x509_policy_level_st { // nodes is the list of nodes at this depth, except for the anyPolicy node, if // any. This list is sorted by policy OID for efficient lookup. STACK_OF(X509_POLICY_NODE) *nodes; // has_any_policy is one if there is an anyPolicy node at this depth, and zero // otherwise. int has_any_policy; } X509_POLICY_LEVEL; DEFINE_STACK_OF(X509_POLICY_LEVEL) static int is_any_policy(const ASN1_OBJECT *obj) { return OBJ_obj2nid(obj) == NID_any_policy; } static void x509_policy_node_free(X509_POLICY_NODE *node) { if (node != NULL) { ASN1_OBJECT_free(node->policy); sk_ASN1_OBJECT_pop_free(node->parent_policies, ASN1_OBJECT_free); OPENSSL_free(node); } } static X509_POLICY_NODE *x509_policy_node_new(const ASN1_OBJECT *policy) { assert(!is_any_policy(policy)); X509_POLICY_NODE *node = OPENSSL_malloc(sizeof(X509_POLICY_NODE)); if (node == NULL) { return NULL; } OPENSSL_memset(node, 0, sizeof(X509_POLICY_NODE)); node->policy = OBJ_dup(policy); node->parent_policies = sk_ASN1_OBJECT_new_null(); if (node->policy == NULL || node->parent_policies == NULL) { x509_policy_node_free(node); return NULL; } return node; } static int x509_policy_node_cmp(const X509_POLICY_NODE *const *a, const X509_POLICY_NODE *const *b) { return OBJ_cmp((*a)->policy, (*b)->policy); } static void x509_policy_level_free(X509_POLICY_LEVEL *level) { if (level != NULL) { sk_X509_POLICY_NODE_pop_free(level->nodes, x509_policy_node_free); OPENSSL_free(level); } } static X509_POLICY_LEVEL *x509_policy_level_new(void) { X509_POLICY_LEVEL *level = OPENSSL_malloc(sizeof(X509_POLICY_LEVEL)); if (level == NULL) { return NULL; } OPENSSL_memset(level, 0, sizeof(X509_POLICY_LEVEL)); level->nodes = sk_X509_POLICY_NODE_new(x509_policy_node_cmp); if (level->nodes == NULL) { x509_policy_level_free(level); return NULL; } return level; } static int x509_policy_level_is_empty(const X509_POLICY_LEVEL *level) { return !level->has_any_policy && sk_X509_POLICY_NODE_num(level->nodes) == 0; } static void x509_policy_level_clear(X509_POLICY_LEVEL *level) { level->has_any_policy = 0; for (size_t i = 0; i < sk_X509_POLICY_NODE_num(level->nodes); i++) { x509_policy_node_free(sk_X509_POLICY_NODE_value(level->nodes, i)); } sk_X509_POLICY_NODE_zero(level->nodes); } // x509_policy_level_find returns the node in |level| corresponding to |policy|, // or NULL if none exists. static X509_POLICY_NODE *x509_policy_level_find(X509_POLICY_LEVEL *level, const ASN1_OBJECT *policy) { assert(sk_X509_POLICY_NODE_is_sorted(level->nodes)); X509_POLICY_NODE node; node.policy = (ASN1_OBJECT *)policy; size_t idx; if (!sk_X509_POLICY_NODE_find(level->nodes, &idx, &node)) { return NULL; } return sk_X509_POLICY_NODE_value(level->nodes, idx); } // x509_policy_level_add_nodes adds the nodes in |nodes| to |level|. It returns // one on success and zero on error. No policy in |nodes| may already be present // in |level|. This function modifies |nodes| to avoid making a copy, but the // caller is still responsible for releasing |nodes| itself. // // This function is used to add nodes to |level| in bulk, and avoid resorting // |level| after each addition. static int x509_policy_level_add_nodes(X509_POLICY_LEVEL *level, STACK_OF(X509_POLICY_NODE) *nodes) { for (size_t i = 0; i < sk_X509_POLICY_NODE_num(nodes); i++) { X509_POLICY_NODE *node = sk_X509_POLICY_NODE_value(nodes, i); if (!sk_X509_POLICY_NODE_push(level->nodes, node)) { return 0; } sk_X509_POLICY_NODE_set(nodes, i, NULL); } sk_X509_POLICY_NODE_sort(level->nodes); #if !defined(NDEBUG) // There should be no duplicate nodes. for (size_t i = 1; i < sk_X509_POLICY_NODE_num(level->nodes); i++) { assert(OBJ_cmp(sk_X509_POLICY_NODE_value(level->nodes, i - 1)->policy, sk_X509_POLICY_NODE_value(level->nodes, i)->policy) != 0); } #endif return 1; } static int policyinfo_cmp(const POLICYINFO *const *a, const POLICYINFO *const *b) { return OBJ_cmp((*a)->policyid, (*b)->policyid); } static int delete_if_not_in_policies(X509_POLICY_NODE *node, void *data) { const CERTIFICATEPOLICIES *policies = data; assert(sk_POLICYINFO_is_sorted(policies)); POLICYINFO info; info.policyid = node->policy; if (sk_POLICYINFO_find(policies, NULL, &info)) { return 0; } x509_policy_node_free(node); return 1; } // process_certificate_policies updates |level| to incorporate |x509|'s // certificate policies extension. This implements steps (d) and (e) of RFC // 5280, section 6.1.3. |level| must contain the previous level's // "expected_policy_set" information. For all but the top-most level, this is // the output of |process_policy_mappings|. |any_policy_allowed| specifies // whether anyPolicy is allowed or inhibited, taking into account the exception // for self-issued certificates. static int process_certificate_policies(const X509 *x509, X509_POLICY_LEVEL *level, int any_policy_allowed) { int ret = 0; int critical; STACK_OF(X509_POLICY_NODE) *new_nodes = NULL; CERTIFICATEPOLICIES *policies = X509_get_ext_d2i(x509, NID_certificate_policies, &critical, NULL); if (policies == NULL) { if (critical != -1) { return 0; // Syntax error in the extension. } // RFC 5280, section 6.1.3, step (e). x509_policy_level_clear(level); return 1; } // certificatePolicies may not be empty. See RFC 5280, section 4.2.1.4. // TODO(https://crbug.com/boringssl/443): Move this check into the parser. if (sk_POLICYINFO_num(policies) == 0) { OPENSSL_PUT_ERROR(X509, X509_R_INVALID_POLICY_EXTENSION); goto err; } sk_POLICYINFO_set_cmp_func(policies, policyinfo_cmp); sk_POLICYINFO_sort(policies); int cert_has_any_policy = 0; for (size_t i = 0; i < sk_POLICYINFO_num(policies); i++) { const POLICYINFO *policy = sk_POLICYINFO_value(policies, i); if (is_any_policy(policy->policyid)) { cert_has_any_policy = 1; } if (i > 0 && OBJ_cmp(sk_POLICYINFO_value(policies, i - 1)->policyid, policy->policyid) == 0) { // Per RFC 5280, section 4.2.1.4, |policies| may not have duplicates. OPENSSL_PUT_ERROR(X509, X509_R_INVALID_POLICY_EXTENSION); goto err; } } // This does the same thing as RFC 5280, section 6.1.3, step (d), though in // a slighty different order. |level| currently contains "expected_policy_set" // values of the previous level. See |process_policy_mappings| for details. const int previous_level_has_any_policy = level->has_any_policy; // First, we handle steps (d.1.i) and (d.2). The net effect of these two steps // is to intersect |level| with |policies|, ignoring anyPolicy if it is // inhibited. if (!cert_has_any_policy || !any_policy_allowed) { sk_X509_POLICY_NODE_delete_if(level->nodes, delete_if_not_in_policies, policies); level->has_any_policy = 0; } // Step (d.1.ii) may attach new nodes to the previous level's anyPolicy node. if (previous_level_has_any_policy) { new_nodes = sk_X509_POLICY_NODE_new_null(); if (new_nodes == NULL) { goto err; } for (size_t i = 0; i < sk_POLICYINFO_num(policies); i++) { const POLICYINFO *policy = sk_POLICYINFO_value(policies, i); // Though we've reordered the steps slightly, |policy| is in |level| if // and only if it would have been a match in step (d.1.ii). if (!is_any_policy(policy->policyid) && x509_policy_level_find(level, policy->policyid) == NULL) { X509_POLICY_NODE *node = x509_policy_node_new(policy->policyid); if (node == NULL || // !sk_X509_POLICY_NODE_push(new_nodes, node)) { x509_policy_node_free(node); goto err; } } } if (!x509_policy_level_add_nodes(level, new_nodes)) { goto err; } } ret = 1; err: sk_X509_POLICY_NODE_pop_free(new_nodes, x509_policy_node_free); CERTIFICATEPOLICIES_free(policies); return ret; } static int compare_issuer_policy(const POLICY_MAPPING *const *a, const POLICY_MAPPING *const *b) { return OBJ_cmp((*a)->issuerDomainPolicy, (*b)->issuerDomainPolicy); } static int compare_subject_policy(const POLICY_MAPPING *const *a, const POLICY_MAPPING *const *b) { return OBJ_cmp((*a)->subjectDomainPolicy, (*b)->subjectDomainPolicy); } static int delete_if_mapped(X509_POLICY_NODE *node, void *data) { const POLICY_MAPPINGS *mappings = data; // |mappings| must have been sorted by |compare_issuer_policy|. assert(sk_POLICY_MAPPING_is_sorted(mappings)); POLICY_MAPPING mapping; mapping.issuerDomainPolicy = node->policy; if (!sk_POLICY_MAPPING_find(mappings, /*out_index=*/NULL, &mapping)) { return 0; } x509_policy_node_free(node); return 1; } // process_policy_mappings processes the policy mappings extension of |cert|, // whose corresponding graph level is |level|. |mapping_allowed| specifies // whether policy mapping is inhibited at this point. On success, it returns an // |X509_POLICY_LEVEL| containing the "expected_policy_set" for |level|. On // error, it returns NULL. This implements steps (a) and (b) of RFC 5280, // section 6.1.4. // // We represent the "expected_policy_set" as an |X509_POLICY_LEVEL|. // |has_any_policy| indicates whether there is an anyPolicy node with // "expected_policy_set" of {anyPolicy}. If a node with policy oid P1 contains // P2 in its "expected_policy_set", the level will contain a node of policy P2 // with P1 in |parent_policies|. // // This is equivalent to the |X509_POLICY_LEVEL| that would result if the next // certificats contained anyPolicy. |process_certificate_policies| will filter // this result down to compute the actual level. static X509_POLICY_LEVEL *process_policy_mappings(const X509 *cert, X509_POLICY_LEVEL *level, int mapping_allowed) { int ok = 0; STACK_OF(X509_POLICY_NODE) *new_nodes = NULL; X509_POLICY_LEVEL *next = NULL; int critical; POLICY_MAPPINGS *mappings = X509_get_ext_d2i(cert, NID_policy_mappings, &critical, NULL); if (mappings == NULL && critical != -1) { // Syntax error in the policy mappings extension. goto err; } if (mappings != NULL) { // PolicyMappings may not be empty. See RFC 5280, section 4.2.1.5. // TODO(https://crbug.com/boringssl/443): Move this check into the parser. if (sk_POLICY_MAPPING_num(mappings) == 0) { OPENSSL_PUT_ERROR(X509, X509_R_INVALID_POLICY_EXTENSION); goto err; } // RFC 5280, section 6.1.4, step (a). for (size_t i = 0; i < sk_POLICY_MAPPING_num(mappings); i++) { POLICY_MAPPING *mapping = sk_POLICY_MAPPING_value(mappings, i); if (is_any_policy(mapping->issuerDomainPolicy) || is_any_policy(mapping->subjectDomainPolicy)) { goto err; } } // Sort to group by issuerDomainPolicy. sk_POLICY_MAPPING_set_cmp_func(mappings, compare_issuer_policy); sk_POLICY_MAPPING_sort(mappings); if (mapping_allowed) { // Mark nodes as mapped, and add any nodes to |level| which may be needed // as part of RFC 5280, section 6.1.4, step (b.1). new_nodes = sk_X509_POLICY_NODE_new_null(); if (new_nodes == NULL) { goto err; } const ASN1_OBJECT *last_policy = NULL; for (size_t i = 0; i < sk_POLICY_MAPPING_num(mappings); i++) { const POLICY_MAPPING *mapping = sk_POLICY_MAPPING_value(mappings, i); // There may be multiple mappings with the same |issuerDomainPolicy|. if (last_policy != NULL && OBJ_cmp(mapping->issuerDomainPolicy, last_policy) == 0) { continue; } last_policy = mapping->issuerDomainPolicy; X509_POLICY_NODE *node = x509_policy_level_find(level, mapping->issuerDomainPolicy); if (node == NULL) { if (!level->has_any_policy) { continue; } node = x509_policy_node_new(mapping->issuerDomainPolicy); if (node == NULL || // !sk_X509_POLICY_NODE_push(new_nodes, node)) { x509_policy_node_free(node); goto err; } } node->mapped = 1; } if (!x509_policy_level_add_nodes(level, new_nodes)) { goto err; } } else { // RFC 5280, section 6.1.4, step (b.2). If mapping is inhibited, delete // all mapped nodes. sk_X509_POLICY_NODE_delete_if(level->nodes, delete_if_mapped, mappings); sk_POLICY_MAPPING_pop_free(mappings, POLICY_MAPPING_free); mappings = NULL; } } // If a node was not mapped, it retains the original "explicit_policy_set" // value, itself. Add those to |mappings|. if (mappings == NULL) { mappings = sk_POLICY_MAPPING_new_null(); if (mappings == NULL) { goto err; } } for (size_t i = 0; i < sk_X509_POLICY_NODE_num(level->nodes); i++) { X509_POLICY_NODE *node = sk_X509_POLICY_NODE_value(level->nodes, i); if (!node->mapped) { POLICY_MAPPING *mapping = POLICY_MAPPING_new(); if (mapping == NULL) { goto err; } mapping->issuerDomainPolicy = OBJ_dup(node->policy); mapping->subjectDomainPolicy = OBJ_dup(node->policy); if (mapping->issuerDomainPolicy == NULL || mapping->subjectDomainPolicy == NULL || !sk_POLICY_MAPPING_push(mappings, mapping)) { POLICY_MAPPING_free(mapping); goto err; } } } // Sort to group by subjectDomainPolicy. sk_POLICY_MAPPING_set_cmp_func(mappings, compare_subject_policy); sk_POLICY_MAPPING_sort(mappings); // Convert |mappings| to our "expected_policy_set" representation. next = x509_policy_level_new(); if (next == NULL) { goto err; } next->has_any_policy = level->has_any_policy; X509_POLICY_NODE *last_node = NULL; for (size_t i = 0; i < sk_POLICY_MAPPING_num(mappings); i++) { POLICY_MAPPING *mapping = sk_POLICY_MAPPING_value(mappings, i); // Skip mappings where |issuerDomainPolicy| does not appear in the graph. if (!level->has_any_policy && x509_policy_level_find(level, mapping->issuerDomainPolicy) == NULL) { continue; } if (last_node == NULL || OBJ_cmp(last_node->policy, mapping->subjectDomainPolicy) != 0) { last_node = x509_policy_node_new(mapping->subjectDomainPolicy); if (last_node == NULL || !sk_X509_POLICY_NODE_push(next->nodes, last_node)) { x509_policy_node_free(last_node); goto err; } } if (!sk_ASN1_OBJECT_push(last_node->parent_policies, mapping->issuerDomainPolicy)) { goto err; } mapping->issuerDomainPolicy = NULL; } sk_X509_POLICY_NODE_sort(next->nodes); ok = 1; err: if (!ok) { x509_policy_level_free(next); next = NULL; } sk_POLICY_MAPPING_pop_free(mappings, POLICY_MAPPING_free); sk_X509_POLICY_NODE_pop_free(new_nodes, x509_policy_node_free); return next; } // apply_skip_certs, if |skip_certs| is non-NULL, sets |*value| to the minimum // of its current value and |skip_certs|. It returns one on success and zero if // |skip_certs| is negative. static int apply_skip_certs(const ASN1_INTEGER *skip_certs, size_t *value) { if (skip_certs == NULL) { return 1; } // TODO(https://crbug.com/boringssl/443): Move this check into the parser. if (skip_certs->type & V_ASN1_NEG) { OPENSSL_PUT_ERROR(X509, X509_R_INVALID_POLICY_EXTENSION); return 0; } // If |skip_certs| does not fit in |uint64_t|, it must exceed |*value|. uint64_t u64; if (ASN1_INTEGER_get_uint64(&u64, skip_certs) && u64 < *value) { *value = (size_t)u64; } ERR_clear_error(); return 1; } // process_policy_constraints updates |*explicit_policy|, |*policy_mapping|, and // |*inhibit_any_policy| according to |x509|'s policy constraints and inhibit // anyPolicy extensions. It returns one on success and zero on error. This // implements steps (i) and (j) of RFC 5280, section 6.1.4. static int process_policy_constraints(const X509 *x509, size_t *explicit_policy, size_t *policy_mapping, size_t *inhibit_any_policy) { int critical; POLICY_CONSTRAINTS *constraints = X509_get_ext_d2i(x509, NID_policy_constraints, &critical, NULL); if (constraints == NULL && critical != -1) { return 0; } if (constraints != NULL) { if (constraints->requireExplicitPolicy == NULL && constraints->inhibitPolicyMapping == NULL) { // Per RFC 5280, section 4.2.1.11, at least one of the fields must be // present. OPENSSL_PUT_ERROR(X509, X509_R_INVALID_POLICY_EXTENSION); POLICY_CONSTRAINTS_free(constraints); return 0; } int ok = apply_skip_certs(constraints->requireExplicitPolicy, explicit_policy) && apply_skip_certs(constraints->inhibitPolicyMapping, policy_mapping); POLICY_CONSTRAINTS_free(constraints); if (!ok) { return 0; } } ASN1_INTEGER *inhibit_any_policy_ext = X509_get_ext_d2i(x509, NID_inhibit_any_policy, &critical, NULL); if (inhibit_any_policy_ext == NULL && critical != -1) { return 0; } int ok = apply_skip_certs(inhibit_any_policy_ext, inhibit_any_policy); ASN1_INTEGER_free(inhibit_any_policy_ext); return ok; } // has_explicit_policy returns one if the set of authority-space policy OIDs // |levels| has some non-empty intersection with |user_policies|, and zero // otherwise. This mirrors the logic in RFC 5280, section 6.1.5, step (g). This // function modifies |levels| and should only be called at the end of policy // evaluation. static int has_explicit_policy(STACK_OF(X509_POLICY_LEVEL) *levels, const STACK_OF(ASN1_OBJECT) *user_policies) { assert(user_policies == NULL || sk_ASN1_OBJECT_is_sorted(user_policies)); // Step (g.i). If the policy graph is empty, the intersection is empty. size_t num_levels = sk_X509_POLICY_LEVEL_num(levels); X509_POLICY_LEVEL *level = sk_X509_POLICY_LEVEL_value(levels, num_levels - 1); if (x509_policy_level_is_empty(level)) { return 0; } // If |user_policies| is empty, we interpret it as having a single anyPolicy // value. The caller may also have supplied anyPolicy explicitly. int user_has_any_policy = sk_ASN1_OBJECT_num(user_policies) == 0; for (size_t i = 0; i < sk_ASN1_OBJECT_num(user_policies); i++) { if (is_any_policy(sk_ASN1_OBJECT_value(user_policies, i))) { user_has_any_policy = 1; break; } } // Step (g.ii). If the policy graph is not empty and the user set contains // anyPolicy, the intersection is the entire (non-empty) graph. if (user_has_any_policy) { return 1; } // Step (g.iii) does not delete anyPolicy nodes, so if the graph has // anyPolicy, some explicit policy will survive. The actual intersection may // synthesize some nodes in step (g.iii.3), but we do not return the policy // list itself, so we skip actually computing this. if (level->has_any_policy) { return 1; } // We defer pruning the tree, so as we look for nodes with parent anyPolicy, // step (g.iii.1), we must limit to nodes reachable from the bottommost level. // Start by marking each of those nodes as reachable. for (size_t i = 0; i < sk_X509_POLICY_NODE_num(level->nodes); i++) { sk_X509_POLICY_NODE_value(level->nodes, i)->reachable = 1; } for (size_t i = num_levels - 1; i < num_levels; i--) { level = sk_X509_POLICY_LEVEL_value(levels, i); for (size_t j = 0; j < sk_X509_POLICY_NODE_num(level->nodes); j++) { X509_POLICY_NODE *node = sk_X509_POLICY_NODE_value(level->nodes, j); if (!node->reachable) { continue; } if (sk_ASN1_OBJECT_num(node->parent_policies) == 0) { // |node|'s parent is anyPolicy and is part of "valid_policy_node_set". // If it exists in |user_policies|, the intersection is non-empty and we // can return immediately. if (sk_ASN1_OBJECT_find(user_policies, /*out_index=*/NULL, node->policy)) { return 1; } } else if (i > 0) { // |node|'s parents are concrete policies. Mark the parents reachable, // to be inspected by the next loop iteration. X509_POLICY_LEVEL *prev = sk_X509_POLICY_LEVEL_value(levels, i - 1); for (size_t k = 0; k < sk_ASN1_OBJECT_num(node->parent_policies); k++) { X509_POLICY_NODE *parent = x509_policy_level_find( prev, sk_ASN1_OBJECT_value(node->parent_policies, k)); if (parent != NULL) { parent->reachable = 1; } } } } } return 0; } static int asn1_object_cmp(const ASN1_OBJECT *const *a, const ASN1_OBJECT *const *b) { return OBJ_cmp(*a, *b); } int X509_policy_check(const STACK_OF(X509) *certs, const STACK_OF(ASN1_OBJECT) *user_policies, unsigned long flags, X509 **out_current_cert) { *out_current_cert = NULL; int ret = X509_V_ERR_OUT_OF_MEM; X509_POLICY_LEVEL *level = NULL; STACK_OF(X509_POLICY_LEVEL) *levels = NULL; STACK_OF(ASN1_OBJECT) *user_policies_sorted = NULL; size_t num_certs = sk_X509_num(certs); // Skip policy checking if the chain is just the trust anchor. if (num_certs <= 1) { return X509_V_OK; } // See RFC 5280, section 6.1.2, steps (d) through (f). size_t explicit_policy = (flags & X509_V_FLAG_EXPLICIT_POLICY) ? 0 : num_certs + 1; size_t inhibit_any_policy = (flags & X509_V_FLAG_INHIBIT_ANY) ? 0 : num_certs + 1; size_t policy_mapping = (flags & X509_V_FLAG_INHIBIT_MAP) ? 0 : num_certs + 1; levels = sk_X509_POLICY_LEVEL_new_null(); if (levels == NULL) { goto err; } for (size_t i = num_certs - 2; i < num_certs; i--) { X509 *cert = sk_X509_value(certs, i); if (!x509v3_cache_extensions(cert)) { goto err; } const int is_self_issued = (cert->ex_flags & EXFLAG_SI) != 0; if (level == NULL) { assert(i == num_certs - 2); level = x509_policy_level_new(); if (level == NULL) { goto err; } level->has_any_policy = 1; } // RFC 5280, section 6.1.3, steps (d) and (e). |any_policy_allowed| is // computed as in step (d.2). const int any_policy_allowed = inhibit_any_policy > 0 || (i > 0 && is_self_issued); if (!process_certificate_policies(cert, level, any_policy_allowed)) { ret = X509_V_ERR_INVALID_POLICY_EXTENSION; *out_current_cert = cert; goto err; } // RFC 5280, section 6.1.3, step (f). if (explicit_policy == 0 && x509_policy_level_is_empty(level)) { ret = X509_V_ERR_NO_EXPLICIT_POLICY; goto err; } // Insert into the list. if (!sk_X509_POLICY_LEVEL_push(levels, level)) { goto err; } X509_POLICY_LEVEL *current_level = level; level = NULL; // If this is not the leaf certificate, we go to section 6.1.4. If it // is the leaf certificate, we go to section 6.1.5 instead. if (i != 0) { // RFC 5280, section 6.1.4, steps (a) and (b). level = process_policy_mappings(cert, current_level, policy_mapping > 0); if (level == NULL) { ret = X509_V_ERR_INVALID_POLICY_EXTENSION; *out_current_cert = cert; goto err; } } // RFC 5280, section 6.1.4, step (h-j) for non-leaves, and section 6.1.5, // step (a-b) for leaves. In the leaf case, RFC 5280 says only to update // |explicit_policy|, but |policy_mapping| and |inhibit_any_policy| are no // longer read at this point, so we use the same process. if (i == 0 || !is_self_issued) { if (explicit_policy > 0) { explicit_policy--; } if (policy_mapping > 0) { policy_mapping--; } if (inhibit_any_policy > 0) { inhibit_any_policy--; } } if (!process_policy_constraints(cert, &explicit_policy, &policy_mapping, &inhibit_any_policy)) { ret = X509_V_ERR_INVALID_POLICY_EXTENSION; *out_current_cert = cert; goto err; } } // RFC 5280, section 6.1.5, step (g). We do not output the policy set, so it // is only necessary to check if the user-constrained-policy-set is not empty. if (explicit_policy == 0) { // Build a sorted copy of |user_policies| for more efficient lookup. if (user_policies != NULL) { user_policies_sorted = sk_ASN1_OBJECT_dup(user_policies); if (user_policies_sorted == NULL) { goto err; } sk_ASN1_OBJECT_set_cmp_func(user_policies_sorted, asn1_object_cmp); sk_ASN1_OBJECT_sort(user_policies_sorted); } if (!has_explicit_policy(levels, user_policies_sorted)) { ret = X509_V_ERR_NO_EXPLICIT_POLICY; goto err; } } ret = X509_V_OK; err: x509_policy_level_free(level); // |user_policies_sorted|'s contents are owned by |user_policies|, so we do // not use |sk_ASN1_OBJECT_pop_free|. sk_ASN1_OBJECT_free(user_policies_sorted); sk_X509_POLICY_LEVEL_pop_free(levels, x509_policy_level_free); return ret; }