# Torch.rb :fire: Deep learning for Ruby, powered by [LibTorch](https://pytorch.org) [![Build Status](https://travis-ci.org/ankane/torch.rb.svg?branch=master)](https://travis-ci.org/ankane/torch.rb) ## Installation First, [install LibTorch](#libtorch-installation). For Homebrew, use: ```sh brew install libtorch ``` Add this line to your application’s Gemfile: ```ruby gem 'torch-rb' ``` It can take a few minutes to compile the extension. ## Getting Started This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.html). There are a few changes to make it more Ruby-like: - Methods that perform in-place modifications end with `!` instead of `_` (`add!` instead of `add_`) - Methods that return booleans use `?` instead of `is_` (`tensor?` instead of `is_tensor`) - Numo is used instead of NumPy (`x.numo` instead of `x.numpy()`) ## Tutorial Some examples below are from [Deep Learning with PyTorch: A 60 Minutes Blitz](https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html) ### Tensors Create a tensor from a Ruby array ```ruby x = Torch.tensor([[1, 2, 3], [4, 5, 6]]) ``` Get the shape of a tensor ```ruby x.shape ``` There are [many functions](#tensor-creation) to create tensors, like ```ruby a = Torch.rand(3) b = Torch.zeros(2, 3) ``` Each tensor has four properties - `dtype` - the data type - `:uint8`, `:int8`, `:int16`, `:int32`, `:int64`, `:float32`, `float64`, or `:bool` - `layout` - `:strided` (dense) or `:sparse` - `device` - the compute device, like CPU or GPU - `requires_grad` - whether or not to record gradients You can specify properties when creating a tensor ```ruby Torch.rand(2, 3, dtype: :double, layout: :strided, device: "cpu", requires_grad: true) ``` ### Operations Create a tensor ```ruby x = Torch.tensor([10, 20, 30]) ``` Add ```ruby x + 5 # tensor([15, 25, 35]) ``` Subtract ```ruby x - 5 # tensor([5, 15, 25]) ``` Multiply ```ruby x * 5 # tensor([50, 100, 150]) ``` Divide ```ruby x / 5 # tensor([2, 4, 6]) ``` Get the remainder ```ruby x % 3 # tensor([1, 2, 0]) ``` Raise to a power ```ruby x**2 # tensor([100, 400, 900]) ``` Perform operations with other tensors ```ruby y = Torch.tensor([1, 2, 3]) x + y # tensor([11, 22, 33]) ``` Perform operations in-place ```ruby x.add!(5) x # tensor([15, 25, 35]) ``` You can also specify an output tensor ```ruby result = Torch.empty(3) Torch.add(x, y, out: result) result # tensor([15, 25, 35]) ``` ### Numo Convert a tensor to a Numo array ```ruby a = Torch.ones(5) a.numo ``` Convert a Numo array to a tensor ```ruby b = Numo::NArray.cast([1, 2, 3]) Torch.from_numo(b) ``` ### Autograd Create a tensor with `requires_grad: true` ```ruby x = Torch.ones(2, 2, requires_grad: true) ``` Perform operations ```ruby y = x + 2 z = y * y * 3 out = z.mean ``` Backprop ```ruby out.backward ``` Get gradients ```ruby x.grad # tensor([[4.5, 4.5], [4.5, 4.5]]) ``` Stop autograd from tracking history ```ruby x.requires_grad # true (x**2).requires_grad # true Torch.no_grad do (x**2).requires_grad # false end ``` ### Neural Networks Define a neural network ```ruby class Net < Torch::NN::Module def initialize super @conv1 = Torch::NN::Conv2d.new(1, 6, 3) @conv2 = Torch::NN::Conv2d.new(6, 16, 3) @fc1 = Torch::NN::Linear.new(16 * 6 * 6, 120) @fc2 = Torch::NN::Linear.new(120, 84) @fc3 = Torch::NN::Linear.new(84, 10) end def forward(x) x = Torch::NN::F.max_pool2d(Torch::NN::F.relu(@conv1.call(x)), [2, 2]) x = Torch::NN::F.max_pool2d(Torch::NN::F.relu(@conv2.call(x)), 2) x = x.view(-1, num_flat_features(x)) x = Torch::NN::F.relu(@fc1.call(x)) x = Torch::NN::F.relu(@fc2.call(x)) x = @fc3.call(x) x end def num_flat_features(x) size = x.size[1..-1] num_features = 1 size.each do |s| num_features *= s end num_features end end ``` Create an instance of it ```ruby net = Net.new input = Torch.randn(1, 1, 32, 32) net.call(input) ``` Get trainable parameters ```ruby net.parameters ``` Zero the gradient buffers and backprop with random gradients ```ruby net.zero_grad out.backward(Torch.randn(1, 10)) ``` Define a loss function ```ruby output = net.call(input) target = Torch.randn(10) target = target.view(1, -1) criterion = Torch::NN::MSELoss.new loss = criterion.call(output, target) ``` Backprop ```ruby net.zero_grad p net.conv1.bias.grad loss.backward p net.conv1.bias.grad ``` Update the weights ```ruby learning_rate = 0.01 net.parameters.each do |f| f.data.sub!(f.grad.data * learning_rate) end ``` Use an optimizer ```ruby optimizer = Torch::Optim::SGD.new(net.parameters, lr: 0.01) optimizer.zero_grad output = net.call(input) loss = criterion.call(output, target) loss.backward optimizer.step ``` ### Saving and Loading Models Save a model ```ruby Torch.save(net.state_dict, "net.pth") ``` Load a model ```ruby net = Net.new net.load_state_dict(Torch.load("net.pth")) net.eval ``` ### Tensor Creation Here’s a list of functions to create tensors (descriptions from the [C++ docs](https://pytorch.org/cppdocs/notes/tensor_creation.html)): - `arange` returns a tensor with a sequence of integers ```ruby Torch.arange(3) # tensor([0, 1, 2]) ``` - `empty` returns a tensor with uninitialized values ```ruby Torch.empty(3) # tensor([7.0054e-45, 0.0000e+00, 0.0000e+00]) ``` - `eye` returns an identity matrix ```ruby Torch.eye(2) # tensor([[1, 0], [0, 1]]) ``` - `full` returns a tensor filled with a single value ```ruby Torch.full([3], 5) # tensor([5, 5, 5]) ``` - `linspace` returns a tensor with values linearly spaced in some interval ```ruby Torch.linspace(0, 10, 5) # tensor([0, 5, 10]) ``` - `logspace` returns a tensor with values logarithmically spaced in some interval ```ruby Torch.logspace(0, 10, 5) # tensor([1, 1e5, 1e10]) ``` - `ones` returns a tensor filled with all ones ```ruby Torch.ones(3) # tensor([1, 1, 1]) ``` - `rand` returns a tensor filled with values drawn from a uniform distribution on [0, 1) ```ruby Torch.rand(3) # tensor([0.5444, 0.8799, 0.5571]) ``` - `randint` returns a tensor with integers randomly drawn from an interval ```ruby Torch.randint(1, 10, [3]) # tensor([7, 6, 4]) ``` - `randn` returns a tensor filled with values drawn from a unit normal distribution ```ruby Torch.randn(3) # tensor([-0.7147, 0.6614, 1.1453]) ``` - `randperm` returns a tensor filled with a random permutation of integers in some interval ```ruby Torch.randperm(3) # tensor([2, 0, 1]) ``` - `zeros` returns a tensor filled with all zeros ```ruby Torch.zeros(3) # tensor([0, 0, 0]) ``` ## Examples Here are a few full examples: - [Image classification with MNIST](examples/mnist) ([日本語版](https://qiita.com/kojix2/items/c19c36dc1bf73ea93409)) - [Collaborative filtering with MovieLens](examples/movielens) - [Sequence models and word embeddings](examples/nlp) ## LibTorch Installation [Download LibTorch](https://pytorch.org/). For Linux, use the `cxx11 ABI` version. Then run: ```sh bundle config build.torch-rb --with-torch-dir=/path/to/libtorch ``` Here’s the list of compatible versions. Torch.rb | LibTorch --- | --- 0.2.0 | 1.5.0 0.1.8 | 1.4.0 0.1.0-0.1.7 | 1.3.1 ### Homebrew For Mac, you can use Homebrew. ```sh brew install libtorch ``` Then install the gem (no need for `bundle config`). ## Performance ### Linux Deep learning is significantly faster on GPUs. Install [CUDA](https://developer.nvidia.com/cuda-downloads) and [cuDNN](https://developer.nvidia.com/cudnn) and reinstall the gem. Check if CUDA is available ```ruby Torch::CUDA.available? ``` Move a neural network to a GPU ```ruby net.cuda ``` ## rbenv This library uses [Rice](https://github.com/jasonroelofs/rice) to interface with LibTorch. Rice and earlier versions of rbenv don’t play nicely together. If you encounter an error during installation, upgrade ruby-build and reinstall your Ruby version. ```sh brew upgrade ruby-build rbenv install [version] ``` ## History View the [changelog](https://github.com/ankane/torch.rb/blob/master/CHANGELOG.md) ## Contributing Everyone is encouraged to help improve this project. Here are a few ways you can help: - [Report bugs](https://github.com/ankane/torch.rb/issues) - Fix bugs and [submit pull requests](https://github.com/ankane/torch.rb/pulls) - Write, clarify, or fix documentation - Suggest or add new features To get started with development: ```sh git clone https://github.com/ankane/torch.rb.git cd torch.rb bundle install bundle exec rake compile -- --with-torch-dir=/path/to/libtorch bundle exec rake test ``` You can use [this script](https://gist.github.com/ankane/9b2b5fcbd66d6e4ccfeb9d73e529abe7) to test on GPUs with the AWS Deep Learning Base AMI (Ubuntu 18.04). Here are some good resources for contributors: - [PyTorch API](https://pytorch.org/docs/stable/torch.html) - [PyTorch C++ API](https://pytorch.org/cppdocs/) - [Tensor Creation API](https://pytorch.org/cppdocs/notes/tensor_creation.html) - [Using the PyTorch C++ Frontend](https://pytorch.org/tutorials/advanced/cpp_frontend.html)