(function (global, factory) { if (typeof define === "function" && define.amd) { define(["exports", "three"], factory); } else if (typeof exports !== "undefined") { factory(exports, require("three")); } else { var mod = { exports: {} }; factory(mod.exports, global.three); global.STLLoader = mod.exports; } })(typeof globalThis !== "undefined" ? globalThis : typeof self !== "undefined" ? self : this, function (_exports, _three) { "use strict"; Object.defineProperty(_exports, "__esModule", { value: true }); _exports.STLLoader = void 0; function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function"); } Object.defineProperty(subClass, "prototype", { value: Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }), writable: false }); if (superClass) _setPrototypeOf(subClass, superClass); } function _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); } function _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; } function _possibleConstructorReturn(self, call) { if (call && (typeof call === "object" || typeof call === "function")) { return call; } else if (call !== void 0) { throw new TypeError("Derived constructors may only return object or undefined"); } return _assertThisInitialized(self); } function _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return self; } function _isNativeReflectConstruct() { if (typeof Reflect === "undefined" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === "function") return true; try { Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); return true; } catch (e) { return false; } } function _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); } /** * Description: A THREE loader for STL ASCII files, as created by Solidworks and other CAD programs. * * Supports both binary and ASCII encoded files, with automatic detection of type. * * The loader returns a non-indexed buffer geometry. * * Limitations: * Binary decoding supports "Magics" color format (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL). * There is perhaps some question as to how valid it is to always assume little-endian-ness. * ASCII decoding assumes file is UTF-8. * * Usage: * const loader = new STLLoader(); * loader.load( './models/stl/slotted_disk.stl', function ( geometry ) { * scene.add( new THREE.Mesh( geometry ) ); * }); * * For binary STLs geometry might contain colors for vertices. To use it: * // use the same code to load STL as above * if (geometry.hasColors) { * material = new THREE.MeshPhongMaterial({ opacity: geometry.alpha, vertexColors: true }); * } else { .... } * const mesh = new THREE.Mesh( geometry, material ); * * For ASCII STLs containing multiple solids, each solid is assigned to a different group. * Groups can be used to assign a different color by defining an array of materials with the same length of * geometry.groups and passing it to the Mesh constructor: * * const mesh = new THREE.Mesh( geometry, material ); * * For example: * * const materials = []; * const nGeometryGroups = geometry.groups.length; * * const colorMap = ...; // Some logic to index colors. * * for (let i = 0; i < nGeometryGroups; i++) { * * const material = new THREE.MeshPhongMaterial({ * color: colorMap[i], * wireframe: false * }); * * } * * materials.push(material); * const mesh = new THREE.Mesh(geometry, materials); */ var STLLoader = /*#__PURE__*/function (_Loader) { _inherits(STLLoader, _Loader); var _super = _createSuper(STLLoader); function STLLoader(manager) { _classCallCheck(this, STLLoader); return _super.call(this, manager); } _createClass(STLLoader, [{ key: "load", value: function load(url, onLoad, onProgress, onError) { var scope = this; var loader = new _three.FileLoader(this.manager); loader.setPath(this.path); loader.setResponseType('arraybuffer'); loader.setRequestHeader(this.requestHeader); loader.setWithCredentials(this.withCredentials); loader.load(url, function (text) { try { onLoad(scope.parse(text)); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } }, { key: "parse", value: function parse(data) { function isBinary(data) { var reader = new DataView(data); var face_size = 32 / 8 * 3 + 32 / 8 * 3 * 3 + 16 / 8; var n_faces = reader.getUint32(80, true); var expect = 80 + 32 / 8 + n_faces * face_size; if (expect === reader.byteLength) { return true; } // An ASCII STL data must begin with 'solid ' as the first six bytes. // However, ASCII STLs lacking the SPACE after the 'd' are known to be // plentiful. So, check the first 5 bytes for 'solid'. // Several encodings, such as UTF-8, precede the text with up to 5 bytes: // https://en.wikipedia.org/wiki/Byte_order_mark#Byte_order_marks_by_encoding // Search for "solid" to start anywhere after those prefixes. // US-ASCII ordinal values for 's', 'o', 'l', 'i', 'd' var solid = [115, 111, 108, 105, 100]; for (var off = 0; off < 5; off++) { // If "solid" text is matched to the current offset, declare it to be an ASCII STL. if (matchDataViewAt(solid, reader, off)) return false; } // Couldn't find "solid" text at the beginning; it is binary STL. return true; } function matchDataViewAt(query, reader, offset) { // Check if each byte in query matches the corresponding byte from the current offset for (var i = 0, il = query.length; i < il; i++) { if (query[i] !== reader.getUint8(offset + i, false)) return false; } return true; } function parseBinary(data) { var reader = new DataView(data); var faces = reader.getUint32(80, true); var r, g, b, hasColors = false, colors; var defaultR, defaultG, defaultB, alpha; // process STL header // check for default color in header ("COLOR=rgba" sequence). for (var index = 0; index < 80 - 10; index++) { if (reader.getUint32(index, false) == 0x434F4C4F /*COLO*/ && reader.getUint8(index + 4) == 0x52 /*'R'*/ && reader.getUint8(index + 5) == 0x3D /*'='*/ ) { hasColors = true; colors = new Float32Array(faces * 3 * 3); defaultR = reader.getUint8(index + 6) / 255; defaultG = reader.getUint8(index + 7) / 255; defaultB = reader.getUint8(index + 8) / 255; alpha = reader.getUint8(index + 9) / 255; } } var dataOffset = 84; var faceLength = 12 * 4 + 2; var geometry = new _three.BufferGeometry(); var vertices = new Float32Array(faces * 3 * 3); var normals = new Float32Array(faces * 3 * 3); for (var face = 0; face < faces; face++) { var start = dataOffset + face * faceLength; var normalX = reader.getFloat32(start, true); var normalY = reader.getFloat32(start + 4, true); var normalZ = reader.getFloat32(start + 8, true); if (hasColors) { var packedColor = reader.getUint16(start + 48, true); if ((packedColor & 0x8000) === 0) { // facet has its own unique color r = (packedColor & 0x1F) / 31; g = (packedColor >> 5 & 0x1F) / 31; b = (packedColor >> 10 & 0x1F) / 31; } else { r = defaultR; g = defaultG; b = defaultB; } } for (var i = 1; i <= 3; i++) { var vertexstart = start + i * 12; var componentIdx = face * 3 * 3 + (i - 1) * 3; vertices[componentIdx] = reader.getFloat32(vertexstart, true); vertices[componentIdx + 1] = reader.getFloat32(vertexstart + 4, true); vertices[componentIdx + 2] = reader.getFloat32(vertexstart + 8, true); normals[componentIdx] = normalX; normals[componentIdx + 1] = normalY; normals[componentIdx + 2] = normalZ; if (hasColors) { colors[componentIdx] = r; colors[componentIdx + 1] = g; colors[componentIdx + 2] = b; } } } geometry.setAttribute('position', new _three.BufferAttribute(vertices, 3)); geometry.setAttribute('normal', new _three.BufferAttribute(normals, 3)); if (hasColors) { geometry.setAttribute('color', new _three.BufferAttribute(colors, 3)); geometry.hasColors = true; geometry.alpha = alpha; } return geometry; } function parseASCII(data) { var geometry = new _three.BufferGeometry(); var patternSolid = /solid([\s\S]*?)endsolid/g; var patternFace = /facet([\s\S]*?)endfacet/g; var faceCounter = 0; var patternFloat = /[\s]+([+-]?(?:\d*)(?:\.\d*)?(?:[eE][+-]?\d+)?)/.source; var patternVertex = new RegExp('vertex' + patternFloat + patternFloat + patternFloat, 'g'); var patternNormal = new RegExp('normal' + patternFloat + patternFloat + patternFloat, 'g'); var vertices = []; var normals = []; var normal = new _three.Vector3(); var result; var groupCount = 0; var startVertex = 0; var endVertex = 0; while ((result = patternSolid.exec(data)) !== null) { startVertex = endVertex; var solid = result[0]; while ((result = patternFace.exec(solid)) !== null) { var vertexCountPerFace = 0; var normalCountPerFace = 0; var text = result[0]; while ((result = patternNormal.exec(text)) !== null) { normal.x = parseFloat(result[1]); normal.y = parseFloat(result[2]); normal.z = parseFloat(result[3]); normalCountPerFace++; } while ((result = patternVertex.exec(text)) !== null) { vertices.push(parseFloat(result[1]), parseFloat(result[2]), parseFloat(result[3])); normals.push(normal.x, normal.y, normal.z); vertexCountPerFace++; endVertex++; } // every face have to own ONE valid normal if (normalCountPerFace !== 1) { console.error('THREE.STLLoader: Something isn\'t right with the normal of face number ' + faceCounter); } // each face have to own THREE valid vertices if (vertexCountPerFace !== 3) { console.error('THREE.STLLoader: Something isn\'t right with the vertices of face number ' + faceCounter); } faceCounter++; } var start = startVertex; var count = endVertex - startVertex; geometry.addGroup(start, count, groupCount); groupCount++; } geometry.setAttribute('position', new _three.Float32BufferAttribute(vertices, 3)); geometry.setAttribute('normal', new _three.Float32BufferAttribute(normals, 3)); return geometry; } function ensureString(buffer) { if (typeof buffer !== 'string') { return _three.LoaderUtils.decodeText(new Uint8Array(buffer)); } return buffer; } function ensureBinary(buffer) { if (typeof buffer === 'string') { var array_buffer = new Uint8Array(buffer.length); for (var i = 0; i < buffer.length; i++) { array_buffer[i] = buffer.charCodeAt(i) & 0xff; // implicitly assumes little-endian } return array_buffer.buffer || array_buffer; } else { return buffer; } } // start var binData = ensureBinary(data); return isBinary(binData) ? parseBinary(binData) : parseASCII(ensureString(data)); } }]); return STLLoader; }(_three.Loader); _exports.STLLoader = STLLoader; });