/* * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ package toxi.geom; import java.util.Arrays; import toxi.math.MathUtils; /** * A double precision, row major, general and dynamically-resizable, * two-dimensional matrix class. Row and column numbering begins with zero. */ public class GMatrix implements java.io.Serializable, Cloneable { static final long serialVersionUID = 1L; /** * Solves a set of linear equations. The input parameters "matrix1", and * "row_perm" come from luDecompostion and do not change here. The parameter * "matrix2" is a set of column vectors assembled into a nxn matrix of * floating-point values. The procedure takes each column of "matrix2" in * turn and treats it as the right-hand side of the matrix equation Ax = LUx * = b. The solution vector replaces the original column of the matrix. * * If "matrix2" is the identity matrix, the procedure replaces its contents * with the inverse of the matrix from which "matrix1" was originally * derived. * * @param dim * @param matrix1 * @param row_perm * @param matrix2 */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 44-45. // public static void backSubstituteLU(int dim, double[] matrix1, int[] row_perm, double[] matrix2) { int i, ii, ip, j, k; int rp; int cv, rv, ri; double tt; // rp = row_perm; rp = 0; // For each column vector of matrix2 ... for (k = 0; k < dim; k++) { // cv = &(matrix2[0][k]); cv = k; ii = -1; // Forward substitution for (i = 0; i < dim; i++) { double sum; ip = row_perm[rp + i]; sum = matrix2[cv + dim * ip]; matrix2[cv + dim * ip] = matrix2[cv + dim * i]; if (ii >= 0) { // rv = &(matrix1[i][0]); rv = i * dim; for (j = ii; j <= i - 1; j++) { sum -= matrix1[rv + j] * matrix2[cv + dim * j]; } } else if (sum != 0.0) { ii = i; } matrix2[cv + dim * i] = sum; } // Backsubstitution for (i = 0; i < dim; i++) { ri = (dim - 1 - i); rv = dim * (ri); tt = 0.0; for (j = 1; j <= i; j++) { tt += matrix1[rv + dim - j] * matrix2[cv + dim * (dim - j)]; } matrix2[cv + dim * ri] = (matrix2[cv + dim * ri] - tt) / matrix1[rv + ri]; } } } private static void chase_across(double[] s, double[] e, int k, GMatrix u) { double f, g, r; double[] cosl = new double[1]; double[] sinl = new double[1]; int i; GMatrix t = new GMatrix(u.nRow, u.nCol); GMatrix m = new GMatrix(u.nRow, u.nCol); g = e[k]; f = s[k + 1]; for (i = k; i < u.nCol - 2; i++) { r = compute_rot(f, g, sinl, cosl); g = -e[i + 1] * sinl[0]; f = s[i + 2]; s[i + 1] = r; e[i + 1] = e[i + 1] * cosl[0]; update_u_split(k, i + 1, u, cosl, sinl, t, m); } s[i + 1] = compute_rot(f, g, sinl, cosl); update_u_split(k, i + 1, u, cosl, sinl, t, m); } private static void chase_up(double[] s, double[] e, int k, GMatrix v) { double f, g, r; double[] cosr = new double[1]; double[] sinr = new double[1]; int i; GMatrix t = new GMatrix(v.nRow, v.nCol); GMatrix m = new GMatrix(v.nRow, v.nCol); f = e[k]; g = s[k]; for (i = k; i > 0; i--) { r = compute_rot(f, g, sinr, cosr); f = -e[i - 1] * sinr[0]; g = s[i - 1]; s[i] = r; e[i - 1] = e[i - 1] * cosr[0]; update_v_split(i, k + 1, v, cosr, sinr, t, m); } s[i + 1] = compute_rot(f, g, sinr, cosr); update_v_split(i, k + 1, v, cosr, sinr, t, m); } private static void checkMatrix(GMatrix m) { int i, j; for (i = 0; i < m.nRow; i++) { for (j = 0; j < m.nCol; j++) { if (MathUtils.abs(m.values[i][j]) < 0.0000000001) { System.out.print(" 0.0 "); } else { System.out.print(" " + m.values[i][j]); } } System.out.print("\n"); } } private static int compute_2X2(double f, double g, double h, double[] single_values, double[] snl, double[] csl, double[] snr, double[] csr, int index) { double c_b3 = 2.0; double c_b4 = 1.0; double d__1; int pmax; double temp; boolean swap; double a, d, l, m, r, s, t, tsign, fa, ga, ha; double ft, gt, ht, mm; boolean gasmal; double tt, clt, crt, slt, srt; double ssmin, ssmax; ssmax = single_values[0]; ssmin = single_values[1]; clt = 0.0; crt = 0.0; slt = 0.0; srt = 0.0; tsign = 0.0; ft = f; fa = MathUtils.abs(ft); ht = h; ha = MathUtils.abs(h); pmax = 1; swap = ha > fa; if (swap) { pmax = 3; temp = ft; ft = ht; ht = temp; temp = fa; fa = ha; ha = temp; } gt = g; ga = MathUtils.abs(gt); if (ga == 0.0) { single_values[1] = ha; single_values[0] = fa; clt = 1.0; crt = 1.0; slt = 0.0; srt = 0.0; } else { gasmal = true; if (ga > fa) { pmax = 2; if (fa / ga < EPS) { gasmal = false; ssmax = ga; if (ha > 1.0) { ssmin = fa / (ga / ha); } else { ssmin = fa / ga * ha; } clt = 1.0; slt = ht / gt; srt = 1.0; crt = ft / gt; } } if (gasmal) { d = fa - ha; if (d == fa) { l = 1.0; } else { l = d / fa; } m = gt / ft; t = 2.0 - l; mm = m * m; tt = t * t; s = Math.sqrt(tt + mm); if (l == 0.0) { r = MathUtils.abs(m); } else { r = Math.sqrt(l * l + mm); } a = (s + r) * 0.5; if (ga > fa) { pmax = 2; if (fa / ga < EPS) { gasmal = false; ssmax = ga; if (ha > 1.0) { ssmin = fa / (ga / ha); } else { ssmin = fa / ga * ha; } clt = 1.0; slt = ht / gt; srt = 1.0; crt = ft / gt; } } if (gasmal) { d = fa - ha; if (d == fa) { l = 1.0; } else { l = d / fa; } m = gt / ft; t = 2.0 - l; mm = m * m; tt = t * t; s = Math.sqrt(tt + mm); if (l == 0.) { r = MathUtils.abs(m); } else { r = Math.sqrt(l * l + mm); } a = (s + r) * 0.5; ssmin = ha / a; ssmax = fa * a; if (mm == 0.0) { if (l == 0.0) { t = MathUtils.dualSign(c_b3, ft) * MathUtils.dualSign(c_b4, gt); } else { t = gt / MathUtils.dualSign(d, ft) + m / t; } } else { t = (m / (s + t) + m / (r + l)) * (a + 1.0); } l = Math.sqrt(t * t + 4.0); crt = 2.0 / l; srt = t / l; clt = (crt + srt * m) / a; slt = ht / ft * srt / a; } } if (swap) { csl[0] = srt; snl[0] = crt; csr[0] = slt; snr[0] = clt; } else { csl[0] = clt; snl[0] = slt; csr[0] = crt; snr[0] = srt; } if (pmax == 1) { tsign = MathUtils.dualSign(c_b4, csr[0]) * MathUtils.dualSign(c_b4, csl[0]) * MathUtils.dualSign(c_b4, f); } if (pmax == 2) { tsign = MathUtils.dualSign(c_b4, snr[0]) * MathUtils.dualSign(c_b4, csl[0]) * MathUtils.dualSign(c_b4, g); } if (pmax == 3) { tsign = MathUtils.dualSign(c_b4, snr[0]) * MathUtils.dualSign(c_b4, snl[0]) * MathUtils.dualSign(c_b4, h); } single_values[index] = MathUtils.dualSign(ssmax, tsign); d__1 = tsign * MathUtils.dualSign(c_b4, f) * MathUtils.dualSign(c_b4, h); single_values[index + 1] = MathUtils.dualSign(ssmin, d__1); } return 0; } private static double compute_rot(double f, double g, double[] sin, double[] cos) { double cs, sn; int i; double scale; int count; double f1, g1; double r; final double safmn2 = 2.002083095183101E-146; final double safmx2 = 4.994797680505588E+145; if (g == 0.0) { cs = 1.0; sn = 0.0; r = f; } else if (f == 0.0) { cs = 0.0; sn = 1.0; r = g; } else { f1 = f; g1 = g; scale = MathUtils.max(MathUtils.abs(f1), MathUtils.abs(g1)); if (scale >= safmx2) { count = 0; while (scale >= safmx2) { ++count; f1 *= safmn2; g1 *= safmn2; scale = MathUtils.max(MathUtils.abs(f1), MathUtils.abs(g1)); } r = Math.sqrt(f1 * f1 + g1 * g1); cs = f1 / r; sn = g1 / r; for (i = 1; i <= count; ++i) { r *= safmx2; } } else if (scale <= safmn2) { count = 0; while (scale <= safmn2) { ++count; f1 *= safmx2; g1 *= safmx2; scale = MathUtils.max(MathUtils.abs(f1), MathUtils.abs(g1)); } r = Math.sqrt(f1 * f1 + g1 * g1); cs = f1 / r; sn = g1 / r; for (i = 1; i <= count; ++i) { r *= safmn2; } } else { r = Math.sqrt(f1 * f1 + g1 * g1); cs = f1 / r; sn = g1 / r; } if (MathUtils.abs(f) > MathUtils.abs(g) && cs < 0.0) { cs = -cs; sn = -sn; r = -r; } } sin[0] = sn; cos[0] = cs; return r; } private static double compute_shift(double f, double g, double h) { double d__1, d__2; double fhmn, fhmx, c, fa, ga, ha, as, at, au; double ssmin; fa = MathUtils.abs(f); ga = MathUtils.abs(g); ha = MathUtils.abs(h); fhmn = MathUtils.min(fa, ha); fhmx = MathUtils.max(fa, ha); if (fhmn == 0.0) { ssmin = 0.0; if (fhmx == 0.0) { } else { d__1 = MathUtils.min(fhmx, ga) / MathUtils.max(fhmx, ga); } } else { if (ga < fhmx) { as = fhmn / fhmx + 1.0; at = (fhmx - fhmn) / fhmx; d__1 = ga / fhmx; au = d__1 * d__1; c = 2.0 / (Math.sqrt(as * as + au) + Math.sqrt(at * at + au)); ssmin = fhmn * c; } else { au = fhmx / ga; if (au == 0.0) { ssmin = fhmn * fhmx / ga; } else { as = fhmn / fhmx + 1.0; at = (fhmx - fhmn) / fhmx; d__1 = as * au; d__2 = at * au; c = 1.0 / (Math.sqrt(d__1 * d__1 + 1.0) + Math.sqrt(d__2 * d__2 + 1.0)); ssmin = fhmn * c * au; ssmin += ssmin; } } } return ssmin; } /** * * @param start * @param end * @param s * @param e * @param u * @param v */ public static void computeQR(int start, int end, double[] s, double[] e, GMatrix u, GMatrix v) { int i, k, n, sl; double shift, r, f, g; double[] cosl = new double[1]; double[] cosr = new double[1]; double[] sinl = new double[1]; double[] sinr = new double[1]; final int MAX_INTERATIONS = 2; final double CONVERGE_TOL = 4.89E-15; boolean converged = false; f = 0.0; g = 0.0; for (k = 0; k < MAX_INTERATIONS && !converged; k++) { for (i = start; i <= end; i++) { // if at start of iterfaction compute shift if (i == start) { if (e.length == s.length) { sl = end; } else { sl = end + 1; } shift = compute_shift(s[sl - 1], e[end], s[sl]); f = (MathUtils.abs(s[i]) - shift) * (MathUtils.dualSign(1.0, s[i]) + shift / s[i]); g = e[i]; } r = compute_rot(f, g, sinr, cosr); if (i != start) { e[i - 1] = r; } f = cosr[0] * s[i] + sinr[0] * e[i]; e[i] = cosr[0] * e[i] - sinr[0] * s[i]; g = sinr[0] * s[i + 1]; s[i + 1] = cosr[0] * s[i + 1]; update_v(i, v, cosr, sinr); r = compute_rot(f, g, sinl, cosl); s[i] = r; f = cosl[0] * e[i] + sinl[0] * s[i + 1]; s[i + 1] = cosl[0] * s[i + 1] - sinl[0] * e[i]; if (i < end) { // if not last g = sinl[0] * e[i + 1]; e[i + 1] = cosl[0] * e[i + 1]; } update_u(i, u, cosl, sinl); } // if extra off diagonal perform one more right side rotation if (s.length == e.length) { r = compute_rot(f, g, sinr, cosr); f = cosr[0] * s[i] + sinr[0] * e[i]; e[i] = cosr[0] * e[i] - sinr[0] * s[i]; s[i + 1] = cosr[0] * s[i + 1]; update_v(i, v, cosr, sinr); } // check for convergence on off diagonals and reduce while ((end - start > 1) && (MathUtils.abs(e[end]) < CONVERGE_TOL)) { end--; } // check if need to split for (n = end - 2; n > start; n--) { if (MathUtils.abs(e[n]) < CONVERGE_TOL) { // split computeQR(n + 1, end, s, e, u, v); // do lower matrix end = n - 1; // do upper matrix // check for convergence on off diagonals and reduce while ((end - start > 1) && (MathUtils.abs(e[end]) < CONVERGE_TOL)) { end--; } } } if ((end - start <= 1) && (MathUtils.abs(e[start + 1]) < CONVERGE_TOL)) { converged = true; } else { // check if zero on the diagonal } } if (MathUtils.abs(e[1]) < CONVERGE_TOL) { compute_2X2(s[start], e[start], s[start + 1], s, sinl, cosl, sinr, cosr, 0); e[start] = 0.0; e[start + 1] = 0.0; } i = start; update_u(i, u, cosl, sinl); update_v(i, v, cosr, sinr); } /** * * @param mat * @param U * @param W * @param V * @return */ public static int computeSVD(GMatrix mat, GMatrix U, GMatrix W, GMatrix V) { int i, j, k; int nr, nc, si; int rank; double mag, scale, t; int eLength, sLength, vecLength; GMatrix tmp = new GMatrix(mat.nRow, mat.nCol); GMatrix u = new GMatrix(mat.nRow, mat.nCol); GMatrix v = new GMatrix(mat.nRow, mat.nCol); GMatrix m = new GMatrix(mat); // compute the number of singular values if (m.nRow >= m.nCol) { sLength = m.nCol; eLength = m.nCol - 1; } else { sLength = m.nRow; eLength = m.nRow; } if (m.nRow > m.nCol) { vecLength = m.nRow; } else { vecLength = m.nCol; } double[] vec = new double[vecLength]; double[] single_values = new double[sLength]; double[] e = new double[eLength]; rank = 0; U.identity(); V.identity(); nr = m.nRow; nc = m.nCol; // householder reduction for (si = 0; si < sLength; si++) { // for each singular value if (nr > 1) { // compute reflector mag = 0.0; for (i = 0; i < nr; i++) { mag += m.values[i + si][si] * m.values[i + si][si]; } mag = Math.sqrt(mag); if (m.values[si][si] == 0.0) { vec[0] = mag; } else { vec[0] = m.values[si][si] + MathUtils.dualSign(mag, m.values[si][si]); } for (i = 1; i < nr; i++) { vec[i] = m.values[si + i][si]; } scale = 0.0; for (i = 0; i < nr; i++) { scale += vec[i] * vec[i]; } scale = 2.0 / scale; for (j = si; j < m.nRow; j++) { for (k = si; k < m.nRow; k++) { u.values[j][k] = -scale * vec[j - si] * vec[k - si]; } } for (i = si; i < m.nRow; i++) { u.values[i][i] += 1.0; } // compute s t = 0.0; for (i = si; i < m.nRow; i++) { t += u.values[si][i] * m.values[i][si]; } m.values[si][si] = t; // apply reflector for (j = si; j < m.nRow; j++) { for (k = si + 1; k < m.nCol; k++) { tmp.values[j][k] = 0.0; for (i = si; i < m.nCol; i++) { tmp.values[j][k] += u.values[j][i] * m.values[i][k]; } } } for (j = si; j < m.nRow; j++) { for (k = si + 1; k < m.nCol; k++) { m.values[j][k] = tmp.values[j][k]; } } // update U matrix for (j = si; j < m.nRow; j++) { for (k = 0; k < m.nCol; k++) { tmp.values[j][k] = 0.0; for (i = si; i < m.nCol; i++) { tmp.values[j][k] += u.values[j][i] * U.values[i][k]; } } } for (j = si; j < m.nRow; j++) { for (k = 0; k < m.nCol; k++) { U.values[j][k] = tmp.values[j][k]; } } nr--; } if (nc > 2) { mag = 0.0; for (i = 1; i < nc; i++) { mag += m.values[si][si + i] * m.values[si][si + i]; } // generate the reflection vector, compute the first entry and // copy the rest from the row to be zeroed mag = Math.sqrt(mag); if (m.values[si][si + 1] == 0.0) { vec[0] = mag; } else { vec[0] = m.values[si][si + 1] + MathUtils.dualSign(mag, m.values[si][si + 1]); } for (i = 1; i < nc - 1; i++) { vec[i] = m.values[si][si + i + 1]; } // use reflection vector to compute v matrix scale = 0.0; for (i = 0; i < nc - 1; i++) { scale += vec[i] * vec[i]; } scale = 2.0 / scale; for (j = si + 1; j < nc; j++) { for (k = si + 1; k < m.nCol; k++) { v.values[j][k] = -scale * vec[j - si - 1] * vec[k - si - 1]; } } for (i = si + 1; i < m.nCol; i++) { v.values[i][i] += 1.0; } t = 0.0; for (i = si; i < m.nCol; i++) { t += v.values[i][si + 1] * m.values[si][i]; } m.values[si][si + 1] = t; // apply reflector for (j = si + 1; j < m.nRow; j++) { for (k = si + 1; k < m.nCol; k++) { tmp.values[j][k] = 0.0; for (i = si + 1; i < m.nCol; i++) { tmp.values[j][k] += v.values[i][k] * m.values[j][i]; } } } for (j = si + 1; j < m.nRow; j++) { for (k = si + 1; k < m.nCol; k++) { m.values[j][k] = tmp.values[j][k]; } } // update V matrix for (j = 0; j < m.nRow; j++) { for (k = si + 1; k < m.nCol; k++) { tmp.values[j][k] = 0.0; for (i = si + 1; i < m.nCol; i++) { tmp.values[j][k] += v.values[i][k] * V.values[j][i]; } } } for (j = 0; j < m.nRow; j++) { for (k = si + 1; k < m.nCol; k++) { V.values[j][k] = tmp.values[j][k]; } } nc--; } } for (i = 0; i < sLength; i++) { single_values[i] = m.values[i][i]; } for (i = 0; i < eLength; i++) { e[i] = m.values[i][i + 1]; } // Fix ArrayIndexOutOfBounds for 2x2 matrices, which partially // addresses bug 4348562 for J3D 1.2.1. // // Does *not* fix the following problems reported in 4348562, // which will wait for J3D 1.3: // // 1) no output of W // 2) wrong transposition of U // 3) wrong results for 4x4 matrices // 4) slow performance if (m.nRow == 2 && m.nCol == 2) { double[] cosl = new double[1]; double[] cosr = new double[1]; double[] sinl = new double[1]; double[] sinr = new double[1]; compute_2X2(single_values[0], e[0], single_values[1], single_values, sinl, cosl, sinr, cosr, 0); update_u(0, U, cosl, sinl); update_v(0, V, cosr, sinr); return 2; } // compute_qr causes ArrayIndexOutOfBounds for 2x2 matrices computeQR(0, e.length - 1, single_values, e, U, V); // compute rank = number of non zero singular values rank = single_values.length; // sort by order of size of single values // and check for zero's return rank; } /** * Given a nxn array "matrix0", this function replaces it with the LU * decomposition of a row-wise permutation of itself. The input parameters * are "matrix0" and "dim". The array "matrix0" is also an output parameter. * The vector "row_perm[]" is an output parameter that contains the row * permutations resulting from partial pivoting. The output parameter * "even_row_xchg" is 1 when the number of row exchanges is even, or -1 * otherwise. Assumes data type is always double. * * @param dim * @param matrix0 * @param row_perm * @param even_row_xchg * @return true if the matrix is nonsingular, or false otherwise. */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 40-45. // public static boolean decomposeLU(int dim, double[] matrix0, int[] row_perm, int[] even_row_xchg) { double row_scale[] = new double[dim]; // Determine implicit scaling information by looping over rows int i, j; int ptr, rs, mtx; double big, temp; ptr = 0; rs = 0; even_row_xchg[0] = 1; // For each row ... i = dim; while (i-- != 0) { big = 0.0; // For each column, find the largest element in the row j = dim; while (j-- != 0) { temp = matrix0[ptr++]; temp = MathUtils.abs(temp); if (temp > big) { big = temp; } } // Is the matrix singular? if (big == 0.0) { return false; } row_scale[rs++] = 1.0 / big; } // For all columns, execute Crout's method mtx = 0; for (j = 0; j < dim; j++) { int imax, k; int target, p1, p2; double sum; // Determine elements of upper diagonal matrix U for (i = 0; i < j; i++) { target = mtx + (dim * i) + j; sum = matrix0[target]; k = i; p1 = mtx + (dim * i); p2 = mtx + j; while (k-- != 0) { sum -= matrix0[p1] * matrix0[p2]; p1++; p2 += dim; } matrix0[target] = sum; } // Search for largest pivot element and calculate // intermediate elements of lower diagonal matrix L. big = 0.0; imax = -1; for (i = j; i < dim; i++) { target = mtx + (dim * i) + j; sum = matrix0[target]; k = j; p1 = mtx + (dim * i); p2 = mtx + j; while (k-- != 0) { sum -= matrix0[p1] * matrix0[p2]; p1++; p2 += dim; } matrix0[target] = sum; // Is this the best pivot so far? if ((temp = row_scale[i] * MathUtils.abs(sum)) >= big) { big = temp; imax = i; } } if (imax < 0) { throw new RuntimeException(); } // Is a row exchange necessary? if (j != imax) { // Yes: exchange rows k = dim; p1 = mtx + (dim * imax); p2 = mtx + (dim * j); while (k-- != 0) { temp = matrix0[p1]; matrix0[p1++] = matrix0[p2]; matrix0[p2++] = temp; } // Record change in scale factor row_scale[imax] = row_scale[j]; even_row_xchg[0] = -even_row_xchg[0]; // change exchange parity } // Record row permutation row_perm[j] = imax; // Is the matrix singular if (matrix0[(mtx + (dim * j) + j)] == 0.0) { return false; } // Divide elements of lower diagonal matrix L by pivot if (j != (dim - 1)) { temp = 1.0 / (matrix0[(mtx + (dim * j) + j)]); target = mtx + (dim * (j + 1)) + j; i = (dim - 1) - j; while (i-- != 0) { matrix0[target] *= temp; target += dim; } } } return true; } private static void print_m(GMatrix m, GMatrix u, GMatrix v) { GMatrix mtmp = new GMatrix(m.nCol, m.nRow); mtmp.mul(u, mtmp); mtmp.mul(mtmp, v); System.out.println("\n m = \n" + GMatrix.toString(mtmp)); } private static void print_se(double[] s, double[] e) { System.out.println("\ns =" + s[0] + " " + s[1] + " " + s[2]); System.out.println("e =" + e[0] + " " + e[1]); } private static void print_svd(double[] s, double[] e, GMatrix u, GMatrix v) { int i; GMatrix mtmp = new GMatrix(u.nCol, v.nRow); System.out.println(" \ns = "); for (i = 0; i < s.length; i++) { System.out.println(" " + s[i]); } System.out.println(" \ne = "); for (i = 0; i < e.length; i++) { System.out.println(" " + e[i]); } System.out.println(" \nu = \n" + u.toString()); System.out.println(" \nv = \n" + v.toString()); mtmp.identity(); for (i = 0; i < s.length; i++) { mtmp.values[i][i] = s[i]; } for (i = 0; i < e.length; i++) { mtmp.values[i][i + 1] = e[i]; } System.out.println(" \nm = \n" + mtmp.toString()); mtmp.mulTransposeLeft(u, mtmp); mtmp.mulTransposeRight(mtmp, v); System.out.println(" \n u.transpose*m*v.transpose = \n" + mtmp.toString()); } private static String toString(GMatrix m) { StringBuilder buffer = new StringBuilder(m.nRow * m.nCol * 8); int i, j; for (i = 0; i < m.nRow; i++) { for (j = 0; j < m.nCol; j++) { if (MathUtils.abs(m.values[i][j]) < MathUtils.EPS) { buffer.append("0.0000 "); } else { buffer.append(m.values[i][j]).append(" "); } } buffer.append("\n"); } return buffer.toString(); } private static void update_u(int index, GMatrix u, double[] cosl, double[] sinl) { int j; double utemp; for (j = 0; j < u.nCol; j++) { utemp = u.values[index][j]; u.values[index][j] = cosl[0] * utemp + sinl[0] * u.values[index + 1][j]; u.values[index + 1][j] = -sinl[0] * utemp + cosl[0] * u.values[index + 1][j]; } } private static void update_u_split(int topr, int bottomr, GMatrix u, double[] cosl, double[] sinl, GMatrix t, GMatrix m) { int j; double utemp; for (j = 0; j < u.nCol; j++) { utemp = u.values[topr][j]; u.values[topr][j] = cosl[0] * utemp - sinl[0] * u.values[bottomr][j]; u.values[bottomr][j] = sinl[0] * utemp + cosl[0] * u.values[bottomr][j]; } checkMatrix(m); checkMatrix(t); m.mul(t, m); checkMatrix(m); } private static void update_v(int index, GMatrix v, double[] cosr, double[] sinr) { int j; double vtemp; for (j = 0; j < v.nRow; j++) { vtemp = v.values[j][index]; v.values[j][index] = cosr[0] * vtemp + sinr[0] * v.values[j][index + 1]; v.values[j][index + 1] = -sinr[0] * vtemp + cosr[0] * v.values[j][index + 1]; } } private static void update_v_split(int topr, int bottomr, GMatrix v, double[] cosr, double[] sinr, GMatrix t, GMatrix m) { int j; double vtemp; for (j = 0; j < v.nRow; j++) { vtemp = v.values[j][topr]; v.values[j][topr] = cosr[0] * vtemp - sinr[0] * v.values[j][bottomr]; v.values[j][bottomr] = sinr[0] * vtemp + cosr[0] * v.values[j][bottomr]; } checkMatrix(m); checkMatrix(t); m.mul(m, t); checkMatrix(m); } int nRow; int nCol; // double dereference is slow double[][] values; private static final double EPS = 1.0E-10; /** * Constructs a new GMatrix and copies the initial values from the parameter * matrix. * * @param matrix the source of the initial values of the new GMatrix */ public GMatrix(GMatrix matrix) { nRow = matrix.nRow; nCol = matrix.nCol; values = new double[nRow][nCol]; int i, j; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = matrix.values[i][j]; } } } /** * Constructs an nRow by NCol identity matrix. Note that because row and * column numbering begins with zero, nRow and nCol will be one larger than * the maximum possible matrix index values. * * @param nRow number of rows in this matrix. * @param nCol number of columns in this matrix. */ public GMatrix(int nRow, int nCol) { values = new double[nRow][nCol]; this.nRow = nRow; this.nCol = nCol; int i, j; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = 0.0; } } int l; if (nRow < nCol) { l = nRow; } else { l = nCol; } for (i = 0; i < l; i++) { values[i][i] = 1.0; } } /** * Constructs an nRow by nCol matrix initialized to the values in the matrix * array. The array values are copied in one row at a time in row major * fashion. The array should be at least nRow*nCol in length. Note that * because row and column numbering begins with zero, nRow and nCol will be * one larger than the maximum possible matrix index values. * * @param nRow number of rows in this matrix. * @param nCol number of columns in this matrix. * @param matrix a 1D array that specifies a matrix in row major fashion */ public GMatrix(int nRow, int nCol, double[] matrix) { values = new double[nRow][nCol]; this.nRow = nRow; this.nCol = nCol; int i, j; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = matrix[i * nCol + j]; } } } /** * Sets the value of this matrix to sum of itself and matrix m1. * * @param m1 the other matrix */ public final void add(GMatrix m1) { int i, j; if (nRow != m1.nRow) { throw new MatrixSizeException(); } if (nCol != m1.nCol) { throw new MatrixSizeException(); } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = values[i][j] + m1.values[i][j]; } } } /** * Sets the value of this matrix to the matrix sum of matrices m1 and m2. * * @param m1 the first matrix * @param m2 the second matrix */ public final void add(GMatrix m1, GMatrix m2) { int i, j; if (m2.nRow != m1.nRow) { throw new MatrixSizeException(); } if (m2.nCol != m1.nCol) { throw new MatrixSizeException(); } if (nCol != m1.nCol || nRow != m1.nRow) { throw new MatrixSizeException(); } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = m1.values[i][j] + m2.values[i][j]; } } } /** * Creates a new object of the same class as this object. * * @return a clone of this instance. * @exception OutOfMemoryError if there is not enough memory. * @see java.lang.Cloneable * @since vecmath 1.3 */ // @Override // public Object clone() throws CloneNotSupportedException { // GMatrix m1 = null; // try { // m1 = (GMatrix) super.clone(); // } catch (CloneNotSupportedException e) { // // this shouldn't happen, since we are Cloneable // throw new InternalError(); // } // // // Also need to clone array of values // m1.values = new double[nRow][nCol]; // for (int i = 0; i < nRow; i++) { // System.arraycopy(values[i], 0, m1.values[i], 0, nCol); // } // // return m1; // } /** * LU Decomposition: this matrix must be a square matrix and the LU GMatrix * parameter must be the same size as this matrix. The matrix LU will be * overwritten as the combination of a lower diagonal and upper diagonal * matrix decompostion of this matrix; the diagonal elements of L (unity) * are not stored. The GVector parameter records the row permutation * effected by the partial pivoting, and is used as a parameter to the * GVector method LUDBackSolve to solve sets of linear equations. This * method returns +/- 1 depending on whether the number of row interchanges * was even or odd, respectively. * * @param LU The matrix into which the lower and upper decompositions will * be placed. * @param permutation The row permutation effected by the partial pivoting * @return +-1 depending on whether the number of row interchanges was even * or odd respectively */ public final int computeLUD(GMatrix LU, GVector permutation) { int size = LU.nRow * LU.nCol; double[] temp = new double[size]; int[] even_row_exchange = new int[1]; int[] row_perm = new int[LU.nRow]; int i, j; if (nRow != nCol) { throw new MatrixSizeException(); } if (nRow != LU.nRow) { throw new MatrixSizeException(); } if (nCol != LU.nCol) { throw new MatrixSizeException(); } if (LU.nRow != permutation.size()) { throw new MatrixSizeException(); } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { temp[i * nCol + j] = values[i][j]; } } // Calculate LU decomposition: Is the matrix singular? if (!decomposeLU(LU.nRow, temp, row_perm, even_row_exchange)) { // Matrix has no inverse throw new SingularMatrixException(); } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { LU.values[i][j] = temp[i * nCol + j]; } } for (i = 0; i < LU.nRow; i++) { permutation.values[i] = row_perm[i]; } return even_row_exchange[0]; } /** * Finds the singular value decomposition (SVD) of this matrix such that * this = U*W*transpose(V); and returns the rank of this matrix; the values * of U,W,V are all overwritten. Note that the matrix V is output as V, and * not transpose(V). If this matrix is mxn, then U is mxm, W is a diagonal * matrix that is mxn, and V is nxn. Using the notation W = diag(w), then * the inverse of this matrix is: inverse(this) = V*diag(1/w)*tranpose(U), * where diag(1/w) is the same matrix as W except that the reciprocal of * each of the diagonal components is used. * * @param U The computed U matrix in the equation this = U*W*transpose(V) * @param W The computed W matrix in the equation this = U*W*transpose(V) * @param V The computed V matrix in the equation this = U*W*transpose(V) * @return The rank of this matrix. */ public final int computeSVD(GMatrix U, GMatrix W, GMatrix V) { // check for consistancy in dimensions if (nCol != V.nCol || nCol != V.nRow) { throw new MatrixSizeException(); } if (nRow != U.nRow || nRow != U.nCol) { throw new MatrixSizeException(); } if (nRow != W.nRow || nCol != W.nCol) { throw new MatrixSizeException(); } // Fix ArrayIndexOutOfBounds for 2x2 matrices, which partially // addresses bug 4348562 for J3D 1.2.1. // // Does *not* fix the following problems reported in 4348562, // which will wait for J3D 1.3: // // 1) no output of W // 2) wrong transposition of U // 3) wrong results for 4x4 matrices // 4) slow performance if (nRow == 2 && nCol == 2) { if (values[1][0] == 0.0) { U.identity(); V.identity(); if (values[0][1] == 0.0) { return 2; } double[] sinl = new double[1]; double[] sinr = new double[1]; double[] cosl = new double[1]; double[] cosr = new double[1]; double[] single_values = new double[2]; single_values[0] = values[0][0]; single_values[1] = values[1][1]; compute_2X2(values[0][0], values[0][1], values[1][1], single_values, sinl, cosl, sinr, cosr, 0); update_u(0, U, cosl, sinl); update_v(0, V, cosr, sinr); return 2; } // else call computeSVD() and check for 2x2 there } return computeSVD(this, U, W, V); } /** * Copies a sub-matrix derived from this matrix into the target matrix. The * upper left of the sub-matrix is located at (rowSource, colSource); the * lower right of the sub-matrix is located at * (lastRowSource,lastColSource). The sub-matrix is copied into the the * target matrix starting at (rowDest, colDest). * * @param rowSource the top-most row of the sub-matrix * @param colSource the left-most column of the sub-matrix * @param numRow the number of rows in the sub-matrix * @param numCol the number of columns in the sub-matrix * @param rowDest the top-most row of the position of the copied sub-matrix * within the target matrix * @param colDest the left-most column of the position of the copied * sub-matrix within the target matrix * @param target the matrix into which the sub-matrix will be copied */ public final void copySubMatrix(int rowSource, int colSource, int numRow, int numCol, int rowDest, int colDest, GMatrix target) { int i, j; if (this != target) { for (i = 0; i < numRow; i++) { for (j = 0; j < numCol; j++) { target.values[rowDest + i][colDest + j] = values[rowSource + i][colSource + j]; } } } else { double[][] tmp = new double[numRow][numCol]; for (i = 0; i < numRow; i++) { for (j = 0; j < numCol; j++) { tmp[i][j] = values[rowSource + i][colSource + j]; } } for (i = 0; i < numRow; i++) { for (j = 0; j < numCol; j++) { target.values[rowDest + i][colDest + j] = tmp[i][j]; } } } } /** * Returns true if the L-infinite distance between this matrix and matrix m1 * is less than or equal to the epsilon parameter, otherwise returns false. * The L-infinite distance is equal to MAX[i=0,1,2, . . .n ; j=0,1,2, . . .n * ; abs(this.m(i,j) - m1.m(i,j)] * * @param m1 The matrix to be compared to this matrix * @param epsilon the threshold value * @return */ public boolean epsilonEquals(GMatrix m1, double epsilon) { int i, j; double diff; if (nRow != m1.nRow || nCol != m1.nCol) { return false; } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { diff = values[i][j] - m1.values[i][j]; if ((diff < 0 ? -diff : diff) > epsilon) { return false; } } } return true; } /** * @param m1 * @param epsilon * @return * @deprecated Use epsilonEquals(GMatrix, double) instead */ @Deprecated public boolean epsilonEquals(GMatrix m1, float epsilon) { return epsilonEquals(m1, (double) epsilon); } /** * Returns true if all of the data members of GMatrix m1 are equal to the * corresponding data members in this GMatrix. * * @param m1 The matrix with which the comparison is made. * @return true or false */ public boolean equals(GMatrix m1) { try { int i, j; if (nRow != m1.nRow || nCol != m1.nCol) { return false; } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { if (values[i][j] != m1.values[i][j]) { return false; } } } return true; } catch (NullPointerException e2) { return false; } } /** * Returns true if the Object o1 is of type GMatrix and all of the data * members of o1 are equal to the corresponding data members in this * GMatrix. * * @param o1 The object with which the comparison is made. * @return true or false */ @Override public boolean equals(Object o1) { if (o1 instanceof GMatrix) { GMatrix m2 = (GMatrix) o1; int i, j; if (nRow != m2.nRow || nCol != m2.nCol) { return false; } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { if (values[i][j] != m2.values[i][j]) { return false; } } } return true; } return false; } /** * * @return */ @Override public int hashCode() { int hash = 7; hash = 67 * hash + this.nRow; hash = 67 * hash + this.nCol; hash = 67 * hash + Arrays.deepHashCode(this.values); return hash; } /** * Places the values in the this GMatrix into the matrix m1; m1 should * be at least as large as this GMatrix. * * @param m1 The matrix that will hold the new values */ public final void get(GMatrix m1) { int i, j, nc, nr; if (nCol < m1.nCol) { nc = nCol; } else { nc = m1.nCol; } if (nRow < m1.nRow) { nr = nRow; } else { nr = m1.nRow; } for (i = 0; i < nr; i++) { for (j = 0; j < nc; j++) { m1.values[i][j] = values[i][j]; } } for (i = nr; i < m1.nRow; i++) { for (j = 0; j < m1.nCol; j++) { m1.values[i][j] = 0.0; } } for (j = nc; j < m1.nCol; j++) { for (i = 0; i < nr; i++) { m1.values[i][j] = 0.0; } } } /** * Places the values in the upper 3x3 of this GMatrix into the matrix m1. * * @param m1 The matrix that will hold the new values */ public final void get(Matrix3d m1) { if (nRow < 3 || nCol < 3) { m1.setZero(); if (nCol > 0) { if (nRow > 0) { m1.m00 = values[0][0]; if (nRow > 1) { m1.m10 = values[1][0]; if (nRow > 2) { m1.m20 = values[2][0]; } } } if (nCol > 1) { if (nRow > 0) { m1.m01 = values[0][1]; if (nRow > 1) { m1.m11 = values[1][1]; if (nRow > 2) { m1.m21 = values[2][1]; } } } if (nCol > 2) { if (nRow > 0) { m1.m02 = values[0][2]; if (nRow > 1) { m1.m12 = values[1][2]; if (nRow > 2) { m1.m22 = values[2][2]; } } } } } } } else { m1.m00 = values[0][0]; m1.m01 = values[0][1]; m1.m02 = values[0][2]; m1.m10 = values[1][0]; m1.m11 = values[1][1]; m1.m12 = values[1][2]; m1.m20 = values[2][0]; m1.m21 = values[2][1]; m1.m22 = values[2][2]; } } /** * Places the values in the upper 4x4 of this GMatrix into the matrix m1. * * @param m1 The matrix that will hold the new values */ public final void get(Matrix4f m1) { if (nRow < 4 || nCol < 4) { m1.setZero(); if (nCol > 0) { if (nRow > 0) { m1.m00 = (float) values[0][0]; if (nRow > 1) { m1.m10 = (float) values[1][0]; if (nRow > 2) { m1.m20 = (float) values[2][0]; if (nRow > 3) { m1.m30 = (float) values[3][0]; } } } } if (nCol > 1) { if (nRow > 0) { m1.m01 = (float) values[0][1]; if (nRow > 1) { m1.m11 = (float) values[1][1]; if (nRow > 2) { m1.m21 = (float) values[2][1]; if (nRow > 3) { m1.m31 = (float) values[3][1]; } } } } if (nCol > 2) { if (nRow > 0) { m1.m02 = (float) values[0][2]; if (nRow > 1) { m1.m12 = (float) values[1][2]; if (nRow > 2) { m1.m22 = (float) values[2][2]; if (nRow > 3) { m1.m32 = (float) values[3][2]; } } } } if (nCol > 3) { if (nRow > 0) { m1.m03 = (float) values[0][3]; if (nRow > 1) { m1.m13 = (float) values[1][3]; if (nRow > 2) { m1.m23 = (float) values[2][3]; if (nRow > 3) { m1.m33 = (float) values[3][3]; } } } } } } } } } else { m1.m00 = (float) values[0][0]; m1.m01 = (float) values[0][1]; m1.m02 = (float) values[0][2]; m1.m03 = (float) values[0][3]; m1.m10 = (float) values[1][0]; m1.m11 = (float) values[1][1]; m1.m12 = (float) values[1][2]; m1.m13 = (float) values[1][3]; m1.m20 = (float) values[2][0]; m1.m21 = (float) values[2][1]; m1.m22 = (float) values[2][2]; m1.m23 = (float) values[2][3]; m1.m30 = (float) values[3][0]; m1.m31 = (float) values[3][1]; m1.m32 = (float) values[3][2]; m1.m33 = (float) values[3][3]; } } /** * Places the values of the specified column into the array parameter. * * @param col the target column number * @param array the array into which the column values will be placed */ public final void getColumn(int col, double[] array) { for (int i = 0; i < nRow; i++) { array[i] = values[i][col]; } } /** * Places the values of the specified column into the vector parameter. * * @param col the target column number * @param vector the vector into which the column values will be placed */ public final void getColumn(int col, GVector vector) { if (vector.size() < nRow) { vector.setSize(nRow); } for (int i = 0; i < nRow; i++) { vector.values[i] = values[i][col]; } } /** * Retrieves the value at the specified row and column of this matrix. * * @param row the row number to be retrieved (zero indexed) * @param column the column number to be retrieved (zero indexed) * @return the value at the indexed element */ public final double getElement(int row, int column) { return (values[row][column]); } /** * Returns the number of colmuns in this matrix. * * @return number of columns in this matrix */ public final int getNumCol() { return (nCol); } /** * Returns the number of rows in this matrix. * * @return number of rows in this matrix */ public final int getNumRow() { return (nRow); } /** * Places the values of the specified row into the array parameter. * * @param row the target row number * @param array the array into which the row values will be placed */ public final void getRow(int row, double[] array) { System.arraycopy(values[row], 0, array, 0, nCol); } /** * Places the values of the specified row into the vector parameter. * * @param row the target row number * @param vector the vector into which the row values will be placed */ public final void getRow(int row, GVector vector) { if (vector.size() < nCol) { vector.setSize(nCol); } System.arraycopy(values[row], 0, vector.values, 0, nCol); } /** * Returns a hash code value based on the data values in this object. Two * different GMatrix objects with identical data values (i.e., * GMatrix.equals returns true) will return the same hash number. Two * GMatrix objects with different data members may return the same hash * value, although this is not likely. * * @return the integer hash code value */ // @Override // public int hashCode() { // long bits = 1L; // // bits = 31L * bits + nRow; // bits = 31L * bits + nCol; // // for (int i = 0; i < nRow; i++) { // for (int j = 0; j < nCol; j++) { // bits = 31L * bits + VecMathUtil.doubleToLongBits(values[i][j]); // } // } // // return (int) (bits ^ (bits >> 32)); // } /** * Sets this GMatrix to the identity matrix. */ public final void identity() { int i, j; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = 0.0; } } int l; if (nRow < nCol) { l = nRow; } else { l = nCol; } for (i = 0; i < l; i++) { values[i][i] = 1.0; } } /** * Subtracts this matrix from the identity matrix and puts the values back * into this (this = I - this). */ public final void identityMinus() { int i, j; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = -values[i][j]; } } int l; if (nRow < nCol) { l = nRow; } else { l = nCol; } for (i = 0; i < l; i++) { values[i][i] += 1.0; } } /** * Inverts this matrix in place. */ public final void invert() { invertGeneral(this); } /** * Inverts matrix m1 and places the new values into this matrix. Matrix m1 * is not modified. * * @param m1 the matrix to be inverted */ public final void invert(GMatrix m1) { invertGeneral(m1); } /** * General invert routine. Inverts m1 and places the result in "this". Note * that this routine handles both the "this" version and the non-"this" * version. * * Also note that since this routine is slow anyway, we won't worry about * allocating a little bit of garbage. */ final void invertGeneral(GMatrix m1) { int size = m1.nRow * m1.nCol; double temp[] = new double[size]; double result[] = new double[size]; int row_perm[] = new int[m1.nRow]; int[] even_row_exchange = new int[1]; int i, j; // Use LU decomposition and backsubstitution code specifically // for floating-point nxn matrices. if (m1.nRow != m1.nCol) { // Matrix is either under or over determined throw new MatrixSizeException(); } // Copy source matrix to temp for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { temp[i * nCol + j] = m1.values[i][j]; } } // Calculate LU decomposition: Is the matrix singular? if (!decomposeLU(m1.nRow, temp, row_perm, even_row_exchange)) { // Matrix has no inverse throw new SingularMatrixException(); } // Perform back substitution on the identity matrix for (i = 0; i < size; i++) { result[i] = 0.0; } for (i = 0; i < nCol; i++) { result[i + i * nCol] = 1.0; } backSubstituteLU(m1.nRow, temp, row_perm, result); for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = result[i * nCol + j]; } } } /** * Sets the value of this matrix to the result of multiplying itself with * matrix m1 (this = this * m1). * * @param m1 the other matrix */ public final void mul(GMatrix m1) { int i, j, k; if (nCol != m1.nRow || nCol != m1.nCol) { throw new MatrixSizeException(); } double[][] tmp = new double[nRow][nCol]; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { tmp[i][j] = 0.0; for (k = 0; k < nCol; k++) { tmp[i][j] += values[i][k] * m1.values[k][j]; } } } values = tmp; } /** * Sets the value of this matrix to the result of multiplying the two * argument matrices together (this = m1 * m2). * * @param m1 the first matrix * @param m2 the second matrix */ public final void mul(GMatrix m1, GMatrix m2) { int i, j, k; if (m1.nCol != m2.nRow || nRow != m1.nRow || nCol != m2.nCol) { throw new MatrixSizeException(); } double[][] tmp = new double[nRow][nCol]; for (i = 0; i < m1.nRow; i++) { for (j = 0; j < m2.nCol; j++) { tmp[i][j] = 0.0; for (k = 0; k < m1.nCol; k++) { tmp[i][j] += m1.values[i][k] * m2.values[k][j]; } } } values = tmp; } /** * Computes the outer product of the two vectors; multiplies the the first * vector by the transpose of the second vector and places the matrix result * into this matrix. This matrix must be be as big or bigger than * getSize(v1)xgetSize(v2). * * @param v1 the first vector, treated as a row vector * @param v2 the second vector, treated as a column vector */ public final void mul(GVector v1, GVector v2) { int i, j; if (nRow < v1.size()) { throw new MatrixSizeException(); } if (nCol < v2.size()) { throw new MatrixSizeException(); } for (i = 0; i < v1.size(); i++) { for (j = 0; j < v2.size(); j++) { values[i][j] = v1.values[i] * v2.values[j]; } } } /** * Multiplies the transpose of matrix m1 times the transpose of matrix m2, * and places the result into this. * * @param m1 The matrix on the left hand side of the multiplication * @param m2 The matrix on the right hand side of the multiplication */ public final void mulTransposeBoth(GMatrix m1, GMatrix m2) { int i, j, k; if (m1.nRow != m2.nCol || nRow != m1.nCol || nCol != m2.nRow) { throw new MatrixSizeException(); } if (m1 == this || m2 == this) { double[][] tmp = new double[nRow][nCol]; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { tmp[i][j] = 0.0; for (k = 0; k < m1.nRow; k++) { tmp[i][j] += m1.values[k][i] * m2.values[j][k]; } } } values = tmp; } else { for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = 0.0; for (k = 0; k < m1.nRow; k++) { values[i][j] += m1.values[k][i] * m2.values[j][k]; } } } } } /** * Multiplies the transpose of matrix m1 times matrix m2, and places the * result into this. * * @param m1 The matrix on the left hand side of the multiplication * @param m2 The matrix on the right hand side of the multiplication */ public final void mulTransposeLeft(GMatrix m1, GMatrix m2) { int i, j, k; if (m1.nRow != m2.nRow || nCol != m2.nCol || nRow != m1.nCol) { throw new MatrixSizeException(); } if (m1 == this || m2 == this) { double[][] tmp = new double[nRow][nCol]; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { tmp[i][j] = 0.0; for (k = 0; k < m1.nRow; k++) { tmp[i][j] += m1.values[k][i] * m2.values[k][j]; } } } values = tmp; } else { for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = 0.0; for (k = 0; k < m1.nRow; k++) { values[i][j] += m1.values[k][i] * m2.values[k][j]; } } } } } /** * Multiplies matrix m1 times the transpose of matrix m2, and places the * result into this. * * @param m1 The matrix on the left hand side of the multiplication * @param m2 The matrix on the right hand side of the multiplication */ public final void mulTransposeRight(GMatrix m1, GMatrix m2) { int i, j, k; if (m1.nCol != m2.nCol || nCol != m2.nRow || nRow != m1.nRow) { throw new MatrixSizeException(); } if (m1 == this || m2 == this) { double[][] tmp = new double[nRow][nCol]; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { tmp[i][j] = 0.0; for (k = 0; k < m1.nCol; k++) { tmp[i][j] += m1.values[i][k] * m2.values[j][k]; } } } values = tmp; } else { for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = 0.0; for (k = 0; k < m1.nCol; k++) { values[i][j] += m1.values[i][k] * m2.values[j][k]; } } } } } /** * Negates the value of this matrix: this = -this. */ public final void negate() { int i, j; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = -values[i][j]; } } } /** * Sets the value of this matrix equal to the negation of of the GMatrix * parameter. * * @param m1 The source matrix */ public final void negate(GMatrix m1) { int i, j; if (nRow != m1.nRow || nCol != m1.nCol) { throw new MatrixSizeException(); } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = -m1.values[i][j]; } } } /** * Sets the value of this matrix to the values found in the array parameter. * The values are copied in one row at a time, in row major fashion. The * array should be at least equal in length to the number of matrix rows * times the number of matrix columns in this matrix. * * @param matrix the row major source array */ public final void set(double[] matrix) { int i, j; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = matrix[nCol * i + j]; } } } /** * Sets the value of this matrix to the values found in matrix m1. * * @param m1 the source matrix */ public final void set(GMatrix m1) { int i, j; if (nRow < m1.nRow || nCol < m1.nCol) { nRow = m1.nRow; nCol = m1.nCol; values = new double[nRow][nCol]; } for (i = 0; i < Math.min(nRow, m1.nRow); i++) { for (j = 0; j < Math.min(nCol, m1.nCol); j++) { values[i][j] = m1.values[i][j]; } } for (i = m1.nRow; i < nRow; i++) { // pad rest or matrix with zeros for (j = m1.nCol; j < nCol; j++) { values[i][j] = 0.0; } } } /** * Sets the value of this matrix to that of the Matrix3d provided. * * @param m1 the matrix */ public final void set(Matrix3d m1) { if (nRow < 3 || nCol < 3) { values = new double[3][3]; nRow = 3; nCol = 3; } values[0][0] = m1.m00; values[0][1] = m1.m01; values[0][2] = m1.m02; values[1][0] = m1.m10; values[1][1] = m1.m11; values[1][2] = m1.m12; values[2][0] = m1.m20; values[2][1] = m1.m21; values[2][2] = m1.m22; for (int i = 3; i < nRow; i++) { // pad rest or matrix with zeros for (int j = 3; j < nCol; j++) { values[i][j] = 0.0; } } } /** * Sets the value of this matrix to that of the Matrix4f provided. * * @param m1 the matrix */ public final void set(Matrix4f m1) { if (nRow < 4 || nCol < 4) { values = new double[4][4]; nRow = 4; nCol = 4; } values[0][0] = m1.m00; values[0][1] = m1.m01; values[0][2] = m1.m02; values[0][3] = m1.m03; values[1][0] = m1.m10; values[1][1] = m1.m11; values[1][2] = m1.m12; values[1][3] = m1.m13; values[2][0] = m1.m20; values[2][1] = m1.m21; values[2][2] = m1.m22; values[2][3] = m1.m23; values[3][0] = m1.m30; values[3][1] = m1.m31; values[3][2] = m1.m32; values[3][3] = m1.m33; for (int i = 4; i < nRow; i++) { // pad rest or matrix with zeros for (int j = 4; j < nCol; j++) { values[i][j] = 0.0; } } } /** * Copy the values from the array into the specified column of this matrix. * * @param col the column of this matrix into which the array values will be * copied * @param array the source array */ public final void setColumn(int col, double[] array) { for (int i = 0; i < nRow; i++) { values[i][col] = array[i]; } } /** * Copy the values from the vector into the specified column of this matrix. * * @param col the column of this matrix into which the array values will be * copied * @param vector the source vector */ public final void setColumn(int col, GVector vector) { for (int i = 0; i < nRow; i++) { values[i][col] = vector.values[i]; } } /** * Modifies the value at the specified row and column of this matrix. * * @param row the row number to be modified (zero indexed) * @param column the column number to be modified (zero indexed) * @param value the new matrix element value */ public final void setElement(int row, int column, double value) { values[row][column] = value; } /** * Copy the values from the array into the specified row of this matrix. * * @param row the row of this matrix into which the array values will be * copied. * @param array the source array */ public final void setRow(int row, double[] array) { System.arraycopy(array, 0, values[row], 0, nCol); } /** * Copy the values from the vector into the specified row of this matrix. * * @param row the row of this matrix into which the array values will be * copied * @param vector the source vector */ public final void setRow(int row, GVector vector) { System.arraycopy(vector.values, 0, values[row], 0, nCol); } /** * Sets this matrix to a uniform scale matrix; all of the values are reset. * * @param scale The new scale value */ public final void setScale(double scale) { int i, j, l; if (nRow < nCol) { l = nRow; } else { l = nCol; } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = 0.0; } } for (i = 0; i < l; i++) { values[i][i] = scale; } } /** * Changes the size of this matrix dynamically. If the size is increased no * data values will be lost. If the size is decreased, only those data * values whose matrix positions were eliminated will be lost. * * @param nRow number of desired rows in this matrix * @param nCol number of desired columns in this matrix */ public final void setSize(int nRow, int nCol) { double[][] tmp = new double[nRow][nCol]; int i, j, maxRow, maxCol; if (this.nRow < nRow) { maxRow = this.nRow; } else { maxRow = nRow; } if (this.nCol < nCol) { maxCol = this.nCol; } else { maxCol = nCol; } for (i = 0; i < maxRow; i++) { for (j = 0; j < maxCol; j++) { tmp[i][j] = values[i][j]; } } this.nRow = nRow; this.nCol = nCol; values = tmp; } /** * Sets all the values in this matrix to zero. */ public final void setZero() { int i, j; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = 0.0; } } } /** * Sets the value of this matrix to the matrix difference of itself and * matrix m1 (this = this - m1). * * @param m1 the other matrix */ public final void sub(GMatrix m1) { int i, j; if (nRow != m1.nRow) { throw new MatrixSizeException(); } if (nCol != m1.nCol) { throw new MatrixSizeException(); } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = values[i][j] - m1.values[i][j]; } } } /** * Sets the value of this matrix to the matrix difference of matrices m1 and * m2 (this = m1 - m2). * * @param m1 the first matrix * @param m2 the second matrix */ public final void sub(GMatrix m1, GMatrix m2) { int i, j; if (m2.nRow != m1.nRow) { throw new MatrixSizeException(); } if (m2.nCol != m1.nCol) { throw new MatrixSizeException(); } if (nRow != m1.nRow || nCol != m1.nCol) { throw new MatrixSizeException(); } for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = m1.values[i][j] - m2.values[i][j]; } } } /** * Returns a string that contains the values of this GMatrix. * * @return the String representation */ @Override public String toString() { StringBuilder buffer = new StringBuilder(nRow * nCol * 8); int i, j; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { buffer.append(values[i][j]).append(" "); } buffer.append("\n"); } return buffer.toString(); } /** * Returns the trace of this matrix. * * @return the trace of this matrix */ public final double trace() { int i, l; double t; if (nRow < nCol) { l = nRow; } else { l = nCol; } t = 0.0; for (i = 0; i < l; i++) { t += values[i][i]; } return t; } /** * Transposes this matrix in place. */ public final void transpose() { int i, j; if (nRow != nCol) { double[][] tmp; i = nRow; nRow = nCol; nCol = i; tmp = new double[nRow][nCol]; for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { tmp[i][j] = values[j][i]; } } values = tmp; } else { double swap; for (i = 0; i < nRow; i++) { for (j = 0; j < i; j++) { swap = values[i][j]; values[i][j] = values[j][i]; values[j][i] = swap; } } } } /** * Places the matrix values of the transpose of matrix m1 into this matrix. * * @param m1 the matrix to be transposed (but not modified) */ public final void transpose(GMatrix m1) { int i, j; if (nRow != m1.nCol || nCol != m1.nRow) { throw new MatrixSizeException(); } if (m1 != this) { for (i = 0; i < nRow; i++) { for (j = 0; j < nCol; j++) { values[i][j] = m1.values[j][i]; } } } else { transpose(); } } }