module CosSinCalc class Triangle module Calculator include Math def calculate_variables case sides.amount when 3 then calculate_three_angles when 2 then calculate_two_angles when 1 then calculate_two_sides end end # Calculates the last unknown angle and side. # This function is public so it is derectly callable (used with ambiguous case). def calculate_side_and_angle calculate_two_sides end # Calculates the value of an angle when all the sides are known. def calculate_angle_by_sides(v, r) acos (sq(sides(r)).inject(&:+) - sq(side(v))) / (2 * sides(r).inject(&:*)) end # Add a calculation step to the list of equations performed. def equation(latex, *variables) @equations ||= [] @equations << [latex, variables] end private # Returns the first variable in the given array and the rest of the variables separately. def first(vars) return vars.first, rest(vars.first) end def sq(value) value.is_a?(Array) ? value.map { |n| n * n } : (value * value) end # Calculates all three angles when all three sides are known. def calculate_three_angles each(angles.unknown) do |v, r| angle[v] = calculate_angle_by_sides(v, r) equation('@1=\arccos\left(\frac{$2^2+$3^2-$1^2}{2 * $2 * $3}\right)', v, *r) end end # Calculates two unknown angles when two sides and one angle are known. def calculate_two_angles v, r = first(angles.known) unless side(v) side[v] = sqrt sq(sides(r)).inject(&:+) - 2 * sides(r).inject(&:*) * cos(angle(v)) equation('$1=\sqrt{$2^2+$3^2-2 * $2 * $3 * \cos(@1)}', v, *r) calculate_three_angles return end v2, r2 = first sides.known(r) angle[v2] = asin sin(angle(v)) * side(v2) / side(v) equation('@2=\arcsin\left(\frac{\sin(@1) * $2}{$1}\right)', v, v2) if ambiguous_case?(v, v2) @alt = CosSinCalc::Triangle.new(sides, angles, self) @alt.angle[v2] = PI - angle(v2) @alt.equation('@2=@pi-\arcsin\left(\frac{\sin(@1) * $2}{$1}\right)', v, v2) @alt.calculate_side_and_angle end calculate_two_sides end # Calculates up to two unknown sides when at least one side and two angles are known. def calculate_two_sides calculate_last_angle v, r = first(sides.known) each sides.unknown(r) do |v2| side[v2] = sin(angle(v2)) * side(v) / sin(angle(v)) equation('$2=\frac{\sin(@2) * $1}{\sin(@1)}', v, v2) end end # Calculates the last unknown angle. def calculate_last_angle v, r = first(angles.unknown) angle[v] = PI - angles(r).inject(&:+) equation('@1=@pi-@2-@3', v, *r) end # Calculates and returns whether the triangle has multiple solutions. # See http://en.wikipedia.org/wiki/Law_of_sines#The_ambiguous_case def ambiguous_case?(v1, v2) acute?(angle(v1)) && side(v1) < side(v2) && side(v1) > side(v2) * sin(angle(v1)) end end end end