# ******************************************************************************* # OpenStudio(R), Copyright (c) 2008-2023, Alliance for Sustainable Energy, LLC. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # (1) Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # (3) Neither the name of the copyright holder nor the names of any contributors # may be used to endorse or promote products derived from this software without # specific prior written permission from the respective party. # # (4) Other than as required in clauses (1) and (2), distributions in any form # of modifications or other derivative works may not use the "OpenStudio" # trademark, "OS", "os", or any other confusingly similar designation without # specific prior written permission from Alliance for Sustainable Energy, LLC. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND ANY CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S), ANY CONTRIBUTORS, THE # UNITED STATES GOVERNMENT, OR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF # THEIR EMPLOYEES, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ******************************************************************************* require 'csv' # start the measure class SetNISTInfiltrationCorrelations < OpenStudio::Measure::ModelMeasure # human readable name def name # Measure name should be the title case of the class name. return 'SetNISTInfiltrationCorrelations' end # human readable description def description return "This measure incorporates infiltration that varies with weather and HVAC operation, and takes into account building geometry (height, above-ground exterior surface area, and volume). It is based on work published by Ng et al. (2018) <a href='https://doi.org/10.1016/j.buildenv.2017.10.029'>'Weather correlations to calculate infiltration rates for U.S. commercial building energy models'</a> and Ng et al. (2021) <a href='https://doi.org/10.1016/j.buildenv.2021.107783'>'Evaluating potential benefits of air barriers in commercial buildings using NIST infiltration correlations in EnergyPlus'</a>. This method of calculating infiltration was developed using eleven of the DOE commercial prototype building models (<a href='https://www.energycodes.gov/development/commercial/prototype_models'>Goel et al. 2014</a>) and TMY3 weather files for eight climate zones (CZ). Guidance on implementing the infiltration correlations are explained in the NIST technical report <a href='https://doi.org/10.6028/NIST.TN.2221'>'Implementing NIST Infiltration Correlations'</a>. Ng et al. (2018) shows that when analyzing the benefits of building envelope airtightening, greater HVAC energy savings were predicted using the infiltration inputs included in this Measure compared with using the default inputs that are included in the prototype building models. Brian Polidoro (NIST) first developed this Measure in 2015 and updated it in 2018 and 2019. Matthew Dahlhausen (NREL) updated the 2019 Measure and published this current version in 2023. To provide feedback on the NIST infiltration correlations, please email infiltration@list.nist.gov or lisa.ng@nist.gov. For measure implementation questions or issues, contact matthew.dahlhausen@nrel.gov." end # human readable description of modeling approach def modeler_description return "This measure will remove any existing infiltration objects (OS:SpaceInfiltration:DesignFlowRate and OS:SpaceInfiltration:EffectiveLeakageArea). Every zone will then get two OS:SpaceInfiltration:DesignFlowRate objects that add infiltration using the 'Flow per Exterior Surface Area' input option, one infiltration object when the HVAC system is on and one object when the HVAC system is off. The method assumes that HVAC operation is set by a schedule, though it may not reflect actual simulation/operation when fan operation may depend on internal loads and temperature setpoints. By default, interior zones will receive no infiltration. The user may enter a design building envelope airtightness at a specific design pressure, and whether the design value represents a 4-sided, 5-sided, or 6-sided normalization. By default, the measure assumes an airtightness design value of 13.8 (m^3/h-m^2) at 75 Pa. The measure assumes that infiltration is evenly distributed across the entire building envelope, including the roof. The user may select the HVAC system operating schedule in the model, or infer it based on the availability schedule of the air loop that serves the largest amount of floor area. The measure will make a copy of the HVAC operating schedule, 'Infiltration HVAC On Schedule', which is used with the HVAC on infiltration correlations. The measure will also make an 'Infiltration HVAC Off Schedule' with inverse operation, used with the HVAC off infiltration correlations. OS:SpaceInfiltration:DesignFlowRate object coefficients (A, B, C, and D) come from Ng et al. (2018). The user may select the Building Type and Climate Zone, or the measure will infer them from the model." end # DOE prototype buildings for which there are NIST infiltration coefficients def nist_building_types building_types = OpenStudio::StringVector.new building_types << 'SecondarySchool' building_types << 'PrimarySchool' building_types << 'SmallOffice' building_types << 'MediumOffice' building_types << 'SmallHotel' building_types << 'LargeHotel' building_types << 'RetailStandalone' building_types << 'RetailStripmall' building_types << 'Hospital' building_types << 'MidriseApartment' building_types << 'HighriseApartment' return building_types end def infer_nist_building_type(model) if model.getBuilding.standardsBuildingType.is_initialized model_building_type = model.getBuilding.standardsBuildingType.get else model_building_type = '' end case model_building_type when 'Office' # map office building type to small medium or large floor_area = model.getBuilding.floorArea if floor_area < 2750.0 nist_building_type = 'SmallOffice' else nist_building_type = 'MediumOffice' end when 'LargeOffice' nist_building_type = 'MediumOffice' when 'Retail' # map retal building type to RetailStripmall or RetailStandalone based on building name building_name = model.getBuilding.name.get if building_name.include? 'RetailStandalone' nist_building_type = 'RetailStandalone' else nist_building_type = 'RetailStripmall' end when 'StripMall' nist_building_type = 'RetailStripmall' when 'Warehouse' nist_building_type = 'RetailStripmall' when 'QuickServiceRestaurant' nist_building_type = 'RetailStripmall' when 'FullServiceRestaurant' nist_building_type = 'RetailStripmall' when 'Outpatient' nist_building_type = 'MediumOffice' when 'SuperMarket' nist_building_type = 'RetailStandalone' when 'EPr' nist_building_type = 'PrimarySchool' when 'ESe' nist_building_type = 'SecondarySchool' when 'RtL' nist_building_type = 'RetailStandalone' when 'RtS' nist_building_type = 'RetailStripmall' when 'RSD' nist_building_type = 'RetailStripmall' when 'RFF' nist_building_type = 'RetailStripmall' when 'Mtl' nist_building_type = 'SmallHotel' when 'Htl' nist_building_type = 'LargeHotel' when 'Hsp' nist_building_type = 'Hospital' when 'OfS' nist_building_type = 'SmallOffice' when 'OfL' nist_building_type = 'MediumOffice' when 'SCn' nist_building_type = 'RetailStripmall' else nist_building_type = model_building_type end results = {} results['model_building_type'] = model_building_type results['nist_building_type'] = nist_building_type return results end # method to invert a schedule day def invert_schedule_day(old_schedule_day, new_schedule_day, new_schedule_name) new_schedule_day.setName("#{new_schedule_name}") for index in 0..old_schedule_day.times.size-1 old_value = old_schedule_day.values[index] if old_value == 0 new_value = 1 else new_value = 0 end new_schedule_day.addValue(old_schedule_day.times[index], new_value) end return new_schedule_day end # method to invert a schedule ruleset def invert_schedule_ruleset(schedule_ruleset, new_schedule_name) model = schedule_ruleset.model new_schedule = OpenStudio::Model::ScheduleRuleset.new(model, 0.0) new_schedule.setName(new_schedule_name) # change summer design day summer_design_day_schedule = schedule_ruleset.summerDesignDaySchedule new_summer_design_day_schedule = OpenStudio::Model::ScheduleDay.new(model) invert_schedule_day(summer_design_day_schedule, new_summer_design_day_schedule, "#{new_schedule_name} Summer Design Day Schedule") new_schedule.setSummerDesignDaySchedule(new_summer_design_day_schedule) # change winter design day winter_design_day_schedule = schedule_ruleset.winterDesignDaySchedule new_winter_design_day_schedule = OpenStudio::Model::ScheduleDay.new(model) invert_schedule_day(winter_design_day_schedule, new_winter_design_day_schedule, "#{new_schedule_name} Winter Design Day Schedule") new_schedule.setWinterDesignDaySchedule(new_winter_design_day_schedule) # change the default day values default_day_schedule = schedule_ruleset.defaultDaySchedule new_default_day_schedule = new_schedule.defaultDaySchedule invert_schedule_day(default_day_schedule, new_default_day_schedule, "#{new_schedule_name} Default Day Schedule") # change for schedule rules schedule_ruleset.scheduleRules.each_with_index do |rule, i| old_schedule_day = rule.daySchedule new_schedule_day = OpenStudio::Model::ScheduleDay.new(model) invert_schedule_day(old_schedule_day, new_schedule_day, "#{new_schedule_name} Schedule Day #{i}") new_rule = OpenStudio::Model::ScheduleRule.new(new_schedule, new_schedule_day) new_rule.setName("#{new_schedule_day.name} Rule") new_rule.setApplySunday(rule.applySunday) new_rule.setApplyMonday(rule.applyMonday) new_rule.setApplyTuesday(rule.applyTuesday) new_rule.setApplyWednesday(rule.applyWednesday) new_rule.setApplyThursday(rule.applyThursday) new_rule.setApplyFriday(rule.applyFriday) new_rule.setApplySaturday(rule.applySaturday) end return new_schedule end # define the arguments that the user will input def arguments(model) args = OpenStudio::Measure::OSArgumentVector.new # airtightness value airtightness_value = OpenStudio::Measure::OSArgument::makeDoubleArgument('airtightness_value', false) airtightness_value.setDefaultValue(13.8) airtightness_value.setDisplayName('Airtightness design value (m^3/h-m^2)') airtightness_value.setDescription('The airtightness design value from a building pressurization test. Use 5.0 (m^3/h-m^2) as a default for buildings with air barriers. Convert (cfm/ft^2) to (m^3/h-m^2) by multiplying by 18.288 (m-min/ft-hr). (0.3048 m/ft)*(60 min/hr) = 18.288 (m-min/ft-hr).') args << airtightness_value # airtightness pressure airtightness_pressure = OpenStudio::Measure::OSArgument::makeDoubleArgument('airtightness_pressure', false) airtightness_pressure.setDefaultValue(75.0) airtightness_pressure.setDisplayName('Airtightness design pressure (Pa)') airtightness_pressure.setDescription('The corresponding pressure for the airtightness design value, typically 75 Pa for commercial buildings and 50 Pa for residential buildings.') args << airtightness_pressure # choices for air-tightness scope airtightness_choices = OpenStudio::StringVector.new airtightness_choices << '4-sided' airtightness_choices << '5-sided' airtightness_choices << '6-sided' # airtightness area airtightness_area = OpenStudio::Measure::OSArgument.makeChoiceArgument('airtightness_area', airtightness_choices, false) airtightness_area.setDefaultValue('5-sided') airtightness_area.setDisplayName('Airtightness exterior surface area scope') airtightness_area.setDescription('Airtightness measurements are weighted by exterior surface area. 4-sided values divide infiltration by exterior wall area. 5-sided values additionally include roof area. 6-sided values additionally include floor and ground area.') args << airtightness_area # air barrier air_barrier = OpenStudio::Measure::OSArgument::makeBoolArgument('air_barrier', false) air_barrier.setDefaultValue(false) air_barrier.setDisplayName('Does the building have an air barrier?') air_barrier.setDescription('Buildings with air barriers use a different set of coefficients.') args << air_barrier # populate choice argument for schedules in the model sch_handles = OpenStudio::StringVector.new sch_display_names = OpenStudio::StringVector.new # populate choice argument for schedules that are applied to surfaces in the model schedule_handles = OpenStudio::StringVector.new schedule_display_names = OpenStudio::StringVector.new # putting space types and names into hash schedule_names = [] schedule_names << 'Lookup From Model' model.getScheduleRulesets.each { |sch| schedule_names << sch.name.to_s } model.getScheduleConstants.each { |sch| schedule_names << sch.name.to_s } # hvac operation schedule hvac_schedule = OpenStudio::Measure::OSArgument::makeChoiceArgument('hvac_schedule', schedule_names, false, true) hvac_schedule.setDefaultValue('Lookup From Model') hvac_schedule.setDisplayName('HVAC Operating Schedule') hvac_schedule.setDescription('Choose the HVAC Operating Schedule for the building. The schedule must be a Schedule Constant or Schedule Ruleset object. Lookup From Model will use the operating schedule from the largest airloop by floor area served. If the largest airloop serves less than 5% of the building, the measure will attempt to use the Building Hours of Operation schedule instead.') args << hvac_schedule # climate zone options cz_choices = OpenStudio::StringVector.new cz_choices << '1A' cz_choices << '1B' cz_choices << '2A' cz_choices << '2B' cz_choices << '3A' cz_choices << '3B' cz_choices << '3C' cz_choices << '4A' cz_choices << '4B' cz_choices << '4C' cz_choices << '5A' cz_choices << '5B' cz_choices << '5C' cz_choices << '6A' cz_choices << '6B' cz_choices << '7A' cz_choices << '8A' cz_choices << 'Lookup From Model' # climate zone climate_zone = OpenStudio::Measure::OSArgument.makeChoiceArgument('climate_zone', cz_choices, false) climate_zone.setDefaultValue('Lookup From Model') climate_zone.setDisplayName('Climate Zone') climate_zone.setDescription('Specify the ASHRAE climate zone. CEC climate zones are not supported.') args << climate_zone # building type options building_types = nist_building_types building_types << 'Lookup From Model' # building type building_type = OpenStudio::Measure::OSArgument.makeChoiceArgument('building_type', building_types, false) building_type.setDefaultValue('Lookup From Model') building_type.setDisplayName('Building Type') building_type.setDescription('If the building type is not available, pick the one with the most similar geometry and exhaust fan flow rates.') args << building_type return args end # define what happens when the measure is run def run(model, runner, user_arguments) super(model, runner, user_arguments) # use the built-in error checking if !runner.validateUserArguments(arguments(model), user_arguments) return false end # assign the user inputs to variables airtightness_value = runner.getDoubleArgumentValue('airtightness_value', user_arguments) airtightness_pressure = runner.getDoubleArgumentValue('airtightness_pressure', user_arguments) airtightness_area = runner.getStringArgumentValue('airtightness_area', user_arguments) air_barrier = runner.getBoolArgumentValue('air_barrier', user_arguments) hvac_schedule = runner.getStringArgumentValue('hvac_schedule', user_arguments) climate_zone = runner.getStringArgumentValue('climate_zone', user_arguments) building_type = runner.getStringArgumentValue('building_type', user_arguments) # validate airtightness value and pressure if airtightness_value < 0.0 runner.registerError('Airtightness value must be postive.') return false end if airtightness_pressure < 0.0 runner.registerError('Airtightness pressure must be postive.') return false end # calculate infiltration design value at 4 Pa airtightness_value_4pa_per_hr = airtightness_value * ((4.0 / airtightness_pressure)**0.65) runner.registerInfo("User-inputed airtightness design value #{airtightness_value} (m^3/h-m^2) at #{airtightness_pressure} Pa converts to #{airtightness_value_4pa_per_hr.round(7)} (m^3/h-m^2) at 4 Pa") # convert to m^3/s-m^2 airtightness_value_4pa_per_s = airtightness_value_4pa_per_hr / 3600.0 # get 4-sided, 5-sided, and 6-sided areas exterior_wall_area = 0.0 exterior_roof_area = 0.0 exterior_floor_area = 0.0 ground_wall_area = 0.0 ground_roof_area = 0.0 ground_floor_area = 0.0 model.getSurfaces.each do |surface| bc = surface.outsideBoundaryCondition type = surface.surfaceType area = surface.grossArea exterior_wall_area += area if bc == 'Outdoors' && type == 'Wall' exterior_roof_area += area if bc == 'Outdoors' && type == 'RoofCeiling' exterior_floor_area += area if bc == 'Outdoors' && type == 'Floor' ground_wall_area += area if bc == 'Ground' && type == 'Wall' ground_roof_area += area if bc == 'Ground' && type == 'RoofCeiling' ground_floor_area += area if bc == 'Ground' && type == 'Floor' end four_sided_area = exterior_wall_area + ground_wall_area five_sided_area = exterior_wall_area + ground_wall_area + exterior_roof_area + ground_roof_area six_sided_area = exterior_wall_area + ground_wall_area + exterior_roof_area + ground_roof_area + exterior_floor_area + ground_floor_area energy_plus_area = exterior_wall_area + exterior_roof_area runner.registerInfo("4-sided area = #{four_sided_area.round(2)} m^2, 5-sided area = #{five_sided_area.round(2)} m^2, 6-sided area = #{six_sided_area.round(2)} m^2.") # The SpaceInfiltrationDesignFlowRate object FlowperExteriorSurfaceArea method only counts surfaces with the 'Outdoors' boundary conditions towards exterior surface area, not surfaces with the 'Ground' boundary conditions. That means all values need to be normalized to exterior wall and roof area. case airtightness_area when '4-sided' design_infiltration_4pa = airtightness_value_4pa_per_s * (four_sided_area / energy_plus_area) runner.registerInfo("#{airtightness_area} infiltration design value #{airtightness_value_4pa_per_s.round(7)} (m^3/s-m^2) converted to #{design_infiltration_4pa.round(7)} (m^3/s-m^2) based on 4-sided area #{four_sided_area.round(2)} m^2 and 5-sided area #{energy_plus_area.round(2)} m^2 excluding ground boundary surfaces for energyplus.") when '5-sided' design_infiltration_4pa = airtightness_value_4pa_per_s * (five_sided_area / energy_plus_area) runner.registerInfo("#{airtightness_area} infiltration design value #{airtightness_value_4pa_per_s.round(7)} (m^3/s-m^2) converted to #{design_infiltration_4pa.round(7)} (m^3/s-m^2) based on 5-sided area #{five_sided_area.round(2)} m^2 and 5-sided area #{energy_plus_area.round(2)} m^2 excluding ground boundary surfaces for energyplus.") when '6-sided' design_infiltration_4pa = airtightness_value_4pa_per_s * (six_sided_area / energy_plus_area) runner.registerInfo("#{airtightness_area} infiltration design value #{airtightness_value_4pa_per_s.round(7)} (m^3/s-m^2) converted to #{design_infiltration_4pa.round(7)} (m^3/s-m^2) based on 6-sided area #{six_sided_area.round(2)} m^2 and 5-sided area #{energy_plus_area.round(2)} m^2 excluding ground boundary surfaces for energyplus.") end runner.registerValue('design_infiltration_4pa', design_infiltration_4pa, 'm/s') # validate hvac schedule if hvac_schedule == 'Lookup From Model' # lookup from model, using largest air loop # check multiple kinds of systems, including unitary systems hvac_schedule = nil largest_area = 0.0 model.getAirLoopHVACs.each do |air_loop| air_loop_area = 0.0 air_loop.thermalZones.each { |tz| air_loop_area += tz.floorArea } if air_loop_area > largest_area hvac_schedule = air_loop.availabilitySchedule largest_area = air_loop_area end end model.getAirLoopHVACUnitarySystems.each do |unitary| next unless unitary.thermalZone.is_initialized air_loop_area = unitary.thermalZone.get.floorArea if air_loop_area > largest_area if unitary.availabilitySchedule.is_initialized hvac_schedule = unitary.availabilitySchedule.get else hvac_schedule = model.alwaysOnDiscreteSchedule end largest_area = air_loop_area end end model.getAirLoopHVACUnitaryHeatPumpAirToAirs.each do |unitary| next unless unitary.controllingZone.is_initialized air_loop_area = unitary.controllingZone.get.floorArea if air_loop_area > largest_area hvac_schedule = unitary.availabilitySchedule.get largest_area = air_loop_area end end model.getAirLoopHVACUnitaryHeatPumpAirToAirMultiSpeeds.each do |unitary| next unless unitary.controllingZoneorThermostatLocation.is_initialized air_loop_area = unitary.controllingZoneorThermostatLocation.get.floorArea if air_loop_area > largest_area if unitary.availabilitySchedule.is_initialized hvac_schedule = unitary.availabilitySchedule.get else hvac_schedule = model.alwaysOnDiscreteSchedule end largest_area = air_loop_area end end model.getFanZoneExhausts.each do |fan| next unless fan.thermalZone.is_initialized air_loop_area = fan.thermalZone.get.floorArea if air_loop_area > largest_area if fan.availabilitySchedule.is_initialized hvac_schedule = fan.availabilitySchedule.get else hvac_schedule = model.alwaysOnDiscreteSchedule end largest_area = air_loop_area end end building_area = model.getBuilding.floorArea if largest_area < 0.05*building_area runner.registerWarning("The largest airloop or HVAC system serves #{largest_area.round(1)} m^2, which is less than 5% of the building area #{building_area.round(1)} m^2. Attempting to use building hours of operation schedule instead.") default_schedule_set = model.getBuilding.defaultScheduleSet if default_schedule_set.is_initialized default_schedule_set = default_schedule_set.get hoo = default_schedule_set.hoursofOperationSchedule if hoo.is_initialized hvac_schedule = hoo.get largest_area = building_area else runner.registerWarning("Unable to determine building hours of operation schedule. Treating the building as if there is no HVAC system schedule.") hvac_schedule = nil end else runner.registerWarning("Unable to determine building hours of operation schedule. Treating the building as if there is no HVAC system schedule.") hvac_schedule = nil end end unless hvac_schedule.nil? area_fraction = 100.0 * largest_area / building_area runner.registerInfo("Using schedule #{hvac_schedule.name} serving area #{largest_area.round(1)} m^2, #{area_fraction.round(0)}% of building area #{building_area.round(1)} m^2 to determine infiltration on/off schedule.") end else hvac_schedule = model.getScheduleByName(hvac_schedule) unless schedule_object.is_initialized runner.registerError("HVAC schedule argument #{hvac_schedule} not found in the model. IT may have been removed by another measure.") return false end hvac_schedule = hvac_schedule.get if hvac_schedule.get.to_ScheduleRuleset.is_initialized hvac_schedule = hvac_schedule.get.to_ScheduleRuleset.get elsif hvac_schedule.get.to_ScheduleConstant.is_initialized hvac_schedule = hvac_schedule.get.to_ScheduleConstant.get else runner.registerError("HVAC schedule argument #{hvac_schedule} is not a Schedule Constant or Schedule Ruleset object.") return false end runner.registerInfo("Using HVAC schedule #{hvac_schedule.name} from user arguments to determine infiltration on/off schedule.") end # creating infiltration schedules based on hvac schedule if hvac_schedule.nil? runner.registerWarning('Unable to determine the HVAC schedule. Treating the building as if there is no HVAC system with outdoor air. If this is not the case, input a schedule argument, or assign one to an air loop in the model.') on_schedule = OpenStudio::Model::ScheduleConstant.new(model) on_schedule.setName("Infiltration HVAC On Schedule") on_schedule.setValue(0.0) off_schedule = OpenStudio::Model::ScheduleConstant.new(model) off_schedule.setName("Infiltration HVAC Off Schedule") off_schedule.setValue(1.0) elsif hvac_schedule.to_ScheduleConstant.is_initialized hvac_schedule = hvac_schedule.to_ScheduleConstant.get on_schedule = OpenStudio::Model::ScheduleConstant.new(model) on_schedule.setName("Infiltration HVAC On Schedule") on_schedule.setValue(hvac_schedule.value) off_schedule = OpenStudio::Model::ScheduleConstant.new(model) off_schedule.setName("Infiltration HVAC Off Schedule") if hvac_schedule.value > 0 off_schedule.setValue(0.0) else off_schedule.setValue(1.0) end elsif hvac_schedule.to_ScheduleRuleset.is_initialized hvac_schedule = hvac_schedule.to_ScheduleRuleset.get on_schedule = hvac_schedule.clone.to_ScheduleRuleset.get on_schedule.setName("Infiltration HVAC On Schedule") off_schedule = invert_schedule_ruleset(hvac_schedule, 'Infiltration HVAC Off Schedule') end # validate climate zone if climate_zone == 'Lookup From Model' climate_zone = '' model.getClimateZones.climateZones.each do |cz| next if cz.value == '' cz_institution = cz.institution if cz_institution == 'ASHRAE' climate_zone = cz.value climate_zone = climate_zone.gsub('ASHRAE 169-2006-','') climate_zone = climate_zone.gsub('ASHRAE 169-2013-','') climate_zone = climate_zone.gsub('ASHRAE 169-2020-','') climate_zone = climate_zone.gsub('ASHRAE 169-2021-','') elsif cz_institution == 'CEC' california_cz = cz.value.gsub('CEC','') case california_cz when '1' climate_zone = '4B' when '2','3','4','5','6' climate_zone = '3C' when '7','8','9','10','11','12','13','14' climate_zone = '3B' when '15' climate_zone = '2B' when '16' climate_zone = '5B' end runner.registerWarning("Using ASHRAE climate zone #{climate_zone} for California climate zone #{california_cz}.") end end if climate_zone == '' runner.registerError('Unable to determine an ASHRAE climate zone for the model. An ASHRAE climate zone value is necessary to lookup the coefficients.') return false end runner.registerInfo("Using climate zone #{climate_zone} from model.") else runner.registerInfo("Using climate zone #{climate_zone} from user arguments.") end # get climate zone number climate_zone_number = climate_zone.delete('^0-9').to_i # validate building type if building_type == 'Lookup From Model' # get building type from the model building_type_data = infer_nist_building_type(model) model_building_type = building_type_data['model_building_type'] nist_building_type = building_type_data['nist_building_type'] building_type = nist_building_type # check that model building type is supported unless nist_building_types.include? nist_building_type runner.registerError("NIST coefficients are not available for model building type #{nist_building_type}.") return false end # warn the user if the model building type is different from support nist building types unless model_building_type == nist_building_type runner.registerWarning("Using building type #{building_type} for model building type #{model_building_type}.") else runner.registerInfo("Using building type #{building_type} from model.") end else runner.registerInfo("Using building type #{building_type} from user arguments.") end # remove existing infiltration objects runner.registerInitialCondition("The modeled started with #{model.getSpaceInfiltrationDesignFlowRates.size} infiltration objects and #{model.getSpaceInfiltrationEffectiveLeakageAreas.size} effective leakage area objects.") model.getSpaceInfiltrationDesignFlowRates.each(&:remove) model.getSpaceInfiltrationEffectiveLeakageAreas.each(&:remove) # load NIST infiltration correlations file and convert to hash table nist_infiltration_correlations_csv = "#{File.dirname(__FILE__)}/resources/Data-NISTInfiltrationCorrelations.csv" if not File.file?(nist_infiltration_correlations_csv) runner.registerError("Unable to find file: #{nist_infiltration_correlations_csv}") return nil end coefficients_tbl = CSV.table(nist_infiltration_correlations_csv) coefficients_hsh = coefficients_tbl.map { |row| row.to_hash } # select down to building type and climate zone coefficients = coefficients_hsh.select { |r| (r[:building_type] == building_type) && (r[:climate_zone] == climate_zone_number) } # filter by air barrier if air_barrier coefficients = coefficients.select { |r| r[:air_barrier] == 'yes'} else coefficients = coefficients.select { |r| r[:air_barrier] == 'no'} end # determine coefficients # if no off coefficients are defined, use 0 for a and the on coefficients for b and d on_coefficients = coefficients.select { |r| r[:hvac_status] == 'on'} off_coefficients = coefficients.select { |r| r[:hvac_status] == 'off'} a_on = on_coefficients[0][:a] b_on = on_coefficients[0][:b] d_on = on_coefficients[0][:d] a_off = off_coefficients[0][:a].nil? ? on_coefficients[0][:a] : off_coefficients[0][:a] b_off = off_coefficients[0][:b].nil? ? on_coefficients[0][:b] : off_coefficients[0][:b] d_off = off_coefficients[0][:d].nil? ? on_coefficients[0][:d] : off_coefficients[0][:d] # add new infiltration objects # define infiltration as flow per exterior area model.getSpaces.each do |space| next unless space.exteriorArea > 0.0 hvac_on_infiltration = OpenStudio::Model::SpaceInfiltrationDesignFlowRate.new(model) hvac_on_infiltration.setName("#{space.name.get} HVAC On Infiltration") hvac_on_infiltration.setFlowperExteriorSurfaceArea(design_infiltration_4pa) hvac_on_infiltration.setConstantTermCoefficient(a_on) hvac_on_infiltration.setTemperatureTermCoefficient(b_on) hvac_on_infiltration.setVelocityTermCoefficient(0.0) hvac_on_infiltration.setVelocitySquaredTermCoefficient(d_on) hvac_on_infiltration.setSpace(space) hvac_on_infiltration.setSchedule(on_schedule) hvac_off_infiltration = OpenStudio::Model::SpaceInfiltrationDesignFlowRate.new(model) hvac_off_infiltration.setName("#{space.name.get} HVAC Off Infiltration") hvac_off_infiltration.setFlowperExteriorSurfaceArea(design_infiltration_4pa) hvac_off_infiltration.setConstantTermCoefficient(a_off) hvac_off_infiltration.setTemperatureTermCoefficient(b_off) hvac_off_infiltration.setVelocityTermCoefficient(0.0) hvac_off_infiltration.setVelocitySquaredTermCoefficient(d_off) hvac_off_infiltration.setSpace(space) hvac_off_infiltration.setSchedule(off_schedule) end runner.registerFinalCondition("The modeled finished with #{model.getSpaceInfiltrationDesignFlowRates.size} infiltration objects.") return true end end # register the measure to be used by the application SetNISTInfiltrationCorrelations.new.registerWithApplication