require "rubygems" gem "malge" require "malge/simultaneousequations.rb" # Class to deal with lattice axes in three dimensional space, # related to cell parameter and crystal axes. # Lattice information cannot be changed after initialized. # # When lattice axes of three vectors are given, # lattice axes are automatically converted as below. # - c axes in internal axis is along to z axis in cartesian axis. # - b axes in internal axis is on the b-c plane. # - a axes in internal axis is set to be a right-hand system. # E.g., # [ [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.0, 0.5, 0.5] ] # will be converted to # [ [0.57735, 0.20412, 0.35355], # [0.00000, 0.61237, 0.35355], # [0.00000, 0.00000, 0.70710]] class CrystalCell::LatticeAxes < Mageo::Axes class InitializeError < Exception; end class ArgumentError < Exception; end class TypeError < Exception; end include Math include Mageo # Argument 'vectors' is three vectors with the order of a, b, c. # If you want to make LatticeAxes instances from lattice constants, # you should convert to axes with LatticeAxes.lc_to_axes # 任意の向きのベクトルを渡しても、必ず triangulate する。 def initialize(vectors) raise InitializeError, "#{vectors.inspect}" unless vectors.size == 3 if vectors.class == CrystalCell::LatticeAxes @axes = vectors else begin vectors = self.class.triangulate(vectors) rescue Vector3D::RangeError raise InitializeError, "#{vectors.inspect}" end super(vectors) end end ## Class methods # Generate new instance from lattice constants. def self.new_lc(lc) vec = CrystalCell::LatticeAxes.lc_to_axes(lc) CrystalCell::LatticeAxes.new(vec) end # Convert six lattice constants to three axes. # Set true to the argument of 'righthand' if a assumed lattice has righthand axis system. def self.lc_to_axes(lc, righthand = true) raise ArgumentError if (lc.size != 6) a = lc[0] b = lc[1] c = lc[2] alpha = (2.0*PI) * lc[3] / 360.0 # radian beta = (2.0*PI) * lc[4] / 360.0 # radian gamma = (2.0*PI) * lc[5] / 360.0 # radian v_c = Vector3D[0.0, 0.0, c] v_b = Vector3D[0.0, b * Math::sin(alpha), b * Math::cos(alpha)] v_a_z = a * Math::cos(beta) v_a_y = (a * (Math::cos(gamma) - Math::cos(alpha) * Math::cos(beta)))/ Math::sin(alpha) v_a_x = Math::sqrt(a**2 - v_a_y**2 - v_a_z**2) v_a_x *= -1.0 if righthand == false v_a = Vector3D[v_a_x, v_a_y, v_a_z] return [v_a, v_b, v_c] end # Convert three axes to six lattice constants. def self.axes_to_lc(axes) axes.collect!{|i| Vector3D[*i] } a = axes[0].r b = axes[1].r c = axes[2].r alpha = axes[1].angle_degree(axes[2]) beta = axes[2].angle_degree(axes[0]) gamma = axes[0].angle_degree(axes[1]) return [ a, b, c, alpha, beta, gamma ] end # Return true if the relation of vector order is righthand system. def self.righthand?(axes) axes.map! { |i| Vector3D[*i] } return true if Vector3D.scalar_triple_product(*axes) > 0.0 return false end # Return true if the relation of vector order is lefthand system. def self.lefthand?(axes) axes.map! { |i| Vector3D[*i] } return true if Vector3D.scalar_triple_product(*axes) < 0.0 return false end # Convert three axes to three axes with rules below: # c axis is along z axis in cartesian system. # b axis is on y-z plane in cartesian system. # Return an array of three Vector3D instances. # This class does not convert righthand to lefthand system. # The name of this method 'triangulate' originates from the # matrix indicating the vectors being triangular matrix. # # クラスメソッドは廃止の方向で。 # vectors の数をチェックするのは initialize でやるべきことだろうし、 # LatticeAxes クラスインスタンス以外で triangulate を使う場面が想像できない。 # def self.triangulate(vectors) vectors.map! { |i| Vector3D[*i] } raise InitializeError if self.dependent?(vectors) lc = self.axes_to_lc(vectors) righthand = self.righthand?(vectors) return self.lc_to_axes(lc, righthand) end ## Instance methods. # Get lattice constants in six values. def get_lattice_constants return CrystalCell::LatticeAxes.axes_to_lc(@axes) end def righthand? self.class.righthand?(@axes) end def lefthand? self.class.lefthand?(@axes) end # This class is obsoleted. [2011-12-22] ## Convert internal coordinates to cartesian coordinates. ## Return a Vector3DInternal class instance, which is not a cartesian vector. #def internal2cartesian(internal_coord) # Vector3DInternal[ *internal_coord ].to_v3d(axes) #end # This class is obsoleted. [2011-12-22] ## Convert cartesian coordinates to internal coordinates. ## Return a Vector3D class instance, which is a cartesian vector. #def cartesian2internal(cartesian_coord) # #pp cartesian_coord # Vector3D[ *cartesian_coord ].to_v3di(axes) #end # Compare CrystalCell::LatticeAxes instance. # is tolerance of ratio in length of axes. # is tolerance of value in angle between axes. def equal_in_delta?(other, length_ratio, angle_tolerance) length_a = self .get_lattice_constants[0..2] length_b = other.get_lattice_constants[0..2] 3.times do |i| return false unless ((length_a[i] - length_b[i]).abs <= length_ratio) end angle_a = self .get_lattice_constants[3..5] angle_b = other.get_lattice_constants[3..5] 3.times do |i| return false unless ((angle_a[i] - angle_b[i]).abs <= angle_tolerance) end return true end def ==(other) 3.times do |i| 3.times do |j| return false if self[i][j] != other[i][j] end end return true end private def triangulate #self.class.triangulate(@axes) # rotate(2, 2, 1) # rotate(2, 0, 2) # rotate(1, 2, 1) end #private ## 保持する全ての軸を回転する。 ## 以下の index は Axes クラス保持している配列における index。 ## target_index 回転の際の角度を決めるベクトルの ## self が保持する内部座標軸の index。 ## center_axis_index 回転の中心軸のベクトルの index in x, y, z。 ## plane_axis_index) 回転の目的地となる平面を、中心軸と共に構成するベクトルの index ## in x, y, z。 #def rotate(target_index, center_axis_index, plane_axis_index) # theta = # axes[target_index] # # HERE # self.each do |vector| # vector # end #end end