/* * Main authors: * Guido Tack * * Copyright: * Guido Tack, 2004 * * Last modified: * $Date: 2006-04-11 15:58:37 +0200 (Tue, 11 Apr 2006) $ by $Author: tack $ * $Revision: 3188 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * See the file "LICENSE" for information on usage and * redistribution of this file, and for a * DISCLAIMER OF ALL WARRANTIES. * */ #include "gecode/set.hh" #include "gecode/set/distinct.hh" /* * These propagators implement the scheme discussed in * * Andrew Sadler and Carment Gervet: Global Reasoning on Sets. * FORMUL'01 workshop in conjunction with CP 2001. * * Todo: make the propagators incremental. */ namespace Gecode { namespace Set { namespace Distinct { /* * "AtMostOneIntersection" propagator * */ Actor* AtmostOne::copy(Space* home, bool share) { return new (home) AtmostOne(home,share,*this); } ExecStatus AtmostOne::propagate(Space* home) { GECODE_AUTOARRAY(LubRanges, lubs, x.size()); for (int i = x.size(); i--; ) { lubs[i].init(x[i]); } Iter::Ranges::NaryUnion > bigT(lubs, x.size()); Iter::Ranges::Cache > > bigTC(bigT); Iter::Ranges::ToValues > > > as(bigTC); while (as()) { int a = as.val(); ++as; // cardSa is the number of sets that contain a in the glb int cardSa = 0; for (int i=x.size(); i--;) if (x[i].contains(a)) cardSa++; // bigTa is the union of all lubs that contain a GLBndSet bigTa(home); for (int i=x.size(); i--;) { if (!x[i].notContains(a)) { LubRanges xilub(x[i]); bigTa.includeI(home, xilub); } } // maxa is the maximum number of sets that can contain a int maxa = (bigTa.size() - 1) / (c - 1); bigTa.dispose(home); // Conditional Rule A: // If more sets already contain a than allowed, fail. if (maxa < cardSa) return ES_FAILED; if (maxa == cardSa) { // Conditional Rule B: // All a used up. All other sets (those that don't have a in their // glb already) cannot contain a. for (int i=x.size(); i--;) { if (!x[i].contains(a)) { GECODE_ME_CHECK(x[i].exclude(home, a)); } } } else { GECODE_AUTOARRAY(LubRanges, lubs2, x.size()); for (int i = x.size(); i--; ) { lubs2[i].init(x[i]); } Iter::Ranges::NaryUnion > bigT2(lubs2, x.size()); GECODE_AUTOARRAY(GlbRanges, glbs, cardSa); int count = 0; for (int i=x.size(); i--; ) { if (x[i].contains(a)) { glbs[count].init(x[i]); count++; } } Iter::Ranges::NaryUnion > glbsa(glbs, cardSa); Iter::Ranges::Diff >, Iter::Ranges::NaryUnion > > deltaA(bigT2, glbsa); Iter::Ranges::Cache< Iter::Ranges::Diff >, Iter::Ranges::NaryUnion > > > deltaAC(deltaA); // deltaAC contains all elements that are not yet known to be // in a set together with a. // Formally: \cup_i lub(x_i) - \cup_i {glb(s_i) | a\in glb(s_i)} if (Iter::Ranges::size(deltaAC) == c - 1) { // Conditional Rule C: // If deltaA has exactly c-1 elements, all sets that are not yet // known to contain a cannot contain a if it is impossible that // they contain all of deltaA. Or the other way around: // If a is added to the glb of a set s, deltaA must be a subset of // s, because otherwise s would share at least one more element // with another set that has a in its lower bound. // Weird, eh? for (int i=x.size(); i--; ) { if (!x[i].contains(a) && !x[i].notContains(a)) { deltaAC.reset(); LubRanges xilub(x[i]); if (!Iter::Ranges::subset(deltaAC, xilub)) { GECODE_ME_CHECK(x[i].exclude(home, a)); } } } } } } return ES_NOFIX; } }}} // STATISTICS: set-prop