// AMD-ID "dojox/math/BigInteger-ext" define("dojox/math/BigInteger-ext", ["dojo", "dojox", "dojox/math/BigInteger"], function(dojo, dojox) { dojo.experimental("dojox.math.BigInteger-ext"); // Contributed under CLA by Tom Wu // Extended JavaScript BN functions, required for RSA private ops. var BigInteger = dojox.math.BigInteger, nbi = BigInteger._nbi, nbv = BigInteger._nbv, nbits = BigInteger._nbits, Montgomery = BigInteger._Montgomery; // (public) function bnClone() { var r = nbi(); this._copyTo(r); return r; } // (public) return value as integer function bnIntValue() { if(this.s < 0) { if(this.t == 1) return this[0]-this._DV; else if(this.t == 0) return -1; } else if(this.t == 1) return this[0]; else if(this.t == 0) return 0; // assumes 16 < DB < 32 return ((this[1]&((1<<(32-this._DB))-1))<>24; } // (public) return value as short (assumes DB>=16) function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } // (protected) return x s.t. r^x < DV function bnpChunkSize(r) { return Math.floor(Math.LN2*this._DB/Math.log(r)); } // (public) 0 if this == 0, 1 if this > 0 function bnSigNum() { if(this.s < 0) return -1; else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; else return 1; } // (protected) convert to radix string function bnpToRadix(b) { if(b == null) b = 10; if(this.signum() == 0 || b < 2 || b > 36) return "0"; var cs = this._chunkSize(b); var a = Math.pow(b,cs); var d = nbv(a), y = nbi(), z = nbi(), r = ""; this._divRemTo(d,y,z); while(y.signum() > 0) { r = (a+z.intValue()).toString(b).substr(1) + r; y._divRemTo(d,y,z); } return z.intValue().toString(b) + r; } // (protected) convert from radix string function bnpFromRadix(s,b) { this._fromInt(0); if(b == null) b = 10; var cs = this._chunkSize(b); var d = Math.pow(b,cs), mi = false, j = 0, w = 0; for(var i = 0; i < s.length; ++i) { var x = intAt(s,i); if(x < 0) { if(s.charAt(i) == "-" && this.signum() == 0) mi = true; continue; } w = b*w+x; if(++j >= cs) { this._dMultiply(d); this._dAddOffset(w,0); j = 0; w = 0; } } if(j > 0) { this._dMultiply(Math.pow(b,j)); this._dAddOffset(w,0); } if(mi) BigInteger.ZERO._subTo(this,this); } // (protected) alternate constructor function bnpFromNumber(a,b,c) { if("number" == typeof b) { // new BigInteger(int,int,RNG) if(a < 2) this._fromInt(1); else { this._fromNumber(a,c); if(!this.testBit(a-1)) // force MSB set this._bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); if(this._isEven()) this._dAddOffset(1,0); // force odd while(!this.isProbablePrime(b)) { this._dAddOffset(2,0); if(this.bitLength() > a) this._subTo(BigInteger.ONE.shiftLeft(a-1),this); } } } else { // new BigInteger(int,RNG) var x = [], t = a&7; x.length = (a>>3)+1; b.nextBytes(x); if(t > 0) x[0] &= ((1< 0) { if(p < this._DB && (d = this[i]>>p) != (this.s&this._DM)>>p) r[k++] = d|(this.s<<(this._DB-p)); while(i >= 0) { if(p < 8) { d = (this[i]&((1<>(p+=this._DB-8); } else { d = (this[i]>>(p-=8))&0xff; if(p <= 0) { p += this._DB; --i; } } if((d&0x80) != 0) d |= -256; if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; if(k > 0 || d != this.s) r[k++] = d; } } return r; } function bnEquals(a) { return(this.compareTo(a)==0); } function bnMin(a) { return(this.compareTo(a)<0)?this:a; } function bnMax(a) { return(this.compareTo(a)>0)?this:a; } // (protected) r = this op a (bitwise) function bnpBitwiseTo(a,op,r) { var i, f, m = Math.min(a.t,this.t); for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); if(a.t < this.t) { f = a.s&this._DM; for(i = m; i < this.t; ++i) r[i] = op(this[i],f); r.t = this.t; } else { f = this.s&this._DM; for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); r.t = a.t; } r.s = op(this.s,a.s); r._clamp(); } // (public) this & a function op_and(x,y) { return x&y; } function bnAnd(a) { var r = nbi(); this._bitwiseTo(a,op_and,r); return r; } // (public) this | a function op_or(x,y) { return x|y; } function bnOr(a) { var r = nbi(); this._bitwiseTo(a,op_or,r); return r; } // (public) this ^ a function op_xor(x,y) { return x^y; } function bnXor(a) { var r = nbi(); this._bitwiseTo(a,op_xor,r); return r; } // (public) this & ~a function op_andnot(x,y) { return x&~y; } function bnAndNot(a) { var r = nbi(); this._bitwiseTo(a,op_andnot,r); return r; } // (public) ~this function bnNot() { var r = nbi(); for(var i = 0; i < this.t; ++i) r[i] = this._DM&~this[i]; r.t = this.t; r.s = ~this.s; return r; } // (public) this << n function bnShiftLeft(n) { var r = nbi(); if(n < 0) this._rShiftTo(-n,r); else this._lShiftTo(n,r); return r; } // (public) this >> n function bnShiftRight(n) { var r = nbi(); if(n < 0) this._lShiftTo(-n,r); else this._rShiftTo(n,r); return r; } // return index of lowest 1-bit in x, x < 2^31 function lbit(x) { if(x == 0) return -1; var r = 0; if((x&0xffff) == 0) { x >>= 16; r += 16; } if((x&0xff) == 0) { x >>= 8; r += 8; } if((x&0xf) == 0) { x >>= 4; r += 4; } if((x&3) == 0) { x >>= 2; r += 2; } if((x&1) == 0) ++r; return r; } // (public) returns index of lowest 1-bit (or -1 if none) function bnGetLowestSetBit() { for(var i = 0; i < this.t; ++i) if(this[i] != 0) return i*this._DB+lbit(this[i]); if(this.s < 0) return this.t*this._DB; return -1; } // return number of 1 bits in x function cbit(x) { var r = 0; while(x != 0) { x &= x-1; ++r; } return r; } // (public) return number of set bits function bnBitCount() { var r = 0, x = this.s&this._DM; for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); return r; } // (public) true iff nth bit is set function bnTestBit(n) { var j = Math.floor(n/this._DB); if(j >= this.t) return(this.s!=0); return((this[j]&(1<<(n%this._DB)))!=0); } // (protected) this op (1<>= this._DB; } if(a.t < this.t) { c += a.s; while(i < this.t) { c += this[i]; r[i++] = c&this._DM; c >>= this._DB; } c += this.s; } else { c += this.s; while(i < a.t) { c += a[i]; r[i++] = c&this._DM; c >>= this._DB; } c += a.s; } r.s = (c<0)?-1:0; if(c > 0) r[i++] = c; else if(c < -1) r[i++] = this._DV+c; r.t = i; r._clamp(); } // (public) this + a function bnAdd(a) { var r = nbi(); this._addTo(a,r); return r; } // (public) this - a function bnSubtract(a) { var r = nbi(); this._subTo(a,r); return r; } // (public) this * a function bnMultiply(a) { var r = nbi(); this._multiplyTo(a,r); return r; } // (public) this / a function bnDivide(a) { var r = nbi(); this._divRemTo(a,r,null); return r; } // (public) this % a function bnRemainder(a) { var r = nbi(); this._divRemTo(a,null,r); return r; } // (public) [this/a,this%a] function bnDivideAndRemainder(a) { var q = nbi(), r = nbi(); this._divRemTo(a,q,r); return [q, r]; } // (protected) this *= n, this >= 0, 1 < n < DV function bnpDMultiply(n) { this[this.t] = this.am(0,n-1,this,0,0,this.t); ++this.t; this._clamp(); } // (protected) this += n << w words, this >= 0 function bnpDAddOffset(n,w) { while(this.t <= w) this[this.t++] = 0; this[w] += n; while(this[w] >= this._DV) { this[w] -= this._DV; if(++w >= this.t) this[this.t++] = 0; ++this[w]; } } // A "null" reducer function NullExp() {} function nNop(x) { return x; } function nMulTo(x,y,r) { x._multiplyTo(y,r); } function nSqrTo(x,r) { x._squareTo(r); } NullExp.prototype.convert = nNop; NullExp.prototype.revert = nNop; NullExp.prototype.mulTo = nMulTo; NullExp.prototype.sqrTo = nSqrTo; // (public) this^e function bnPow(e) { return this._exp(e,new NullExp()); } // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. function bnpMultiplyLowerTo(a,n,r) { var i = Math.min(this.t+a.t,n); r.s = 0; // assumes a,this >= 0 r.t = i; while(i > 0) r[--i] = 0; var j; for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); r._clamp(); } // (protected) r = "this * a" without lower n words, n > 0 // "this" should be the larger one if appropriate. function bnpMultiplyUpperTo(a,n,r) { --n; var i = r.t = this.t+a.t-n; r.s = 0; // assumes a,this >= 0 while(--i >= 0) r[i] = 0; for(i = Math.max(n-this.t,0); i < a.t; ++i) r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); r._clamp(); r._drShiftTo(1,r); } // Barrett modular reduction function Barrett(m) { // setup Barrett this.r2 = nbi(); this.q3 = nbi(); BigInteger.ONE._dlShiftTo(2*m.t,this.r2); this.mu = this.r2.divide(m); this.m = m; } function barrettConvert(x) { if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); else if(x.compareTo(this.m) < 0) return x; else { var r = nbi(); x._copyTo(r); this.reduce(r); return r; } } function barrettRevert(x) { return x; } // x = x mod m (HAC 14.42) function barrettReduce(x) { x._drShiftTo(this.m.t-1,this.r2); if(x.t > this.m.t+1) { x.t = this.m.t+1; x._clamp(); } this.mu._multiplyUpperTo(this.r2,this.m.t+1,this.q3); this.m._multiplyLowerTo(this.q3,this.m.t+1,this.r2); while(x.compareTo(this.r2) < 0) x._dAddOffset(1,this.m.t+1); x._subTo(this.r2,x); while(x.compareTo(this.m) >= 0) x._subTo(this.m,x); } // r = x^2 mod m; x != r function barrettSqrTo(x,r) { x._squareTo(r); this.reduce(r); } // r = x*y mod m; x,y != r function barrettMulTo(x,y,r) { x._multiplyTo(y,r); this.reduce(r); } Barrett.prototype.convert = barrettConvert; Barrett.prototype.revert = barrettRevert; Barrett.prototype.reduce = barrettReduce; Barrett.prototype.mulTo = barrettMulTo; Barrett.prototype.sqrTo = barrettSqrTo; // (public) this^e % m (HAC 14.85) function bnModPow(e,m) { var i = e.bitLength(), k, r = nbv(1), z; if(i <= 0) return r; else if(i < 18) k = 1; else if(i < 48) k = 3; else if(i < 144) k = 4; else if(i < 768) k = 5; else k = 6; if(i < 8) z = new Classic(m); else if(m._isEven()) z = new Barrett(m); else z = new Montgomery(m); // precomputation var g = [], n = 3, k1 = k-1, km = (1< 1) { var g2 = nbi(); z.sqrTo(g[1],g2); while(n <= km) { g[n] = nbi(); z.mulTo(g2,g[n-2],g[n]); n += 2; } } var j = e.t-1, w, is1 = true, r2 = nbi(), t; i = nbits(e[j])-1; while(j >= 0) { if(i >= k1) w = (e[j]>>(i-k1))&km; else { w = (e[j]&((1<<(i+1))-1))<<(k1-i); if(j > 0) w |= e[j-1]>>(this._DB+i-k1); } n = k; while((w&1) == 0) { w >>= 1; --n; } if((i -= n) < 0) { i += this._DB; --j; } if(is1) { // ret == 1, don't bother squaring or multiplying it g[w]._copyTo(r); is1 = false; } else { while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } z.mulTo(r2,g[w],r); } while(j >= 0 && (e[j]&(1< 0) { x._rShiftTo(g,x); y._rShiftTo(g,y); } while(x.signum() > 0) { if((i = x.getLowestSetBit()) > 0) x._rShiftTo(i,x); if((i = y.getLowestSetBit()) > 0) y._rShiftTo(i,y); if(x.compareTo(y) >= 0) { x._subTo(y,x); x._rShiftTo(1,x); } else { y._subTo(x,y); y._rShiftTo(1,y); } } if(g > 0) y._lShiftTo(g,y); return y; } // (protected) this % n, n < 2^26 function bnpModInt(n) { if(n <= 0) return 0; var d = this._DV%n, r = (this.s<0)?n-1:0; if(this.t > 0) if(d == 0) r = this[0]%n; else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; return r; } // (public) 1/this % m (HAC 14.61) function bnModInverse(m) { var ac = m._isEven(); if((this._isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; var u = m.clone(), v = this.clone(); var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); while(u.signum() != 0) { while(u._isEven()) { u._rShiftTo(1,u); if(ac) { if(!a._isEven() || !b._isEven()) { a._addTo(this,a); b._subTo(m,b); } a._rShiftTo(1,a); } else if(!b._isEven()) b._subTo(m,b); b._rShiftTo(1,b); } while(v._isEven()) { v._rShiftTo(1,v); if(ac) { if(!c._isEven() || !d._isEven()) { c._addTo(this,c); d._subTo(m,d); } c._rShiftTo(1,c); } else if(!d._isEven()) d._subTo(m,d); d._rShiftTo(1,d); } if(u.compareTo(v) >= 0) { u._subTo(v,u); if(ac) a._subTo(c,a); b._subTo(d,b); } else { v._subTo(u,v); if(ac) c._subTo(a,c); d._subTo(b,d); } } if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; if(d.compareTo(m) >= 0) return d.subtract(m); if(d.signum() < 0) d._addTo(m,d); else return d; if(d.signum() < 0) return d.add(m); else return d; } var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509]; var lplim = (1<<26)/lowprimes[lowprimes.length-1]; // (public) test primality with certainty >= 1-.5^t function bnIsProbablePrime(t) { var i, x = this.abs(); if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { for(i = 0; i < lowprimes.length; ++i) if(x[0] == lowprimes[i]) return true; return false; } if(x._isEven()) return false; i = 1; while(i < lowprimes.length) { var m = lowprimes[i], j = i+1; while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; m = x._modInt(m); while(i < j) if(m%lowprimes[i++] == 0) return false; } return x._millerRabin(t); } // (protected) true if probably prime (HAC 4.24, Miller-Rabin) function bnpMillerRabin(t) { var n1 = this.subtract(BigInteger.ONE); var k = n1.getLowestSetBit(); if(k <= 0) return false; var r = n1.shiftRight(k); t = (t+1)>>1; if(t > lowprimes.length) t = lowprimes.length; var a = nbi(); for(var i = 0; i < t; ++i) { a._fromInt(lowprimes[i]); var y = a.modPow(r,this); if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { var j = 1; while(j++ < k && y.compareTo(n1) != 0) { y = y.modPowInt(2,this); if(y.compareTo(BigInteger.ONE) == 0) return false; } if(y.compareTo(n1) != 0) return false; } } return true; } dojo.extend(BigInteger, { // protected _chunkSize: bnpChunkSize, _toRadix: bnpToRadix, _fromRadix: bnpFromRadix, _fromNumber: bnpFromNumber, _bitwiseTo: bnpBitwiseTo, _changeBit: bnpChangeBit, _addTo: bnpAddTo, _dMultiply: bnpDMultiply, _dAddOffset: bnpDAddOffset, _multiplyLowerTo: bnpMultiplyLowerTo, _multiplyUpperTo: bnpMultiplyUpperTo, _modInt: bnpModInt, _millerRabin: bnpMillerRabin, // public clone: bnClone, intValue: bnIntValue, byteValue: bnByteValue, shortValue: bnShortValue, signum: bnSigNum, toByteArray: bnToByteArray, equals: bnEquals, min: bnMin, max: bnMax, and: bnAnd, or: bnOr, xor: bnXor, andNot: bnAndNot, not: bnNot, shiftLeft: bnShiftLeft, shiftRight: bnShiftRight, getLowestSetBit: bnGetLowestSetBit, bitCount: bnBitCount, testBit: bnTestBit, setBit: bnSetBit, clearBit: bnClearBit, flipBit: bnFlipBit, add: bnAdd, subtract: bnSubtract, multiply: bnMultiply, divide: bnDivide, remainder: bnRemainder, divideAndRemainder: bnDivideAndRemainder, modPow: bnModPow, modInverse: bnModInverse, pow: bnPow, gcd: bnGCD, isProbablePrime: bnIsProbablePrime }); // BigInteger interfaces not implemented in jsbn: // BigInteger(int signum, byte[] magnitude) // double doubleValue() // float floatValue() // int hashCode() // long longValue() // static BigInteger valueOf(long val) return dojox.math.BigInteger; });