Sha256: 84f69b088efa7e7901051c2c2e9bc14e205f90d9fa66ea866af3cb4cdf7f3c76
Contents?: true
Size: 1.29 KB
Versions: 14
Compression:
Stored size: 1.29 KB
Contents
module XGBoost class Classifier < Model def initialize(n_estimators: 100, objective: "binary:logistic", importance_type: "gain", **options) super end def fit(x, y, eval_set: nil, early_stopping_rounds: nil, verbose: true) n_classes = y.uniq.size params = @params.dup if n_classes > 2 params[:objective] = "multi:softprob" params[:num_class] = n_classes end dtrain = DMatrix.new(x, label: y) evals = Array(eval_set).map.with_index { |v, i| [DMatrix.new(v[0], label: v[1]), "validation_#{i}"] } @booster = XGBoost.train(params, dtrain, num_boost_round: @n_estimators, early_stopping_rounds: early_stopping_rounds, verbose_eval: verbose, evals: evals ) nil end def predict(data) y_pred = super(data) if y_pred.first.is_a?(Array) # multiple classes y_pred.map do |v| v.map.with_index.max_by { |v2, _| v2 }.last end else y_pred.map { |v| v > 0.5 ? 1 : 0 } end end def predict_proba(data) dmat = DMatrix.new(data) y_pred = @booster.predict(dmat) if y_pred.first.is_a?(Array) # multiple classes y_pred else y_pred.map { |v| [1 - v, v] } end end end end
Version data entries
14 entries across 14 versions & 2 rubygems