|// Low-level VM code for PowerPC 32 bit or 32on64 bit mode. |// Bytecode interpreter, fast functions and helper functions. |// Copyright (C) 2005-2016 Mike Pall. See Copyright Notice in luajit.h | |.arch ppc |.section code_op, code_sub | |.actionlist build_actionlist |.globals GLOB_ |.globalnames globnames |.externnames extnames | |// Note: The ragged indentation of the instructions is intentional. |// The starting columns indicate data dependencies. | |//----------------------------------------------------------------------- | |// DynASM defines used by the PPC port: |// |// P64 64 bit pointers (only for GPR64 testing). |// Note: see vm_ppc64.dasc for a full PPC64 _LP64 port. |// GPR64 64 bit registers (but possibly 32 bit pointers, e.g. PS3). |// Affects reg saves, stack layout, carry/overflow/dot flags etc. |// FRAME32 Use 32 bit frame layout, even with GPR64 (Xbox 360). |// TOC Need table of contents (64 bit or 32 bit variant, e.g. PS3). |// Function pointers are really a struct: code, TOC, env (optional). |// TOCENV Function pointers have an environment pointer, too (not on PS3). |// PPE Power Processor Element of Cell (PS3) or Xenon (Xbox 360). |// Must avoid (slow) micro-coded instructions. | |.if P64 |.define TOC, 1 |.define TOCENV, 1 |.macro lpx, a, b, c; ldx a, b, c; .endmacro |.macro lp, a, b; ld a, b; .endmacro |.macro stp, a, b; std a, b; .endmacro |.define decode_OPP, decode_OP8 |.if FFI |// Missing: Calling conventions, 64 bit regs, TOC. |.error lib_ffi not yet implemented for PPC64 |.endif |.else |.macro lpx, a, b, c; lwzx a, b, c; .endmacro |.macro lp, a, b; lwz a, b; .endmacro |.macro stp, a, b; stw a, b; .endmacro |.define decode_OPP, decode_OP4 |.endif | |// Convenience macros for TOC handling. |.if TOC |// Linker needs a TOC patch area for every external call relocation. |.macro blex, target; bl extern target@plt; nop; .endmacro |.macro .toc, a, b; a, b; .endmacro |.if P64 |.define TOC_OFS, 8 |.define ENV_OFS, 16 |.else |.define TOC_OFS, 4 |.define ENV_OFS, 8 |.endif |.else // No TOC. |.macro blex, target; bl extern target@plt; .endmacro |.macro .toc, a, b; .endmacro |.endif |.macro .tocenv, a, b; .if TOCENV; a, b; .endif; .endmacro | |.macro .gpr64, a, b; .if GPR64; a, b; .endif; .endmacro | |.macro andix., y, a, i |.if PPE | rlwinm y, a, 0, 31-lj_fls(i), 31-lj_ffs(i) | cmpwi y, 0 |.else | andi. y, a, i |.endif |.endmacro | |.macro clrso, reg |.if PPE | li reg, 0 | mtxer reg |.else | mcrxr cr0 |.endif |.endmacro | |.macro checkov, reg, noov |.if PPE | mfxer reg | add reg, reg, reg | cmpwi reg, 0 | li reg, 0 | mtxer reg | bgey noov |.else | mcrxr cr0 | bley noov |.endif |.endmacro | |//----------------------------------------------------------------------- | |// Fixed register assignments for the interpreter. |// Don't use: r1 = sp, r2 and r13 = reserved (TOC, TLS or SDATA) | |// The following must be C callee-save (but BASE is often refetched). |.define BASE, r14 // Base of current Lua stack frame. |.define KBASE, r15 // Constants of current Lua function. |.define PC, r16 // Next PC. |.define DISPATCH, r17 // Opcode dispatch table. |.define LREG, r18 // Register holding lua_State (also in SAVE_L). |.define MULTRES, r19 // Size of multi-result: (nresults+1)*8. |.define JGL, r31 // On-trace: global_State + 32768. | |// Constants for type-comparisons, stores and conversions. C callee-save. |.define TISNUM, r22 |.define TISNIL, r23 |.define ZERO, r24 |.define TOBIT, f30 // 2^52 + 2^51. |.define TONUM, f31 // 2^52 + 2^51 + 2^31. | |// The following temporaries are not saved across C calls, except for RA. |.define RA, r20 // Callee-save. |.define RB, r10 |.define RC, r11 |.define RD, r12 |.define INS, r7 // Overlaps CARG5. | |.define TMP0, r0 |.define TMP1, r8 |.define TMP2, r9 |.define TMP3, r6 // Overlaps CARG4. | |// Saved temporaries. |.define SAVE0, r21 | |// Calling conventions. |.define CARG1, r3 |.define CARG2, r4 |.define CARG3, r5 |.define CARG4, r6 // Overlaps TMP3. |.define CARG5, r7 // Overlaps INS. | |.define FARG1, f1 |.define FARG2, f2 | |.define CRET1, r3 |.define CRET2, r4 | |.define TOCREG, r2 // TOC register (only used by C code). |.define ENVREG, r11 // Environment pointer (nested C functions). | |// Stack layout while in interpreter. Must match with lj_frame.h. |.if GPR64 |.if FRAME32 | |// 456(sp) // \ 32/64 bit C frame info |.define TONUM_LO, 452(sp) // | |.define TONUM_HI, 448(sp) // | |.define TMPD_LO, 444(sp) // | |.define TMPD_HI, 440(sp) // | |.define SAVE_CR, 432(sp) // | 64 bit CR save. |.define SAVE_ERRF, 424(sp) // > Parameter save area. |.define SAVE_NRES, 420(sp) // | |.define SAVE_L, 416(sp) // | |.define SAVE_PC, 412(sp) // | |.define SAVE_MULTRES, 408(sp) // | |.define SAVE_CFRAME, 400(sp) // / 64 bit C frame chain. |// 392(sp) // Reserved. |.define CFRAME_SPACE, 384 // Delta for sp. |// Back chain for sp: 384(sp) <-- sp entering interpreter |.define SAVE_LR, 376(sp) // 32 bit LR stored in hi-part. |.define SAVE_GPR_, 232 // .. 232+18*8: 64 bit GPR saves. |.define SAVE_FPR_, 88 // .. 88+18*8: 64 bit FPR saves. |// 80(sp) // Needed for 16 byte stack frame alignment. |// 16(sp) // Callee parameter save area (ABI mandated). |// 8(sp) // Reserved |// Back chain for sp: 0(sp) <-- sp while in interpreter |// 32 bit sp stored in hi-part of 0(sp). | |.define TMPD_BLO, 447(sp) |.define TMPD, TMPD_HI |.define TONUM_D, TONUM_HI | |.else | |// 508(sp) // \ 32 bit C frame info. |.define SAVE_ERRF, 472(sp) // | |.define SAVE_NRES, 468(sp) // | |.define SAVE_L, 464(sp) // > Parameter save area. |.define SAVE_PC, 460(sp) // | |.define SAVE_MULTRES, 456(sp) // | |.define SAVE_CFRAME, 448(sp) // / 64 bit C frame chain. |.define SAVE_LR, 416(sp) |.define CFRAME_SPACE, 400 // Delta for sp. |// Back chain for sp: 400(sp) <-- sp entering interpreter |.define SAVE_FPR_, 256 // .. 256+18*8: 64 bit FPR saves. |.define SAVE_GPR_, 112 // .. 112+18*8: 64 bit GPR saves. |// 48(sp) // Callee parameter save area (ABI mandated). |.define SAVE_TOC, 40(sp) // TOC save area. |.define TMPD_LO, 36(sp) // \ Link editor temp (ABI mandated). |.define TMPD_HI, 32(sp) // / |.define TONUM_LO, 28(sp) // \ Compiler temp (ABI mandated). |.define TONUM_HI, 24(sp) // / |// Next frame lr: 16(sp) |.define SAVE_CR, 8(sp) // 64 bit CR save. |// Back chain for sp: 0(sp) <-- sp while in interpreter | |.define TMPD_BLO, 39(sp) |.define TMPD, TMPD_HI |.define TONUM_D, TONUM_HI | |.endif |.else | |.define SAVE_LR, 276(sp) |.define CFRAME_SPACE, 272 // Delta for sp. |// Back chain for sp: 272(sp) <-- sp entering interpreter |.define SAVE_FPR_, 128 // .. 128+18*8: 64 bit FPR saves. |.define SAVE_GPR_, 56 // .. 56+18*4: 32 bit GPR saves. |.define SAVE_CR, 52(sp) // 32 bit CR save. |.define SAVE_ERRF, 48(sp) // 32 bit C frame info. |.define SAVE_NRES, 44(sp) |.define SAVE_CFRAME, 40(sp) |.define SAVE_L, 36(sp) |.define SAVE_PC, 32(sp) |.define SAVE_MULTRES, 28(sp) |.define UNUSED1, 24(sp) |.define TMPD_LO, 20(sp) |.define TMPD_HI, 16(sp) |.define TONUM_LO, 12(sp) |.define TONUM_HI, 8(sp) |// Next frame lr: 4(sp) |// Back chain for sp: 0(sp) <-- sp while in interpreter | |.define TMPD_BLO, 23(sp) |.define TMPD, TMPD_HI |.define TONUM_D, TONUM_HI | |.endif | |.macro save_, reg |.if GPR64 | std r..reg, SAVE_GPR_+(reg-14)*8(sp) |.else | stw r..reg, SAVE_GPR_+(reg-14)*4(sp) |.endif | stfd f..reg, SAVE_FPR_+(reg-14)*8(sp) |.endmacro |.macro rest_, reg |.if GPR64 | ld r..reg, SAVE_GPR_+(reg-14)*8(sp) |.else | lwz r..reg, SAVE_GPR_+(reg-14)*4(sp) |.endif | lfd f..reg, SAVE_FPR_+(reg-14)*8(sp) |.endmacro | |.macro saveregs |.if GPR64 and not FRAME32 | stdu sp, -CFRAME_SPACE(sp) |.else | stwu sp, -CFRAME_SPACE(sp) |.endif | save_ 14; save_ 15; save_ 16 | mflr r0 | save_ 17; save_ 18; save_ 19; save_ 20; save_ 21; save_ 22 |.if GPR64 and not FRAME32 | std r0, SAVE_LR |.else | stw r0, SAVE_LR |.endif | save_ 23; save_ 24; save_ 25 | mfcr r0 | save_ 26; save_ 27; save_ 28; save_ 29; save_ 30; save_ 31 |.if GPR64 | std r0, SAVE_CR |.else | stw r0, SAVE_CR |.endif | .toc std TOCREG, SAVE_TOC |.endmacro | |.macro restoreregs |.if GPR64 and not FRAME32 | ld r0, SAVE_LR |.else | lwz r0, SAVE_LR |.endif |.if GPR64 | ld r12, SAVE_CR |.else | lwz r12, SAVE_CR |.endif | rest_ 14; rest_ 15; rest_ 16; rest_ 17; rest_ 18; rest_ 19 | mtlr r0; |.if PPE; mtocrf 0x20, r12; .else; mtcrf 0x38, r12; .endif | rest_ 20; rest_ 21; rest_ 22; rest_ 23; rest_ 24; rest_ 25 |.if PPE; mtocrf 0x10, r12; .endif | rest_ 26; rest_ 27; rest_ 28; rest_ 29; rest_ 30; rest_ 31 |.if PPE; mtocrf 0x08, r12; .endif | addi sp, sp, CFRAME_SPACE |.endmacro | |// Type definitions. Some of these are only used for documentation. |.type L, lua_State, LREG |.type GL, global_State |.type TVALUE, TValue |.type GCOBJ, GCobj |.type STR, GCstr |.type TAB, GCtab |.type LFUNC, GCfuncL |.type CFUNC, GCfuncC |.type PROTO, GCproto |.type UPVAL, GCupval |.type NODE, Node |.type NARGS8, int |.type TRACE, GCtrace |.type SBUF, SBuf | |//----------------------------------------------------------------------- | |// Trap for not-yet-implemented parts. |.macro NYI; tw 4, sp, sp; .endmacro | |// int/FP conversions. |.macro tonum_i, freg, reg | xoris reg, reg, 0x8000 | stw reg, TONUM_LO | lfd freg, TONUM_D | fsub freg, freg, TONUM |.endmacro | |.macro tonum_u, freg, reg | stw reg, TONUM_LO | lfd freg, TONUM_D | fsub freg, freg, TOBIT |.endmacro | |.macro toint, reg, freg, tmpfreg | fctiwz tmpfreg, freg | stfd tmpfreg, TMPD | lwz reg, TMPD_LO |.endmacro | |.macro toint, reg, freg | toint reg, freg, freg |.endmacro | |//----------------------------------------------------------------------- | |// Access to frame relative to BASE. |.define FRAME_PC, -8 |.define FRAME_FUNC, -4 | |// Instruction decode. |.macro decode_OP4, dst, ins; rlwinm dst, ins, 2, 22, 29; .endmacro |.macro decode_OP8, dst, ins; rlwinm dst, ins, 3, 21, 28; .endmacro |.macro decode_RA8, dst, ins; rlwinm dst, ins, 27, 21, 28; .endmacro |.macro decode_RB8, dst, ins; rlwinm dst, ins, 11, 21, 28; .endmacro |.macro decode_RC8, dst, ins; rlwinm dst, ins, 19, 21, 28; .endmacro |.macro decode_RD8, dst, ins; rlwinm dst, ins, 19, 13, 28; .endmacro | |.macro decode_OP1, dst, ins; rlwinm dst, ins, 0, 24, 31; .endmacro |.macro decode_RD4, dst, ins; rlwinm dst, ins, 18, 14, 29; .endmacro | |// Instruction fetch. |.macro ins_NEXT1 | lwz INS, 0(PC) | addi PC, PC, 4 |.endmacro |// Instruction decode+dispatch. Note: optimized for e300! |.macro ins_NEXT2 | decode_OPP TMP1, INS | lpx TMP0, DISPATCH, TMP1 | mtctr TMP0 | decode_RB8 RB, INS | decode_RD8 RD, INS | decode_RA8 RA, INS | decode_RC8 RC, INS | bctr |.endmacro |.macro ins_NEXT | ins_NEXT1 | ins_NEXT2 |.endmacro | |// Instruction footer. |.if 1 | // Replicated dispatch. Less unpredictable branches, but higher I-Cache use. | .define ins_next, ins_NEXT | .define ins_next_, ins_NEXT | .define ins_next1, ins_NEXT1 | .define ins_next2, ins_NEXT2 |.else | // Common dispatch. Lower I-Cache use, only one (very) unpredictable branch. | // Affects only certain kinds of benchmarks (and only with -j off). | .macro ins_next | b ->ins_next | .endmacro | .macro ins_next1 | .endmacro | .macro ins_next2 | b ->ins_next | .endmacro | .macro ins_next_ | ->ins_next: | ins_NEXT | .endmacro |.endif | |// Call decode and dispatch. |.macro ins_callt | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | lwz PC, LFUNC:RB->pc | lwz INS, 0(PC) | addi PC, PC, 4 | decode_OPP TMP1, INS | decode_RA8 RA, INS | lpx TMP0, DISPATCH, TMP1 | add RA, RA, BASE | mtctr TMP0 | bctr |.endmacro | |.macro ins_call | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, PC = caller PC | stw PC, FRAME_PC(BASE) | ins_callt |.endmacro | |//----------------------------------------------------------------------- | |// Macros to test operand types. |.macro checknum, reg; cmplw reg, TISNUM; .endmacro |.macro checknum, cr, reg; cmplw cr, reg, TISNUM; .endmacro |.macro checkstr, reg; cmpwi reg, LJ_TSTR; .endmacro |.macro checktab, reg; cmpwi reg, LJ_TTAB; .endmacro |.macro checkfunc, reg; cmpwi reg, LJ_TFUNC; .endmacro |.macro checknil, reg; cmpwi reg, LJ_TNIL; .endmacro | |.macro branch_RD | srwi TMP0, RD, 1 | addis PC, PC, -(BCBIAS_J*4 >> 16) | add PC, PC, TMP0 |.endmacro | |// Assumes DISPATCH is relative to GL. #define DISPATCH_GL(field) (GG_DISP2G + (int)offsetof(global_State, field)) #define DISPATCH_J(field) (GG_DISP2J + (int)offsetof(jit_State, field)) | #define PC2PROTO(field) ((int)offsetof(GCproto, field)-(int)sizeof(GCproto)) | |.macro hotcheck, delta, target | rlwinm TMP1, PC, 31, 25, 30 | addi TMP1, TMP1, GG_DISP2HOT | lhzx TMP2, DISPATCH, TMP1 | addic. TMP2, TMP2, -delta | sthx TMP2, DISPATCH, TMP1 | blt target |.endmacro | |.macro hotloop | hotcheck HOTCOUNT_LOOP, ->vm_hotloop |.endmacro | |.macro hotcall | hotcheck HOTCOUNT_CALL, ->vm_hotcall |.endmacro | |// Set current VM state. Uses TMP0. |.macro li_vmstate, st; li TMP0, ~LJ_VMST_..st; .endmacro |.macro st_vmstate; stw TMP0, DISPATCH_GL(vmstate)(DISPATCH); .endmacro | |// Move table write barrier back. Overwrites mark and tmp. |.macro barrierback, tab, mark, tmp | lwz tmp, DISPATCH_GL(gc.grayagain)(DISPATCH) | // Assumes LJ_GC_BLACK is 0x04. | rlwinm mark, mark, 0, 30, 28 // black2gray(tab) | stw tab, DISPATCH_GL(gc.grayagain)(DISPATCH) | stb mark, tab->marked | stw tmp, tab->gclist |.endmacro | |//----------------------------------------------------------------------- /* Generate subroutines used by opcodes and other parts of the VM. */ /* The .code_sub section should be last to help static branch prediction. */ static void build_subroutines(BuildCtx *ctx) { |.code_sub | |//----------------------------------------------------------------------- |//-- Return handling ---------------------------------------------------- |//----------------------------------------------------------------------- | |->vm_returnp: | // See vm_return. Also: TMP2 = previous base. | andix. TMP0, PC, FRAME_P | li TMP1, LJ_TTRUE | beq ->cont_dispatch | | // Return from pcall or xpcall fast func. | lwz PC, FRAME_PC(TMP2) // Fetch PC of previous frame. | mr BASE, TMP2 // Restore caller base. | // Prepending may overwrite the pcall frame, so do it at the end. | stwu TMP1, FRAME_PC(RA) // Prepend true to results. | |->vm_returnc: | addi RD, RD, 8 // RD = (nresults+1)*8. | andix. TMP0, PC, FRAME_TYPE | cmpwi cr1, RD, 0 | li CRET1, LUA_YIELD | beq cr1, ->vm_unwind_c_eh | mr MULTRES, RD | beq ->BC_RET_Z // Handle regular return to Lua. | |->vm_return: | // BASE = base, RA = resultptr, RD/MULTRES = (nresults+1)*8, PC = return | // TMP0 = PC & FRAME_TYPE | cmpwi TMP0, FRAME_C | rlwinm TMP2, PC, 0, 0, 28 | li_vmstate C | sub TMP2, BASE, TMP2 // TMP2 = previous base. | bney ->vm_returnp | | addic. TMP1, RD, -8 | stp TMP2, L->base | lwz TMP2, SAVE_NRES | subi BASE, BASE, 8 | st_vmstate | slwi TMP2, TMP2, 3 | beq >2 |1: | addic. TMP1, TMP1, -8 | lfd f0, 0(RA) | addi RA, RA, 8 | stfd f0, 0(BASE) | addi BASE, BASE, 8 | bney <1 | |2: | cmpw TMP2, RD // More/less results wanted? | bne >6 |3: | stp BASE, L->top // Store new top. | |->vm_leave_cp: | lp TMP0, SAVE_CFRAME // Restore previous C frame. | li CRET1, 0 // Ok return status for vm_pcall. | stp TMP0, L->cframe | |->vm_leave_unw: | restoreregs | blr | |6: | ble >7 // Less results wanted? | // More results wanted. Check stack size and fill up results with nil. | lwz TMP1, L->maxstack | cmplw BASE, TMP1 | bge >8 | stw TISNIL, 0(BASE) | addi RD, RD, 8 | addi BASE, BASE, 8 | b <2 | |7: // Less results wanted. | subfic TMP3, TMP2, 0 // LUA_MULTRET+1 case? | sub TMP0, RD, TMP2 | subfe TMP1, TMP1, TMP1 // TMP1 = TMP2 == 0 ? 0 : -1 | and TMP0, TMP0, TMP1 | sub BASE, BASE, TMP0 // Either keep top or shrink it. | b <3 | |8: // Corner case: need to grow stack for filling up results. | // This can happen if: | // - A C function grows the stack (a lot). | // - The GC shrinks the stack in between. | // - A return back from a lua_call() with (high) nresults adjustment. | stp BASE, L->top // Save current top held in BASE (yes). | mr SAVE0, RD | srwi CARG2, TMP2, 3 | mr CARG1, L | bl extern lj_state_growstack // (lua_State *L, int n) | lwz TMP2, SAVE_NRES | mr RD, SAVE0 | slwi TMP2, TMP2, 3 | lp BASE, L->top // Need the (realloced) L->top in BASE. | b <2 | |->vm_unwind_c: // Unwind C stack, return from vm_pcall. | // (void *cframe, int errcode) | mr sp, CARG1 | mr CRET1, CARG2 |->vm_unwind_c_eh: // Landing pad for external unwinder. | lwz L, SAVE_L | .toc ld TOCREG, SAVE_TOC | li TMP0, ~LJ_VMST_C | lwz GL:TMP1, L->glref | stw TMP0, GL:TMP1->vmstate | b ->vm_leave_unw | |->vm_unwind_ff: // Unwind C stack, return from ff pcall. | // (void *cframe) |.if GPR64 | rldicr sp, CARG1, 0, 61 |.else | rlwinm sp, CARG1, 0, 0, 29 |.endif |->vm_unwind_ff_eh: // Landing pad for external unwinder. | lwz L, SAVE_L | .toc ld TOCREG, SAVE_TOC | li TISNUM, LJ_TISNUM // Setup type comparison constants. | lp BASE, L->base | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | li ZERO, 0 | stw TMP3, TMPD | li TMP1, LJ_TFALSE | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | li TISNIL, LJ_TNIL | li_vmstate INTERP | lfs TOBIT, TMPD | lwz PC, FRAME_PC(BASE) // Fetch PC of previous frame. | la RA, -8(BASE) // Results start at BASE-8. | stw TMP3, TMPD | addi DISPATCH, DISPATCH, GG_G2DISP | stw TMP1, 0(RA) // Prepend false to error message. | li RD, 16 // 2 results: false + error message. | st_vmstate | lfs TONUM, TMPD | b ->vm_returnc | |//----------------------------------------------------------------------- |//-- Grow stack for calls ----------------------------------------------- |//----------------------------------------------------------------------- | |->vm_growstack_c: // Grow stack for C function. | li CARG2, LUA_MINSTACK | b >2 | |->vm_growstack_l: // Grow stack for Lua function. | // BASE = new base, RA = BASE+framesize*8, RC = nargs*8, PC = first PC | add RC, BASE, RC | sub RA, RA, BASE | stp BASE, L->base | addi PC, PC, 4 // Must point after first instruction. | stp RC, L->top | srwi CARG2, RA, 3 |2: | // L->base = new base, L->top = top | stw PC, SAVE_PC | mr CARG1, L | bl extern lj_state_growstack // (lua_State *L, int n) | lp BASE, L->base | lp RC, L->top | lwz LFUNC:RB, FRAME_FUNC(BASE) | sub RC, RC, BASE | // BASE = new base, RB = LFUNC/CFUNC, RC = nargs*8, FRAME_PC(BASE) = PC | ins_callt // Just retry the call. | |//----------------------------------------------------------------------- |//-- Entry points into the assembler VM --------------------------------- |//----------------------------------------------------------------------- | |->vm_resume: // Setup C frame and resume thread. | // (lua_State *L, TValue *base, int nres1 = 0, ptrdiff_t ef = 0) | saveregs | mr L, CARG1 | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | mr BASE, CARG2 | lbz TMP1, L->status | stw L, SAVE_L | li PC, FRAME_CP | addi TMP0, sp, CFRAME_RESUME | addi DISPATCH, DISPATCH, GG_G2DISP | stw CARG3, SAVE_NRES | cmplwi TMP1, 0 | stw CARG3, SAVE_ERRF | stp CARG3, SAVE_CFRAME | stw CARG1, SAVE_PC // Any value outside of bytecode is ok. | stp TMP0, L->cframe | beq >3 | | // Resume after yield (like a return). | stw L, DISPATCH_GL(cur_L)(DISPATCH) | mr RA, BASE | lp BASE, L->base | li TISNUM, LJ_TISNUM // Setup type comparison constants. | lp TMP1, L->top | lwz PC, FRAME_PC(BASE) | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | stb CARG3, L->status | stw TMP3, TMPD | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | lfs TOBIT, TMPD | sub RD, TMP1, BASE | stw TMP3, TMPD | lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double) | addi RD, RD, 8 | stw TMP0, TONUM_HI | li_vmstate INTERP | li ZERO, 0 | st_vmstate | andix. TMP0, PC, FRAME_TYPE | mr MULTRES, RD | lfs TONUM, TMPD | li TISNIL, LJ_TNIL | beq ->BC_RET_Z | b ->vm_return | |->vm_pcall: // Setup protected C frame and enter VM. | // (lua_State *L, TValue *base, int nres1, ptrdiff_t ef) | saveregs | li PC, FRAME_CP | stw CARG4, SAVE_ERRF | b >1 | |->vm_call: // Setup C frame and enter VM. | // (lua_State *L, TValue *base, int nres1) | saveregs | li PC, FRAME_C | |1: // Entry point for vm_pcall above (PC = ftype). | lp TMP1, L:CARG1->cframe | mr L, CARG1 | stw CARG3, SAVE_NRES | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | stw CARG1, SAVE_L | mr BASE, CARG2 | addi DISPATCH, DISPATCH, GG_G2DISP | stw CARG1, SAVE_PC // Any value outside of bytecode is ok. | stp TMP1, SAVE_CFRAME | stp sp, L->cframe // Add our C frame to cframe chain. | |3: // Entry point for vm_cpcall/vm_resume (BASE = base, PC = ftype). | stw L, DISPATCH_GL(cur_L)(DISPATCH) | lp TMP2, L->base // TMP2 = old base (used in vmeta_call). | li TISNUM, LJ_TISNUM // Setup type comparison constants. | lp TMP1, L->top | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | add PC, PC, BASE | stw TMP3, TMPD | li ZERO, 0 | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | lfs TOBIT, TMPD | sub PC, PC, TMP2 // PC = frame delta + frame type | stw TMP3, TMPD | lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double) | sub NARGS8:RC, TMP1, BASE | stw TMP0, TONUM_HI | li_vmstate INTERP | lfs TONUM, TMPD | li TISNIL, LJ_TNIL | st_vmstate | |->vm_call_dispatch: | // TMP2 = old base, BASE = new base, RC = nargs*8, PC = caller PC | lwz TMP0, FRAME_PC(BASE) | lwz LFUNC:RB, FRAME_FUNC(BASE) | checkfunc TMP0; bne ->vmeta_call | |->vm_call_dispatch_f: | ins_call | // BASE = new base, RB = func, RC = nargs*8, PC = caller PC | |->vm_cpcall: // Setup protected C frame, call C. | // (lua_State *L, lua_CFunction func, void *ud, lua_CPFunction cp) | saveregs | mr L, CARG1 | lwz TMP0, L:CARG1->stack | stw CARG1, SAVE_L | lp TMP1, L->top | lwz DISPATCH, L->glref // Setup pointer to dispatch table. | stw CARG1, SAVE_PC // Any value outside of bytecode is ok. | sub TMP0, TMP0, TMP1 // Compute -savestack(L, L->top). | lp TMP1, L->cframe | addi DISPATCH, DISPATCH, GG_G2DISP | .toc lp CARG4, 0(CARG4) | li TMP2, 0 | stw TMP0, SAVE_NRES // Neg. delta means cframe w/o frame. | stw TMP2, SAVE_ERRF // No error function. | stp TMP1, SAVE_CFRAME | stp sp, L->cframe // Add our C frame to cframe chain. | stw L, DISPATCH_GL(cur_L)(DISPATCH) | mtctr CARG4 | bctrl // (lua_State *L, lua_CFunction func, void *ud) |.if PPE | mr BASE, CRET1 | cmpwi CRET1, 0 |.else | mr. BASE, CRET1 |.endif | li PC, FRAME_CP | bne <3 // Else continue with the call. | b ->vm_leave_cp // No base? Just remove C frame. | |//----------------------------------------------------------------------- |//-- Metamethod handling ------------------------------------------------ |//----------------------------------------------------------------------- | |// The lj_meta_* functions (except for lj_meta_cat) don't reallocate the |// stack, so BASE doesn't need to be reloaded across these calls. | |//-- Continuation dispatch ---------------------------------------------- | |->cont_dispatch: | // BASE = meta base, RA = resultptr, RD = (nresults+1)*8 | lwz TMP0, -12(BASE) // Continuation. | mr RB, BASE | mr BASE, TMP2 // Restore caller BASE. | lwz LFUNC:TMP1, FRAME_FUNC(TMP2) |.if FFI | cmplwi TMP0, 1 |.endif | lwz PC, -16(RB) // Restore PC from [cont|PC]. | subi TMP2, RD, 8 | lwz TMP1, LFUNC:TMP1->pc | stwx TISNIL, RA, TMP2 // Ensure one valid arg. |.if FFI | ble >1 |.endif | lwz KBASE, PC2PROTO(k)(TMP1) | // BASE = base, RA = resultptr, RB = meta base | mtctr TMP0 | bctr // Jump to continuation. | |.if FFI |1: | beq ->cont_ffi_callback // cont = 1: return from FFI callback. | // cont = 0: tailcall from C function. | subi TMP1, RB, 16 | sub RC, TMP1, BASE | b ->vm_call_tail |.endif | |->cont_cat: // RA = resultptr, RB = meta base | lwz INS, -4(PC) | subi CARG2, RB, 16 | decode_RB8 SAVE0, INS | lfd f0, 0(RA) | add TMP1, BASE, SAVE0 | stp BASE, L->base | cmplw TMP1, CARG2 | sub CARG3, CARG2, TMP1 | decode_RA8 RA, INS | stfd f0, 0(CARG2) | bney ->BC_CAT_Z | stfdx f0, BASE, RA | b ->cont_nop | |//-- Table indexing metamethods ----------------------------------------- | |->vmeta_tgets1: | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | li TMP0, LJ_TSTR | decode_RB8 RB, INS | stw STR:RC, 4(CARG3) | add CARG2, BASE, RB | stw TMP0, 0(CARG3) | b >1 | |->vmeta_tgets: | la CARG2, DISPATCH_GL(tmptv)(DISPATCH) | li TMP0, LJ_TTAB | stw TAB:RB, 4(CARG2) | la CARG3, DISPATCH_GL(tmptv2)(DISPATCH) | stw TMP0, 0(CARG2) | li TMP1, LJ_TSTR | stw STR:RC, 4(CARG3) | stw TMP1, 0(CARG3) | b >1 | |->vmeta_tgetb: // TMP0 = index |.if not DUALNUM | tonum_u f0, TMP0 |.endif | decode_RB8 RB, INS | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | add CARG2, BASE, RB |.if DUALNUM | stw TISNUM, 0(CARG3) | stw TMP0, 4(CARG3) |.else | stfd f0, 0(CARG3) |.endif | b >1 | |->vmeta_tgetv: | decode_RB8 RB, INS | decode_RC8 RC, INS | add CARG2, BASE, RB | add CARG3, BASE, RC |1: | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_tget // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | cmplwi CRET1, 0 | beq >3 | lfd f0, 0(CRET1) | ins_next1 | stfdx f0, BASE, RA | ins_next2 | |3: // Call __index metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k | subfic TMP1, BASE, FRAME_CONT | lp BASE, L->top | stw PC, -16(BASE) // [cont|PC] | add PC, TMP1, BASE | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | li NARGS8:RC, 16 // 2 args for func(t, k). | b ->vm_call_dispatch_f | |->vmeta_tgetr: | bl extern lj_tab_getinth // (GCtab *t, int32_t key) | // Returns cTValue * or NULL. | cmplwi CRET1, 0 | beq >1 | lfd f14, 0(CRET1) | b ->BC_TGETR_Z |1: | stwx TISNIL, BASE, RA | b ->cont_nop | |//----------------------------------------------------------------------- | |->vmeta_tsets1: | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | li TMP0, LJ_TSTR | decode_RB8 RB, INS | stw STR:RC, 4(CARG3) | add CARG2, BASE, RB | stw TMP0, 0(CARG3) | b >1 | |->vmeta_tsets: | la CARG2, DISPATCH_GL(tmptv)(DISPATCH) | li TMP0, LJ_TTAB | stw TAB:RB, 4(CARG2) | la CARG3, DISPATCH_GL(tmptv2)(DISPATCH) | stw TMP0, 0(CARG2) | li TMP1, LJ_TSTR | stw STR:RC, 4(CARG3) | stw TMP1, 0(CARG3) | b >1 | |->vmeta_tsetb: // TMP0 = index |.if not DUALNUM | tonum_u f0, TMP0 |.endif | decode_RB8 RB, INS | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | add CARG2, BASE, RB |.if DUALNUM | stw TISNUM, 0(CARG3) | stw TMP0, 4(CARG3) |.else | stfd f0, 0(CARG3) |.endif | b >1 | |->vmeta_tsetv: | decode_RB8 RB, INS | decode_RC8 RC, INS | add CARG2, BASE, RB | add CARG3, BASE, RC |1: | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_tset // (lua_State *L, TValue *o, TValue *k) | // Returns TValue * (finished) or NULL (metamethod). | cmplwi CRET1, 0 | lfdx f0, BASE, RA | beq >3 | // NOBARRIER: lj_meta_tset ensures the table is not black. | ins_next1 | stfd f0, 0(CRET1) | ins_next2 | |3: // Call __newindex metamethod. | // BASE = base, L->top = new base, stack = cont/func/t/k/(v) | subfic TMP1, BASE, FRAME_CONT | lp BASE, L->top | stw PC, -16(BASE) // [cont|PC] | add PC, TMP1, BASE | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | li NARGS8:RC, 24 // 3 args for func(t, k, v) | stfd f0, 16(BASE) // Copy value to third argument. | b ->vm_call_dispatch_f | |->vmeta_tsetr: | stp BASE, L->base | stw PC, SAVE_PC | bl extern lj_tab_setinth // (lua_State *L, GCtab *t, int32_t key) | // Returns TValue *. | stfd f14, 0(CRET1) | b ->cont_nop | |//-- Comparison metamethods --------------------------------------------- | |->vmeta_comp: | mr CARG1, L | subi PC, PC, 4 |.if DUALNUM | mr CARG2, RA |.else | add CARG2, BASE, RA |.endif | stw PC, SAVE_PC |.if DUALNUM | mr CARG3, RD |.else | add CARG3, BASE, RD |.endif | stp BASE, L->base | decode_OP1 CARG4, INS | bl extern lj_meta_comp // (lua_State *L, TValue *o1, *o2, int op) | // Returns 0/1 or TValue * (metamethod). |3: | cmplwi CRET1, 1 | bgt ->vmeta_binop | subfic CRET1, CRET1, 0 |4: | lwz INS, 0(PC) | addi PC, PC, 4 | decode_RD4 TMP2, INS | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | and TMP2, TMP2, CRET1 | add PC, PC, TMP2 |->cont_nop: | ins_next | |->cont_ra: // RA = resultptr | lwz INS, -4(PC) | lfd f0, 0(RA) | decode_RA8 TMP1, INS | stfdx f0, BASE, TMP1 | b ->cont_nop | |->cont_condt: // RA = resultptr | lwz TMP0, 0(RA) | .gpr64 extsw TMP0, TMP0 | subfic TMP0, TMP0, LJ_TTRUE // Branch if result is true. | subfe CRET1, CRET1, CRET1 | not CRET1, CRET1 | b <4 | |->cont_condf: // RA = resultptr | lwz TMP0, 0(RA) | .gpr64 extsw TMP0, TMP0 | subfic TMP0, TMP0, LJ_TTRUE // Branch if result is false. | subfe CRET1, CRET1, CRET1 | b <4 | |->vmeta_equal: | // CARG2, CARG3, CARG4 are already set by BC_ISEQV/BC_ISNEV. | subi PC, PC, 4 | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_equal // (lua_State *L, GCobj *o1, *o2, int ne) | // Returns 0/1 or TValue * (metamethod). | b <3 | |->vmeta_equal_cd: |.if FFI | mr CARG2, INS | subi PC, PC, 4 | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_equal_cd // (lua_State *L, BCIns op) | // Returns 0/1 or TValue * (metamethod). | b <3 |.endif | |->vmeta_istype: | subi PC, PC, 4 | stp BASE, L->base | srwi CARG2, RA, 3 | mr CARG1, L | srwi CARG3, RD, 3 | stw PC, SAVE_PC | bl extern lj_meta_istype // (lua_State *L, BCReg ra, BCReg tp) | b ->cont_nop | |//-- Arithmetic metamethods --------------------------------------------- | |->vmeta_arith_nv: | add CARG3, KBASE, RC | add CARG4, BASE, RB | b >1 |->vmeta_arith_nv2: |.if DUALNUM | mr CARG3, RC | mr CARG4, RB | b >1 |.endif | |->vmeta_unm: | mr CARG3, RD | mr CARG4, RD | b >1 | |->vmeta_arith_vn: | add CARG3, BASE, RB | add CARG4, KBASE, RC | b >1 | |->vmeta_arith_vv: | add CARG3, BASE, RB | add CARG4, BASE, RC |.if DUALNUM | b >1 |.endif |->vmeta_arith_vn2: |->vmeta_arith_vv2: |.if DUALNUM | mr CARG3, RB | mr CARG4, RC |.endif |1: | add CARG2, BASE, RA | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | decode_OP1 CARG5, INS // Caveat: CARG5 overlaps INS. | bl extern lj_meta_arith // (lua_State *L, TValue *ra,*rb,*rc, BCReg op) | // Returns NULL (finished) or TValue * (metamethod). | cmplwi CRET1, 0 | beq ->cont_nop | | // Call metamethod for binary op. |->vmeta_binop: | // BASE = old base, CRET1 = new base, stack = cont/func/o1/o2 | sub TMP1, CRET1, BASE | stw PC, -16(CRET1) // [cont|PC] | mr TMP2, BASE | addi PC, TMP1, FRAME_CONT | mr BASE, CRET1 | li NARGS8:RC, 16 // 2 args for func(o1, o2). | b ->vm_call_dispatch | |->vmeta_len: #if LJ_52 | mr SAVE0, CARG1 #endif | mr CARG2, RD | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | bl extern lj_meta_len // (lua_State *L, TValue *o) | // Returns NULL (retry) or TValue * (metamethod base). #if LJ_52 | cmplwi CRET1, 0 | bne ->vmeta_binop // Binop call for compatibility. | mr CARG1, SAVE0 | b ->BC_LEN_Z #else | b ->vmeta_binop // Binop call for compatibility. #endif | |//-- Call metamethod ---------------------------------------------------- | |->vmeta_call: // Resolve and call __call metamethod. | // TMP2 = old base, BASE = new base, RC = nargs*8 | mr CARG1, L | stp TMP2, L->base // This is the callers base! | subi CARG2, BASE, 8 | stw PC, SAVE_PC | add CARG3, BASE, RC | mr SAVE0, NARGS8:RC | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | lwz LFUNC:RB, FRAME_FUNC(BASE) // Guaranteed to be a function here. | addi NARGS8:RC, SAVE0, 8 // Got one more argument now. | ins_call | |->vmeta_callt: // Resolve __call for BC_CALLT. | // BASE = old base, RA = new base, RC = nargs*8 | mr CARG1, L | stp BASE, L->base | subi CARG2, RA, 8 | stw PC, SAVE_PC | add CARG3, RA, RC | mr SAVE0, NARGS8:RC | bl extern lj_meta_call // (lua_State *L, TValue *func, TValue *top) | lwz TMP1, FRAME_PC(BASE) | addi NARGS8:RC, SAVE0, 8 // Got one more argument now. | lwz LFUNC:RB, FRAME_FUNC(RA) // Guaranteed to be a function here. | b ->BC_CALLT_Z | |//-- Argument coercion for 'for' statement ------------------------------ | |->vmeta_for: | mr CARG1, L | stp BASE, L->base | mr CARG2, RA | stw PC, SAVE_PC | mr SAVE0, INS | bl extern lj_meta_for // (lua_State *L, TValue *base) |.if JIT | decode_OP1 TMP0, SAVE0 |.endif | decode_RA8 RA, SAVE0 |.if JIT | cmpwi TMP0, BC_JFORI |.endif | decode_RD8 RD, SAVE0 |.if JIT | beqy =>BC_JFORI |.endif | b =>BC_FORI | |//----------------------------------------------------------------------- |//-- Fast functions ----------------------------------------------------- |//----------------------------------------------------------------------- | |.macro .ffunc, name |->ff_ .. name: |.endmacro | |.macro .ffunc_1, name |->ff_ .. name: | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lwz CARG1, 4(BASE) | blt ->fff_fallback |.endmacro | |.macro .ffunc_2, name |->ff_ .. name: | cmplwi NARGS8:RC, 16 | lwz CARG3, 0(BASE) | lwz CARG4, 8(BASE) | lwz CARG1, 4(BASE) | lwz CARG2, 12(BASE) | blt ->fff_fallback |.endmacro | |.macro .ffunc_n, name |->ff_ .. name: | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lfd FARG1, 0(BASE) | blt ->fff_fallback | checknum CARG3; bge ->fff_fallback |.endmacro | |.macro .ffunc_nn, name |->ff_ .. name: | cmplwi NARGS8:RC, 16 | lwz CARG3, 0(BASE) | lfd FARG1, 0(BASE) | lwz CARG4, 8(BASE) | lfd FARG2, 8(BASE) | blt ->fff_fallback | checknum CARG3; bge ->fff_fallback | checknum CARG4; bge ->fff_fallback |.endmacro | |// Inlined GC threshold check. Caveat: uses TMP0 and TMP1. |.macro ffgccheck | lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH) | lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | cmplw TMP0, TMP1 | bgel ->fff_gcstep |.endmacro | |//-- Base library: checks ----------------------------------------------- | |.ffunc_1 assert | li TMP1, LJ_TFALSE | la RA, -8(BASE) | cmplw cr1, CARG3, TMP1 | lwz PC, FRAME_PC(BASE) | bge cr1, ->fff_fallback | stw CARG3, 0(RA) | addi RD, NARGS8:RC, 8 // Compute (nresults+1)*8. | stw CARG1, 4(RA) | beq ->fff_res // Done if exactly 1 argument. | li TMP1, 8 | subi RC, RC, 8 |1: | cmplw TMP1, RC | lfdx f0, BASE, TMP1 | stfdx f0, RA, TMP1 | addi TMP1, TMP1, 8 | bney <1 | b ->fff_res | |.ffunc type | cmplwi NARGS8:RC, 8 | lwz CARG1, 0(BASE) | blt ->fff_fallback | .gpr64 extsw CARG1, CARG1 | subfc TMP0, TISNUM, CARG1 | subfe TMP2, CARG1, CARG1 | orc TMP1, TMP2, TMP0 | addi TMP1, TMP1, ~LJ_TISNUM+1 | slwi TMP1, TMP1, 3 | la TMP2, CFUNC:RB->upvalue | lfdx FARG1, TMP2, TMP1 | b ->fff_resn | |//-- Base library: getters and setters --------------------------------- | |.ffunc_1 getmetatable | checktab CARG3; bne >6 |1: // Field metatable must be at same offset for GCtab and GCudata! | lwz TAB:CARG1, TAB:CARG1->metatable |2: | li CARG3, LJ_TNIL | cmplwi TAB:CARG1, 0 | lwz STR:RC, DISPATCH_GL(gcroot[GCROOT_MMNAME+MM_metatable])(DISPATCH) | beq ->fff_restv | lwz TMP0, TAB:CARG1->hmask | li CARG3, LJ_TTAB // Use metatable as default result. | lwz TMP1, STR:RC->hash | lwz NODE:TMP2, TAB:CARG1->node | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | slwi TMP0, TMP1, 5 | slwi TMP1, TMP1, 3 | sub TMP1, TMP0, TMP1 | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |3: // Rearranged logic, because we expect _not_ to find the key. | lwz CARG4, NODE:TMP2->key | lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2) | lwz CARG2, NODE:TMP2->val | lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2) | checkstr CARG4; bne >4 | cmpw TMP0, STR:RC; beq >5 |4: | lwz NODE:TMP2, NODE:TMP2->next | cmplwi NODE:TMP2, 0 | beq ->fff_restv // Not found, keep default result. | b <3 |5: | checknil CARG2 | beq ->fff_restv // Ditto for nil value. | mr CARG3, CARG2 // Return value of mt.__metatable. | mr CARG1, TMP1 | b ->fff_restv | |6: | cmpwi CARG3, LJ_TUDATA; beq <1 | .gpr64 extsw CARG3, CARG3 | subfc TMP0, TISNUM, CARG3 | subfe TMP2, CARG3, CARG3 | orc TMP1, TMP2, TMP0 | addi TMP1, TMP1, ~LJ_TISNUM+1 | slwi TMP1, TMP1, 2 | la TMP2, DISPATCH_GL(gcroot[GCROOT_BASEMT])(DISPATCH) | lwzx TAB:CARG1, TMP2, TMP1 | b <2 | |.ffunc_2 setmetatable | // Fast path: no mt for table yet and not clearing the mt. | checktab CARG3; bne ->fff_fallback | lwz TAB:TMP1, TAB:CARG1->metatable | checktab CARG4; bne ->fff_fallback | cmplwi TAB:TMP1, 0 | lbz TMP3, TAB:CARG1->marked | bne ->fff_fallback | andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table) | stw TAB:CARG2, TAB:CARG1->metatable | beq ->fff_restv | barrierback TAB:CARG1, TMP3, TMP0 | b ->fff_restv | |.ffunc rawget | cmplwi NARGS8:RC, 16 | lwz CARG4, 0(BASE) | lwz TAB:CARG2, 4(BASE) | blt ->fff_fallback | checktab CARG4; bne ->fff_fallback | la CARG3, 8(BASE) | mr CARG1, L | bl extern lj_tab_get // (lua_State *L, GCtab *t, cTValue *key) | // Returns cTValue *. | lfd FARG1, 0(CRET1) | b ->fff_resn | |//-- Base library: conversions ------------------------------------------ | |.ffunc tonumber | // Only handles the number case inline (without a base argument). | cmplwi NARGS8:RC, 8 | lwz CARG1, 0(BASE) | lfd FARG1, 0(BASE) | bne ->fff_fallback // Exactly one argument. | checknum CARG1; bgt ->fff_fallback | b ->fff_resn | |.ffunc_1 tostring | // Only handles the string or number case inline. | checkstr CARG3 | // A __tostring method in the string base metatable is ignored. | beq ->fff_restv // String key? | // Handle numbers inline, unless a number base metatable is present. | lwz TMP0, DISPATCH_GL(gcroot[GCROOT_BASEMT_NUM])(DISPATCH) | checknum CARG3 | cmplwi cr1, TMP0, 0 | stp BASE, L->base // Add frame since C call can throw. | crorc 4*cr0+eq, 4*cr0+gt, 4*cr1+eq | stw PC, SAVE_PC // Redundant (but a defined value). | beq ->fff_fallback | ffgccheck | mr CARG1, L | mr CARG2, BASE |.if DUALNUM | bl extern lj_strfmt_number // (lua_State *L, cTValue *o) |.else | bl extern lj_strfmt_num // (lua_State *L, lua_Number *np) |.endif | // Returns GCstr *. | li CARG3, LJ_TSTR | b ->fff_restv | |//-- Base library: iterators ------------------------------------------- | |.ffunc next | cmplwi NARGS8:RC, 8 | lwz CARG1, 0(BASE) | lwz TAB:CARG2, 4(BASE) | blt ->fff_fallback | stwx TISNIL, BASE, NARGS8:RC // Set missing 2nd arg to nil. | checktab CARG1 | lwz PC, FRAME_PC(BASE) | bne ->fff_fallback | stp BASE, L->base // Add frame since C call can throw. | mr CARG1, L | stp BASE, L->top // Dummy frame length is ok. | la CARG3, 8(BASE) | stw PC, SAVE_PC | bl extern lj_tab_next // (lua_State *L, GCtab *t, TValue *key) | // Returns 0 at end of traversal. | cmplwi CRET1, 0 | li CARG3, LJ_TNIL | beq ->fff_restv // End of traversal: return nil. | lfd f0, 8(BASE) // Copy key and value to results. | la RA, -8(BASE) | lfd f1, 16(BASE) | stfd f0, 0(RA) | li RD, (2+1)*8 | stfd f1, 8(RA) | b ->fff_res | |.ffunc_1 pairs | checktab CARG3 | lwz PC, FRAME_PC(BASE) | bne ->fff_fallback #if LJ_52 | lwz TAB:TMP2, TAB:CARG1->metatable | lfd f0, CFUNC:RB->upvalue[0] | cmplwi TAB:TMP2, 0 | la RA, -8(BASE) | bne ->fff_fallback #else | lfd f0, CFUNC:RB->upvalue[0] | la RA, -8(BASE) #endif | stw TISNIL, 8(BASE) | li RD, (3+1)*8 | stfd f0, 0(RA) | b ->fff_res | |.ffunc ipairs_aux | cmplwi NARGS8:RC, 16 | lwz CARG3, 0(BASE) | lwz TAB:CARG1, 4(BASE) | lwz CARG4, 8(BASE) |.if DUALNUM | lwz TMP2, 12(BASE) |.else | lfd FARG2, 8(BASE) |.endif | blt ->fff_fallback | checktab CARG3 | checknum cr1, CARG4 | lwz PC, FRAME_PC(BASE) |.if DUALNUM | bne ->fff_fallback | bne cr1, ->fff_fallback |.else | lus TMP0, 0x3ff0 | stw ZERO, TMPD_LO | bne ->fff_fallback | stw TMP0, TMPD_HI | bge cr1, ->fff_fallback | lfd FARG1, TMPD | toint TMP2, FARG2, f0 |.endif | lwz TMP0, TAB:CARG1->asize | lwz TMP1, TAB:CARG1->array |.if not DUALNUM | fadd FARG2, FARG2, FARG1 |.endif | addi TMP2, TMP2, 1 | la RA, -8(BASE) | cmplw TMP0, TMP2 |.if DUALNUM | stw TISNUM, 0(RA) | slwi TMP3, TMP2, 3 | stw TMP2, 4(RA) |.else | slwi TMP3, TMP2, 3 | stfd FARG2, 0(RA) |.endif | ble >2 // Not in array part? | lwzx TMP2, TMP1, TMP3 | lfdx f0, TMP1, TMP3 |1: | checknil TMP2 | li RD, (0+1)*8 | beq ->fff_res // End of iteration, return 0 results. | li RD, (2+1)*8 | stfd f0, 8(RA) | b ->fff_res |2: // Check for empty hash part first. Otherwise call C function. | lwz TMP0, TAB:CARG1->hmask | cmplwi TMP0, 0 | li RD, (0+1)*8 | beq ->fff_res | mr CARG2, TMP2 | bl extern lj_tab_getinth // (GCtab *t, int32_t key) | // Returns cTValue * or NULL. | cmplwi CRET1, 0 | li RD, (0+1)*8 | beq ->fff_res | lwz TMP2, 0(CRET1) | lfd f0, 0(CRET1) | b <1 | |.ffunc_1 ipairs | checktab CARG3 | lwz PC, FRAME_PC(BASE) | bne ->fff_fallback #if LJ_52 | lwz TAB:TMP2, TAB:CARG1->metatable | lfd f0, CFUNC:RB->upvalue[0] | cmplwi TAB:TMP2, 0 | la RA, -8(BASE) | bne ->fff_fallback #else | lfd f0, CFUNC:RB->upvalue[0] | la RA, -8(BASE) #endif |.if DUALNUM | stw TISNUM, 8(BASE) |.else | stw ZERO, 8(BASE) |.endif | stw ZERO, 12(BASE) | li RD, (3+1)*8 | stfd f0, 0(RA) | b ->fff_res | |//-- Base library: catch errors ---------------------------------------- | |.ffunc pcall | cmplwi NARGS8:RC, 8 | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | blt ->fff_fallback | mr TMP2, BASE | la BASE, 8(BASE) | // Remember active hook before pcall. | rlwinm TMP3, TMP3, 32-HOOK_ACTIVE_SHIFT, 31, 31 | subi NARGS8:RC, NARGS8:RC, 8 | addi PC, TMP3, 8+FRAME_PCALL | b ->vm_call_dispatch | |.ffunc xpcall | cmplwi NARGS8:RC, 16 | lwz CARG4, 8(BASE) | lfd FARG2, 8(BASE) | lfd FARG1, 0(BASE) | blt ->fff_fallback | lbz TMP1, DISPATCH_GL(hookmask)(DISPATCH) | mr TMP2, BASE | checkfunc CARG4; bne ->fff_fallback // Traceback must be a function. | la BASE, 16(BASE) | // Remember active hook before pcall. | rlwinm TMP1, TMP1, 32-HOOK_ACTIVE_SHIFT, 31, 31 | stfd FARG2, 0(TMP2) // Swap function and traceback. | subi NARGS8:RC, NARGS8:RC, 16 | stfd FARG1, 8(TMP2) | addi PC, TMP1, 16+FRAME_PCALL | b ->vm_call_dispatch | |//-- Coroutine library -------------------------------------------------- | |.macro coroutine_resume_wrap, resume |.if resume |.ffunc_1 coroutine_resume | cmpwi CARG3, LJ_TTHREAD; bne ->fff_fallback |.else |.ffunc coroutine_wrap_aux | lwz L:CARG1, CFUNC:RB->upvalue[0].gcr |.endif | lbz TMP0, L:CARG1->status | lp TMP1, L:CARG1->cframe | lp CARG2, L:CARG1->top | cmplwi cr0, TMP0, LUA_YIELD | lp TMP2, L:CARG1->base | cmplwi cr1, TMP1, 0 | lwz TMP0, L:CARG1->maxstack | cmplw cr7, CARG2, TMP2 | lwz PC, FRAME_PC(BASE) | crorc 4*cr6+lt, 4*cr0+gt, 4*cr1+eq // st>LUA_YIELD || cframe!=0 | add TMP2, CARG2, NARGS8:RC | crandc 4*cr6+gt, 4*cr7+eq, 4*cr0+eq // base==top && st!=LUA_YIELD | cmplw cr1, TMP2, TMP0 | cror 4*cr6+lt, 4*cr6+lt, 4*cr6+gt | stw PC, SAVE_PC | cror 4*cr6+lt, 4*cr6+lt, 4*cr1+gt // cond1 || cond2 || stackov | stp BASE, L->base | blt cr6, ->fff_fallback |1: |.if resume | addi BASE, BASE, 8 // Keep resumed thread in stack for GC. | subi NARGS8:RC, NARGS8:RC, 8 | subi TMP2, TMP2, 8 |.endif | stp TMP2, L:CARG1->top | li TMP1, 0 | stp BASE, L->top |2: // Move args to coroutine. | cmpw TMP1, NARGS8:RC | lfdx f0, BASE, TMP1 | beq >3 | stfdx f0, CARG2, TMP1 | addi TMP1, TMP1, 8 | b <2 |3: | li CARG3, 0 | mr L:SAVE0, L:CARG1 | li CARG4, 0 | bl ->vm_resume // (lua_State *L, TValue *base, 0, 0) | // Returns thread status. |4: | lp TMP2, L:SAVE0->base | cmplwi CRET1, LUA_YIELD | lp TMP3, L:SAVE0->top | li_vmstate INTERP | lp BASE, L->base | stw L, DISPATCH_GL(cur_L)(DISPATCH) | st_vmstate | bgt >8 | sub RD, TMP3, TMP2 | lwz TMP0, L->maxstack | cmplwi RD, 0 | add TMP1, BASE, RD | beq >6 // No results? | cmplw TMP1, TMP0 | li TMP1, 0 | bgt >9 // Need to grow stack? | | subi TMP3, RD, 8 | stp TMP2, L:SAVE0->top // Clear coroutine stack. |5: // Move results from coroutine. | cmplw TMP1, TMP3 | lfdx f0, TMP2, TMP1 | stfdx f0, BASE, TMP1 | addi TMP1, TMP1, 8 | bne <5 |6: | andix. TMP0, PC, FRAME_TYPE |.if resume | li TMP1, LJ_TTRUE | la RA, -8(BASE) | stw TMP1, -8(BASE) // Prepend true to results. | addi RD, RD, 16 |.else | mr RA, BASE | addi RD, RD, 8 |.endif |7: | stw PC, SAVE_PC | mr MULTRES, RD | beq ->BC_RET_Z | b ->vm_return | |8: // Coroutine returned with error (at co->top-1). |.if resume | andix. TMP0, PC, FRAME_TYPE | la TMP3, -8(TMP3) | li TMP1, LJ_TFALSE | lfd f0, 0(TMP3) | stp TMP3, L:SAVE0->top // Remove error from coroutine stack. | li RD, (2+1)*8 | stw TMP1, -8(BASE) // Prepend false to results. | la RA, -8(BASE) | stfd f0, 0(BASE) // Copy error message. | b <7 |.else | mr CARG1, L | mr CARG2, L:SAVE0 | bl extern lj_ffh_coroutine_wrap_err // (lua_State *L, lua_State *co) |.endif | |9: // Handle stack expansion on return from yield. | mr CARG1, L | srwi CARG2, RD, 3 | bl extern lj_state_growstack // (lua_State *L, int n) | li CRET1, 0 | b <4 |.endmacro | | coroutine_resume_wrap 1 // coroutine.resume | coroutine_resume_wrap 0 // coroutine.wrap | |.ffunc coroutine_yield | lp TMP0, L->cframe | add TMP1, BASE, NARGS8:RC | stp BASE, L->base | andix. TMP0, TMP0, CFRAME_RESUME | stp TMP1, L->top | li CRET1, LUA_YIELD | beq ->fff_fallback | stp ZERO, L->cframe | stb CRET1, L->status | b ->vm_leave_unw | |//-- Math library ------------------------------------------------------- | |.ffunc_1 math_abs | checknum CARG3 |.if DUALNUM | bne >2 | srawi TMP1, CARG1, 31 | xor TMP2, TMP1, CARG1 |.if GPR64 | lus TMP0, 0x8000 | sub CARG1, TMP2, TMP1 | cmplw CARG1, TMP0 | beq >1 |.else | sub. CARG1, TMP2, TMP1 | blt >1 |.endif |->fff_resi: | lwz PC, FRAME_PC(BASE) | la RA, -8(BASE) | stw TISNUM, -8(BASE) | stw CRET1, -4(BASE) | b ->fff_res1 |1: | lus CARG3, 0x41e0 // 2^31. | li CARG1, 0 | b ->fff_restv |2: |.endif | bge ->fff_fallback | rlwinm CARG3, CARG3, 0, 1, 31 | // Fallthrough. | |->fff_restv: | // CARG3/CARG1 = TValue result. | lwz PC, FRAME_PC(BASE) | stw CARG3, -8(BASE) | la RA, -8(BASE) | stw CARG1, -4(BASE) |->fff_res1: | // RA = results, PC = return. | li RD, (1+1)*8 |->fff_res: | // RA = results, RD = (nresults+1)*8, PC = return. | andix. TMP0, PC, FRAME_TYPE | mr MULTRES, RD | bney ->vm_return | lwz INS, -4(PC) | decode_RB8 RB, INS |5: | cmplw RB, RD // More results expected? | decode_RA8 TMP0, INS | bgt >6 | ins_next1 | // Adjust BASE. KBASE is assumed to be set for the calling frame. | sub BASE, RA, TMP0 | ins_next2 | |6: // Fill up results with nil. | subi TMP1, RD, 8 | addi RD, RD, 8 | stwx TISNIL, RA, TMP1 | b <5 | |.macro math_extern, func | .ffunc_n math_ .. func | blex func | b ->fff_resn |.endmacro | |.macro math_extern2, func | .ffunc_nn math_ .. func | blex func | b ->fff_resn |.endmacro | |.macro math_round, func | .ffunc_1 math_ .. func | checknum CARG3; beqy ->fff_restv | rlwinm TMP2, CARG3, 12, 21, 31 | bge ->fff_fallback | addic. TMP2, TMP2, -1023 // exp = exponent(x) - 1023 | cmplwi cr1, TMP2, 31 // 0 <= exp < 31? | subfic TMP0, TMP2, 31 | blt >3 | slwi TMP1, CARG3, 11 | srwi TMP3, CARG1, 21 | oris TMP1, TMP1, 0x8000 | addi TMP2, TMP2, 1 | or TMP1, TMP1, TMP3 | slwi CARG2, CARG1, 11 | bge cr1, >4 | slw TMP3, TMP1, TMP2 | srw RD, TMP1, TMP0 | or TMP3, TMP3, CARG2 | srawi TMP2, CARG3, 31 |.if "func" == "floor" | and TMP1, TMP3, TMP2 | addic TMP0, TMP1, -1 | subfe TMP1, TMP0, TMP1 | add CARG1, RD, TMP1 | xor CARG1, CARG1, TMP2 | sub CARG1, CARG1, TMP2 | b ->fff_resi |.else | andc TMP1, TMP3, TMP2 | addic TMP0, TMP1, -1 | subfe TMP1, TMP0, TMP1 | add CARG1, RD, TMP1 | cmpw CARG1, RD | xor CARG1, CARG1, TMP2 | sub CARG1, CARG1, TMP2 | bge ->fff_resi | // Overflow to 2^31. | lus CARG3, 0x41e0 // 2^31. | li CARG1, 0 | b ->fff_restv |.endif |3: // |x| < 1 | slwi TMP2, CARG3, 1 | srawi TMP1, CARG3, 31 | or TMP2, CARG1, TMP2 // ztest = (hi+hi) | lo |.if "func" == "floor" | and TMP1, TMP2, TMP1 // (ztest & sign) == 0 ? 0 : -1 | subfic TMP2, TMP1, 0 | subfe CARG1, CARG1, CARG1 |.else | andc TMP1, TMP2, TMP1 // (ztest & ~sign) == 0 ? 0 : 1 | addic TMP2, TMP1, -1 | subfe CARG1, TMP2, TMP1 |.endif | b ->fff_resi |4: // exp >= 31. Check for -(2^31). | xoris TMP1, TMP1, 0x8000 | srawi TMP2, CARG3, 31 |.if "func" == "floor" | or TMP1, TMP1, CARG2 |.endif |.if PPE | orc TMP1, TMP1, TMP2 | cmpwi TMP1, 0 |.else | orc. TMP1, TMP1, TMP2 |.endif | crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | lus CARG1, 0x8000 // -(2^31). | beqy ->fff_resi |5: | lfd FARG1, 0(BASE) | blex func | b ->fff_resn |.endmacro | |.if DUALNUM | math_round floor | math_round ceil |.else | // NYI: use internal implementation. | math_extern floor | math_extern ceil |.endif | |.if SQRT |.ffunc_n math_sqrt | fsqrt FARG1, FARG1 | b ->fff_resn |.else | math_extern sqrt |.endif | |.ffunc math_log | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lfd FARG1, 0(BASE) | bne ->fff_fallback // Need exactly 1 argument. | checknum CARG3; bge ->fff_fallback | blex log | b ->fff_resn | | math_extern log10 | math_extern exp | math_extern sin | math_extern cos | math_extern tan | math_extern asin | math_extern acos | math_extern atan | math_extern sinh | math_extern cosh | math_extern tanh | math_extern2 pow | math_extern2 atan2 | math_extern2 fmod | |.if DUALNUM |.ffunc math_ldexp | cmplwi NARGS8:RC, 16 | lwz CARG3, 0(BASE) | lfd FARG1, 0(BASE) | lwz CARG4, 8(BASE) |.if GPR64 | lwz CARG2, 12(BASE) |.else | lwz CARG1, 12(BASE) |.endif | blt ->fff_fallback | checknum CARG3; bge ->fff_fallback | checknum CARG4; bne ->fff_fallback |.else |.ffunc_nn math_ldexp |.if GPR64 | toint CARG2, FARG2 |.else | toint CARG1, FARG2 |.endif |.endif | blex ldexp | b ->fff_resn | |.ffunc_n math_frexp |.if GPR64 | la CARG2, DISPATCH_GL(tmptv)(DISPATCH) |.else | la CARG1, DISPATCH_GL(tmptv)(DISPATCH) |.endif | lwz PC, FRAME_PC(BASE) | blex frexp | lwz TMP1, DISPATCH_GL(tmptv)(DISPATCH) | la RA, -8(BASE) |.if not DUALNUM | tonum_i FARG2, TMP1 |.endif | stfd FARG1, 0(RA) | li RD, (2+1)*8 |.if DUALNUM | stw TISNUM, 8(RA) | stw TMP1, 12(RA) |.else | stfd FARG2, 8(RA) |.endif | b ->fff_res | |.ffunc_n math_modf |.if GPR64 | la CARG2, -8(BASE) |.else | la CARG1, -8(BASE) |.endif | lwz PC, FRAME_PC(BASE) | blex modf | la RA, -8(BASE) | stfd FARG1, 0(BASE) | li RD, (2+1)*8 | b ->fff_res | |.macro math_minmax, name, ismax |.if DUALNUM | .ffunc_1 name | checknum CARG3 | addi TMP1, BASE, 8 | add TMP2, BASE, NARGS8:RC | bne >4 |1: // Handle integers. | lwz CARG4, 0(TMP1) | cmplw cr1, TMP1, TMP2 | lwz CARG2, 4(TMP1) | bge cr1, ->fff_resi | checknum CARG4 | xoris TMP0, CARG1, 0x8000 | xoris TMP3, CARG2, 0x8000 | bne >3 | subfc TMP3, TMP3, TMP0 | subfe TMP0, TMP0, TMP0 |.if ismax | andc TMP3, TMP3, TMP0 |.else | and TMP3, TMP3, TMP0 |.endif | add CARG1, TMP3, CARG2 |.if GPR64 | rldicl CARG1, CARG1, 0, 32 |.endif | addi TMP1, TMP1, 8 | b <1 |3: | bge ->fff_fallback | // Convert intermediate result to number and continue below. | tonum_i FARG1, CARG1 | lfd FARG2, 0(TMP1) | b >6 |4: | lfd FARG1, 0(BASE) | bge ->fff_fallback |5: // Handle numbers. | lwz CARG4, 0(TMP1) | cmplw cr1, TMP1, TMP2 | lfd FARG2, 0(TMP1) | bge cr1, ->fff_resn | checknum CARG4; bge >7 |6: | fsub f0, FARG1, FARG2 | addi TMP1, TMP1, 8 |.if ismax | fsel FARG1, f0, FARG1, FARG2 |.else | fsel FARG1, f0, FARG2, FARG1 |.endif | b <5 |7: // Convert integer to number and continue above. | lwz CARG2, 4(TMP1) | bne ->fff_fallback | tonum_i FARG2, CARG2 | b <6 |.else | .ffunc_n name | li TMP1, 8 |1: | lwzx CARG2, BASE, TMP1 | lfdx FARG2, BASE, TMP1 | cmplw cr1, TMP1, NARGS8:RC | checknum CARG2 | bge cr1, ->fff_resn | bge ->fff_fallback | fsub f0, FARG1, FARG2 | addi TMP1, TMP1, 8 |.if ismax | fsel FARG1, f0, FARG1, FARG2 |.else | fsel FARG1, f0, FARG2, FARG1 |.endif | b <1 |.endif |.endmacro | | math_minmax math_min, 0 | math_minmax math_max, 1 | |//-- String library ----------------------------------------------------- | |.ffunc string_byte // Only handle the 1-arg case here. | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lwz STR:CARG1, 4(BASE) | bne ->fff_fallback // Need exactly 1 argument. | checkstr CARG3 | bne ->fff_fallback | lwz TMP0, STR:CARG1->len |.if DUALNUM | lbz CARG1, STR:CARG1[1] // Access is always ok (NUL at end). | li RD, (0+1)*8 | lwz PC, FRAME_PC(BASE) | cmplwi TMP0, 0 | la RA, -8(BASE) | beqy ->fff_res | b ->fff_resi |.else | lbz TMP1, STR:CARG1[1] // Access is always ok (NUL at end). | addic TMP3, TMP0, -1 // RD = ((str->len != 0)+1)*8 | subfe RD, TMP3, TMP0 | stw TMP1, TONUM_LO // Inlined tonum_u f0, TMP1. | addi RD, RD, 1 | lfd f0, TONUM_D | la RA, -8(BASE) | lwz PC, FRAME_PC(BASE) | fsub f0, f0, TOBIT | slwi RD, RD, 3 | stfd f0, 0(RA) | b ->fff_res |.endif | |.ffunc string_char // Only handle the 1-arg case here. | ffgccheck | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) |.if DUALNUM | lwz TMP0, 4(BASE) | bne ->fff_fallback // Exactly 1 argument. | checknum CARG3; bne ->fff_fallback | la CARG2, 7(BASE) |.else | lfd FARG1, 0(BASE) | bne ->fff_fallback // Exactly 1 argument. | checknum CARG3; bge ->fff_fallback | toint TMP0, FARG1 | la CARG2, TMPD_BLO |.endif | li CARG3, 1 | cmplwi TMP0, 255; bgt ->fff_fallback |->fff_newstr: | mr CARG1, L | stp BASE, L->base | stw PC, SAVE_PC | bl extern lj_str_new // (lua_State *L, char *str, size_t l) |->fff_resstr: | // Returns GCstr *. | lp BASE, L->base | li CARG3, LJ_TSTR | b ->fff_restv | |.ffunc string_sub | ffgccheck | cmplwi NARGS8:RC, 16 | lwz CARG3, 16(BASE) |.if not DUALNUM | lfd f0, 16(BASE) |.endif | lwz TMP0, 0(BASE) | lwz STR:CARG1, 4(BASE) | blt ->fff_fallback | lwz CARG2, 8(BASE) |.if DUALNUM | lwz TMP1, 12(BASE) |.else | lfd f1, 8(BASE) |.endif | li TMP2, -1 | beq >1 |.if DUALNUM | checknum CARG3 | lwz TMP2, 20(BASE) | bne ->fff_fallback |1: | checknum CARG2; bne ->fff_fallback |.else | checknum CARG3; bge ->fff_fallback | toint TMP2, f0 |1: | checknum CARG2; bge ->fff_fallback |.endif | checkstr TMP0; bne ->fff_fallback |.if not DUALNUM | toint TMP1, f1 |.endif | lwz TMP0, STR:CARG1->len | cmplw TMP0, TMP2 // len < end? (unsigned compare) | addi TMP3, TMP2, 1 | blt >5 |2: | cmpwi TMP1, 0 // start <= 0? | add TMP3, TMP1, TMP0 | ble >7 |3: | sub CARG3, TMP2, TMP1 | addi CARG2, STR:CARG1, #STR-1 | srawi TMP0, CARG3, 31 | addi CARG3, CARG3, 1 | add CARG2, CARG2, TMP1 | andc CARG3, CARG3, TMP0 |.if GPR64 | rldicl CARG2, CARG2, 0, 32 | rldicl CARG3, CARG3, 0, 32 |.endif | b ->fff_newstr | |5: // Negative end or overflow. | cmpw TMP0, TMP2 // len >= end? (signed compare) | add TMP2, TMP0, TMP3 // Negative end: end = end+len+1. | bge <2 | mr TMP2, TMP0 // Overflow: end = len. | b <2 | |7: // Negative start or underflow. | .gpr64 extsw TMP1, TMP1 | addic CARG3, TMP1, -1 | subfe CARG3, CARG3, CARG3 | srawi CARG2, TMP3, 31 // Note: modifies carry. | andc TMP3, TMP3, CARG3 | andc TMP1, TMP3, CARG2 | addi TMP1, TMP1, 1 // start = 1 + (start ? start+len : 0) | b <3 | |.macro ffstring_op, name | .ffunc string_ .. name | ffgccheck | cmplwi NARGS8:RC, 8 | lwz CARG3, 0(BASE) | lwz STR:CARG2, 4(BASE) | blt ->fff_fallback | checkstr CARG3 | la SBUF:CARG1, DISPATCH_GL(tmpbuf)(DISPATCH) | bne ->fff_fallback | lwz TMP0, SBUF:CARG1->b | stw L, SBUF:CARG1->L | stp BASE, L->base | stw PC, SAVE_PC | stw TMP0, SBUF:CARG1->p | bl extern lj_buf_putstr_ .. name | bl extern lj_buf_tostr | b ->fff_resstr |.endmacro | |ffstring_op reverse |ffstring_op lower |ffstring_op upper | |//-- Bit library -------------------------------------------------------- | |.macro .ffunc_bit, name |.if DUALNUM | .ffunc_1 bit_..name | checknum CARG3; bnel ->fff_tobit_fb |.else | .ffunc_n bit_..name | fadd FARG1, FARG1, TOBIT | stfd FARG1, TMPD | lwz CARG1, TMPD_LO |.endif |.endmacro | |.macro .ffunc_bit_op, name, ins | .ffunc_bit name | addi TMP1, BASE, 8 | add TMP2, BASE, NARGS8:RC |1: | lwz CARG4, 0(TMP1) | cmplw cr1, TMP1, TMP2 |.if DUALNUM | lwz CARG2, 4(TMP1) |.else | lfd FARG1, 0(TMP1) |.endif | bgey cr1, ->fff_resi | checknum CARG4 |.if DUALNUM | bnel ->fff_bitop_fb |.else | fadd FARG1, FARG1, TOBIT | bge ->fff_fallback | stfd FARG1, TMPD | lwz CARG2, TMPD_LO |.endif | ins CARG1, CARG1, CARG2 | addi TMP1, TMP1, 8 | b <1 |.endmacro | |.ffunc_bit_op band, and |.ffunc_bit_op bor, or |.ffunc_bit_op bxor, xor | |.ffunc_bit bswap | rotlwi TMP0, CARG1, 8 | rlwimi TMP0, CARG1, 24, 0, 7 | rlwimi TMP0, CARG1, 24, 16, 23 | mr CRET1, TMP0 | b ->fff_resi | |.ffunc_bit bnot | not CRET1, CARG1 | b ->fff_resi | |.macro .ffunc_bit_sh, name, ins, shmod |.if DUALNUM | .ffunc_2 bit_..name | checknum CARG3; bnel ->fff_tobit_fb | // Note: no inline conversion from number for 2nd argument! | checknum CARG4; bne ->fff_fallback |.else | .ffunc_nn bit_..name | fadd FARG1, FARG1, TOBIT | fadd FARG2, FARG2, TOBIT | stfd FARG1, TMPD | lwz CARG1, TMPD_LO | stfd FARG2, TMPD | lwz CARG2, TMPD_LO |.endif |.if shmod == 1 | rlwinm CARG2, CARG2, 0, 27, 31 |.elif shmod == 2 | neg CARG2, CARG2 |.endif | ins CRET1, CARG1, CARG2 | b ->fff_resi |.endmacro | |.ffunc_bit_sh lshift, slw, 1 |.ffunc_bit_sh rshift, srw, 1 |.ffunc_bit_sh arshift, sraw, 1 |.ffunc_bit_sh rol, rotlw, 0 |.ffunc_bit_sh ror, rotlw, 2 | |.ffunc_bit tobit |.if DUALNUM | b ->fff_resi |.else |->fff_resi: | tonum_i FARG1, CRET1 |.endif |->fff_resn: | lwz PC, FRAME_PC(BASE) | la RA, -8(BASE) | stfd FARG1, -8(BASE) | b ->fff_res1 | |// Fallback FP number to bit conversion. |->fff_tobit_fb: |.if DUALNUM | lfd FARG1, 0(BASE) | bgt ->fff_fallback | fadd FARG1, FARG1, TOBIT | stfd FARG1, TMPD | lwz CARG1, TMPD_LO | blr |.endif |->fff_bitop_fb: |.if DUALNUM | lfd FARG1, 0(TMP1) | bgt ->fff_fallback | fadd FARG1, FARG1, TOBIT | stfd FARG1, TMPD | lwz CARG2, TMPD_LO | blr |.endif | |//----------------------------------------------------------------------- | |->fff_fallback: // Call fast function fallback handler. | // BASE = new base, RB = CFUNC, RC = nargs*8 | lp TMP3, CFUNC:RB->f | add TMP1, BASE, NARGS8:RC | lwz PC, FRAME_PC(BASE) // Fallback may overwrite PC. | addi TMP0, TMP1, 8*LUA_MINSTACK | lwz TMP2, L->maxstack | stw PC, SAVE_PC // Redundant (but a defined value). | .toc lp TMP3, 0(TMP3) | cmplw TMP0, TMP2 | stp BASE, L->base | stp TMP1, L->top | mr CARG1, L | bgt >5 // Need to grow stack. | mtctr TMP3 | bctrl // (lua_State *L) | // Either throws an error, or recovers and returns -1, 0 or nresults+1. | lp BASE, L->base | cmpwi CRET1, 0 | slwi RD, CRET1, 3 | la RA, -8(BASE) | bgt ->fff_res // Returned nresults+1? |1: // Returned 0 or -1: retry fast path. | lp TMP0, L->top | lwz LFUNC:RB, FRAME_FUNC(BASE) | sub NARGS8:RC, TMP0, BASE | bne ->vm_call_tail // Returned -1? | ins_callt // Returned 0: retry fast path. | |// Reconstruct previous base for vmeta_call during tailcall. |->vm_call_tail: | andix. TMP0, PC, FRAME_TYPE | rlwinm TMP1, PC, 0, 0, 28 | bne >3 | lwz INS, -4(PC) | decode_RA8 TMP1, INS | addi TMP1, TMP1, 8 |3: | sub TMP2, BASE, TMP1 | b ->vm_call_dispatch // Resolve again for tailcall. | |5: // Grow stack for fallback handler. | li CARG2, LUA_MINSTACK | bl extern lj_state_growstack // (lua_State *L, int n) | lp BASE, L->base | cmpw TMP0, TMP0 // Set 4*cr0+eq to force retry. | b <1 | |->fff_gcstep: // Call GC step function. | // BASE = new base, RC = nargs*8 | mflr SAVE0 | stp BASE, L->base | add TMP0, BASE, NARGS8:RC | stw PC, SAVE_PC // Redundant (but a defined value). | stp TMP0, L->top | mr CARG1, L | bl extern lj_gc_step // (lua_State *L) | lp BASE, L->base | mtlr SAVE0 | lp TMP0, L->top | sub NARGS8:RC, TMP0, BASE | lwz CFUNC:RB, FRAME_FUNC(BASE) | blr | |//----------------------------------------------------------------------- |//-- Special dispatch targets ------------------------------------------- |//----------------------------------------------------------------------- | |->vm_record: // Dispatch target for recording phase. |.if JIT | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | andix. TMP0, TMP3, HOOK_VMEVENT // No recording while in vmevent. | bne >5 | // Decrement the hookcount for consistency, but always do the call. | lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andix. TMP0, TMP3, HOOK_ACTIVE | bne >1 | subi TMP2, TMP2, 1 | andi. TMP0, TMP3, LUA_MASKLINE|LUA_MASKCOUNT | beqy >1 | stw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | b >1 |.endif | |->vm_rethook: // Dispatch target for return hooks. | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | andix. TMP0, TMP3, HOOK_ACTIVE // Hook already active? | beq >1 |5: // Re-dispatch to static ins. | addi TMP1, TMP1, GG_DISP2STATIC // Assumes decode_OPP TMP1, INS. | lpx TMP0, DISPATCH, TMP1 | mtctr TMP0 | bctr | |->vm_inshook: // Dispatch target for instr/line hooks. | lbz TMP3, DISPATCH_GL(hookmask)(DISPATCH) | lwz TMP2, DISPATCH_GL(hookcount)(DISPATCH) | andix. TMP0, TMP3, HOOK_ACTIVE // Hook already active? | rlwinm TMP0, TMP3, 31-LUA_HOOKLINE, 31, 0 | bne <5 | | cmpwi cr1, TMP0, 0 | addic. TMP2, TMP2, -1 | beq cr1, <5 | stw TMP2, DISPATCH_GL(hookcount)(DISPATCH) | beq >1 | bge cr1, <5 |1: | mr CARG1, L | stw MULTRES, SAVE_MULTRES | mr CARG2, PC | stp BASE, L->base | // SAVE_PC must hold the _previous_ PC. The callee updates it with PC. | bl extern lj_dispatch_ins // (lua_State *L, const BCIns *pc) |3: | lp BASE, L->base |4: // Re-dispatch to static ins. | lwz INS, -4(PC) | decode_OPP TMP1, INS | decode_RB8 RB, INS | addi TMP1, TMP1, GG_DISP2STATIC | decode_RD8 RD, INS | lpx TMP0, DISPATCH, TMP1 | decode_RA8 RA, INS | decode_RC8 RC, INS | mtctr TMP0 | bctr | |->cont_hook: // Continue from hook yield. | addi PC, PC, 4 | lwz MULTRES, -20(RB) // Restore MULTRES for *M ins. | b <4 | |->vm_hotloop: // Hot loop counter underflow. |.if JIT | lwz LFUNC:TMP1, FRAME_FUNC(BASE) | addi CARG1, DISPATCH, GG_DISP2J | stw PC, SAVE_PC | lwz TMP1, LFUNC:TMP1->pc | mr CARG2, PC | stw L, DISPATCH_J(L)(DISPATCH) | lbz TMP1, PC2PROTO(framesize)(TMP1) | stp BASE, L->base | slwi TMP1, TMP1, 3 | add TMP1, BASE, TMP1 | stp TMP1, L->top | bl extern lj_trace_hot // (jit_State *J, const BCIns *pc) | b <3 |.endif | |->vm_callhook: // Dispatch target for call hooks. | mr CARG2, PC |.if JIT | b >1 |.endif | |->vm_hotcall: // Hot call counter underflow. |.if JIT | ori CARG2, PC, 1 |1: |.endif | add TMP0, BASE, RC | stw PC, SAVE_PC | mr CARG1, L | stp BASE, L->base | sub RA, RA, BASE | stp TMP0, L->top | bl extern lj_dispatch_call // (lua_State *L, const BCIns *pc) | // Returns ASMFunction. | lp BASE, L->base | lp TMP0, L->top | stw ZERO, SAVE_PC // Invalidate for subsequent line hook. | sub NARGS8:RC, TMP0, BASE | add RA, BASE, RA | lwz LFUNC:RB, FRAME_FUNC(BASE) | lwz INS, -4(PC) | mtctr CRET1 | bctr | |->cont_stitch: // Trace stitching. |.if JIT | // RA = resultptr, RB = meta base | lwz INS, -4(PC) | lwz TRACE:TMP2, -20(RB) // Save previous trace. | addic. TMP1, MULTRES, -8 | decode_RA8 RC, INS // Call base. | beq >2 |1: // Move results down. | lfd f0, 0(RA) | addic. TMP1, TMP1, -8 | addi RA, RA, 8 | stfdx f0, BASE, RC | addi RC, RC, 8 | bne <1 |2: | decode_RA8 RA, INS | decode_RB8 RB, INS | add RA, RA, RB |3: | cmplw RA, RC | bgt >9 // More results wanted? | | lhz TMP3, TRACE:TMP2->traceno | lhz RD, TRACE:TMP2->link | cmpw RD, TMP3 | cmpwi cr1, RD, 0 | beq ->cont_nop // Blacklisted. | slwi RD, RD, 3 | bne cr1, =>BC_JLOOP // Jump to stitched trace. | | // Stitch a new trace to the previous trace. | stw TMP3, DISPATCH_J(exitno)(DISPATCH) | stp L, DISPATCH_J(L)(DISPATCH) | stp BASE, L->base | addi CARG1, DISPATCH, GG_DISP2J | mr CARG2, PC | bl extern lj_dispatch_stitch // (jit_State *J, const BCIns *pc) | lp BASE, L->base | b ->cont_nop | |9: | stwx TISNIL, BASE, RC | addi RC, RC, 8 | b <3 |.endif | |->vm_profhook: // Dispatch target for profiler hook. #if LJ_HASPROFILE | mr CARG1, L | stw MULTRES, SAVE_MULTRES | mr CARG2, PC | stp BASE, L->base | bl extern lj_dispatch_profile // (lua_State *L, const BCIns *pc) | // HOOK_PROFILE is off again, so re-dispatch to dynamic instruction. | lp BASE, L->base | subi PC, PC, 4 | b ->cont_nop #endif | |//----------------------------------------------------------------------- |//-- Trace exit handler ------------------------------------------------- |//----------------------------------------------------------------------- | |.macro savex_, a, b, c, d | stfd f..a, 16+a*8(sp) | stfd f..b, 16+b*8(sp) | stfd f..c, 16+c*8(sp) | stfd f..d, 16+d*8(sp) |.endmacro | |->vm_exit_handler: |.if JIT | addi sp, sp, -(16+32*8+32*4) | stmw r2, 16+32*8+2*4(sp) | addi DISPATCH, JGL, -GG_DISP2G-32768 | li CARG2, ~LJ_VMST_EXIT | lwz CARG1, 16+32*8+32*4(sp) // Get stack chain. | stw CARG2, DISPATCH_GL(vmstate)(DISPATCH) | savex_ 0,1,2,3 | stw CARG1, 0(sp) // Store extended stack chain. | clrso TMP1 | savex_ 4,5,6,7 | addi CARG2, sp, 16+32*8+32*4 // Recompute original value of sp. | savex_ 8,9,10,11 | stw CARG2, 16+32*8+1*4(sp) // Store sp in RID_SP. | savex_ 12,13,14,15 | mflr CARG3 | li TMP1, 0 | savex_ 16,17,18,19 | stw TMP1, 16+32*8+0*4(sp) // Clear RID_TMP. | savex_ 20,21,22,23 | lhz CARG4, 2(CARG3) // Load trace number. | savex_ 24,25,26,27 | lwz L, DISPATCH_GL(cur_L)(DISPATCH) | savex_ 28,29,30,31 | sub CARG3, TMP0, CARG3 // Compute exit number. | lp BASE, DISPATCH_GL(jit_base)(DISPATCH) | srwi CARG3, CARG3, 2 | stp L, DISPATCH_J(L)(DISPATCH) | subi CARG3, CARG3, 2 | stp BASE, L->base | stw CARG4, DISPATCH_J(parent)(DISPATCH) | stw TMP1, DISPATCH_GL(jit_base)(DISPATCH) | addi CARG1, DISPATCH, GG_DISP2J | stw CARG3, DISPATCH_J(exitno)(DISPATCH) | addi CARG2, sp, 16 | bl extern lj_trace_exit // (jit_State *J, ExitState *ex) | // Returns MULTRES (unscaled) or negated error code. | lp TMP1, L->cframe | lwz TMP2, 0(sp) | lp BASE, L->base |.if GPR64 | rldicr sp, TMP1, 0, 61 |.else | rlwinm sp, TMP1, 0, 0, 29 |.endif | lwz PC, SAVE_PC // Get SAVE_PC. | stw TMP2, 0(sp) | stw L, SAVE_L // Set SAVE_L (on-trace resume/yield). | b >1 |.endif |->vm_exit_interp: |.if JIT | // CARG1 = MULTRES or negated error code, BASE, PC and JGL set. | lwz L, SAVE_L | addi DISPATCH, JGL, -GG_DISP2G-32768 | stp BASE, L->base |1: | cmpwi CARG1, 0 | blt >9 // Check for error from exit. | lwz LFUNC:RB, FRAME_FUNC(BASE) | slwi MULTRES, CARG1, 3 | li TMP2, 0 | stw MULTRES, SAVE_MULTRES | lwz TMP1, LFUNC:RB->pc | stw TMP2, DISPATCH_GL(jit_base)(DISPATCH) | lwz KBASE, PC2PROTO(k)(TMP1) | // Setup type comparison constants. | li TISNUM, LJ_TISNUM | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | stw TMP3, TMPD | li ZERO, 0 | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | lfs TOBIT, TMPD | stw TMP3, TMPD | lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double) | li TISNIL, LJ_TNIL | stw TMP0, TONUM_HI | lfs TONUM, TMPD | // Modified copy of ins_next which handles function header dispatch, too. | lwz INS, 0(PC) | addi PC, PC, 4 | // Assumes TISNIL == ~LJ_VMST_INTERP == -1. | stw TISNIL, DISPATCH_GL(vmstate)(DISPATCH) | decode_OPP TMP1, INS | decode_RA8 RA, INS | lpx TMP0, DISPATCH, TMP1 | mtctr TMP0 | cmplwi TMP1, BC_FUNCF*4 // Function header? | bge >2 | decode_RB8 RB, INS | decode_RD8 RD, INS | decode_RC8 RC, INS | bctr |2: | cmplwi TMP1, (BC_FUNCC+2)*4 // Fast function? | blt >3 | // Check frame below fast function. | lwz TMP1, FRAME_PC(BASE) | andix. TMP0, TMP1, FRAME_TYPE | bney >3 // Trace stitching continuation? | // Otherwise set KBASE for Lua function below fast function. | lwz TMP2, -4(TMP1) | decode_RA8 TMP0, TMP2 | sub TMP1, BASE, TMP0 | lwz LFUNC:TMP2, -12(TMP1) | lwz TMP1, LFUNC:TMP2->pc | lwz KBASE, PC2PROTO(k)(TMP1) |3: | subi RC, MULTRES, 8 | add RA, RA, BASE | bctr | |9: // Rethrow error from the right C frame. | neg CARG2, CARG1 | mr CARG1, L | bl extern lj_err_throw // (lua_State *L, int errcode) |.endif | |//----------------------------------------------------------------------- |//-- Math helper functions ---------------------------------------------- |//----------------------------------------------------------------------- | |// NYI: Use internal implementations of floor, ceil, trunc. | |->vm_modi: | divwo. TMP0, CARG1, CARG2 | bso >1 |.if GPR64 | xor CARG3, CARG1, CARG2 | cmpwi CARG3, 0 |.else | xor. CARG3, CARG1, CARG2 |.endif | mullw TMP0, TMP0, CARG2 | sub CARG1, CARG1, TMP0 | bgelr | cmpwi CARG1, 0; beqlr | add CARG1, CARG1, CARG2 | blr |1: | cmpwi CARG2, 0 | li CARG1, 0 | beqlr | clrso TMP0 // Clear SO for -2147483648 % -1 and return 0. | blr | |//----------------------------------------------------------------------- |//-- Miscellaneous functions -------------------------------------------- |//----------------------------------------------------------------------- | |// void lj_vm_cachesync(void *start, void *end) |// Flush D-Cache and invalidate I-Cache. Assumes 32 byte cache line size. |// This is a good lower bound, except for very ancient PPC models. |->vm_cachesync: |.if JIT or FFI | // Compute start of first cache line and number of cache lines. | rlwinm CARG1, CARG1, 0, 0, 26 | sub CARG2, CARG2, CARG1 | addi CARG2, CARG2, 31 | rlwinm. CARG2, CARG2, 27, 5, 31 | beqlr | mtctr CARG2 | mr CARG3, CARG1 |1: // Flush D-Cache. | dcbst r0, CARG1 | addi CARG1, CARG1, 32 | bdnz <1 | sync | mtctr CARG2 |1: // Invalidate I-Cache. | icbi r0, CARG3 | addi CARG3, CARG3, 32 | bdnz <1 | isync | blr |.endif | |//----------------------------------------------------------------------- |//-- FFI helper functions ----------------------------------------------- |//----------------------------------------------------------------------- | |// Handler for callback functions. Callback slot number in r11, g in r12. |->vm_ffi_callback: |.if FFI |.type CTSTATE, CTState, PC | saveregs | lwz CTSTATE, GL:r12->ctype_state | addi DISPATCH, r12, GG_G2DISP | stw r11, CTSTATE->cb.slot | stw r3, CTSTATE->cb.gpr[0] | stfd f1, CTSTATE->cb.fpr[0] | stw r4, CTSTATE->cb.gpr[1] | stfd f2, CTSTATE->cb.fpr[1] | stw r5, CTSTATE->cb.gpr[2] | stfd f3, CTSTATE->cb.fpr[2] | stw r6, CTSTATE->cb.gpr[3] | stfd f4, CTSTATE->cb.fpr[3] | stw r7, CTSTATE->cb.gpr[4] | stfd f5, CTSTATE->cb.fpr[4] | stw r8, CTSTATE->cb.gpr[5] | stfd f6, CTSTATE->cb.fpr[5] | stw r9, CTSTATE->cb.gpr[6] | stfd f7, CTSTATE->cb.fpr[6] | stw r10, CTSTATE->cb.gpr[7] | stfd f8, CTSTATE->cb.fpr[7] | addi TMP0, sp, CFRAME_SPACE+8 | stw TMP0, CTSTATE->cb.stack | mr CARG1, CTSTATE | stw CTSTATE, SAVE_PC // Any value outside of bytecode is ok. | mr CARG2, sp | bl extern lj_ccallback_enter // (CTState *cts, void *cf) | // Returns lua_State *. | lp BASE, L:CRET1->base | li TISNUM, LJ_TISNUM // Setup type comparison constants. | lp RC, L:CRET1->top | lus TMP3, 0x59c0 // TOBIT = 2^52 + 2^51 (float). | li ZERO, 0 | mr L, CRET1 | stw TMP3, TMPD | lus TMP0, 0x4338 // Hiword of 2^52 + 2^51 (double) | lwz LFUNC:RB, FRAME_FUNC(BASE) | ori TMP3, TMP3, 0x0004 // TONUM = 2^52 + 2^51 + 2^31 (float). | stw TMP0, TONUM_HI | li TISNIL, LJ_TNIL | li_vmstate INTERP | lfs TOBIT, TMPD | stw TMP3, TMPD | sub RC, RC, BASE | st_vmstate | lfs TONUM, TMPD | ins_callt |.endif | |->cont_ffi_callback: // Return from FFI callback. |.if FFI | lwz CTSTATE, DISPATCH_GL(ctype_state)(DISPATCH) | stp BASE, L->base | stp RB, L->top | stp L, CTSTATE->L | mr CARG1, CTSTATE | mr CARG2, RA | bl extern lj_ccallback_leave // (CTState *cts, TValue *o) | lwz CRET1, CTSTATE->cb.gpr[0] | lfd FARG1, CTSTATE->cb.fpr[0] | lwz CRET2, CTSTATE->cb.gpr[1] | b ->vm_leave_unw |.endif | |->vm_ffi_call: // Call C function via FFI. | // Caveat: needs special frame unwinding, see below. |.if FFI | .type CCSTATE, CCallState, CARG1 | lwz TMP1, CCSTATE->spadj | mflr TMP0 | lbz CARG2, CCSTATE->nsp | lbz CARG3, CCSTATE->nfpr | neg TMP1, TMP1 | stw TMP0, 4(sp) | cmpwi cr1, CARG3, 0 | mr TMP2, sp | addic. CARG2, CARG2, -1 | stwux sp, sp, TMP1 | crnot 4*cr1+eq, 4*cr1+eq // For vararg calls. | stw r14, -4(TMP2) | stw CCSTATE, -8(TMP2) | mr r14, TMP2 | la TMP1, CCSTATE->stack | slwi CARG2, CARG2, 2 | blty >2 | la TMP2, 8(sp) |1: | lwzx TMP0, TMP1, CARG2 | stwx TMP0, TMP2, CARG2 | addic. CARG2, CARG2, -4 | bge <1 |2: | bney cr1, >3 | lfd f1, CCSTATE->fpr[0] | lfd f2, CCSTATE->fpr[1] | lfd f3, CCSTATE->fpr[2] | lfd f4, CCSTATE->fpr[3] | lfd f5, CCSTATE->fpr[4] | lfd f6, CCSTATE->fpr[5] | lfd f7, CCSTATE->fpr[6] | lfd f8, CCSTATE->fpr[7] |3: | lp TMP0, CCSTATE->func | lwz CARG2, CCSTATE->gpr[1] | lwz CARG3, CCSTATE->gpr[2] | lwz CARG4, CCSTATE->gpr[3] | lwz CARG5, CCSTATE->gpr[4] | mtctr TMP0 | lwz r8, CCSTATE->gpr[5] | lwz r9, CCSTATE->gpr[6] | lwz r10, CCSTATE->gpr[7] | lwz CARG1, CCSTATE->gpr[0] // Do this last, since CCSTATE is CARG1. | bctrl | lwz CCSTATE:TMP1, -8(r14) | lwz TMP2, -4(r14) | lwz TMP0, 4(r14) | stw CARG1, CCSTATE:TMP1->gpr[0] | stfd FARG1, CCSTATE:TMP1->fpr[0] | stw CARG2, CCSTATE:TMP1->gpr[1] | mtlr TMP0 | stw CARG3, CCSTATE:TMP1->gpr[2] | mr sp, r14 | stw CARG4, CCSTATE:TMP1->gpr[3] | mr r14, TMP2 | blr |.endif |// Note: vm_ffi_call must be the last function in this object file! | |//----------------------------------------------------------------------- } /* Generate the code for a single instruction. */ static void build_ins(BuildCtx *ctx, BCOp op, int defop) { int vk = 0; |=>defop: switch (op) { /* -- Comparison ops ---------------------------------------------------- */ /* Remember: all ops branch for a true comparison, fall through otherwise. */ case BC_ISLT: case BC_ISGE: case BC_ISLE: case BC_ISGT: | // RA = src1*8, RD = src2*8, JMP with RD = target |.if DUALNUM | lwzux TMP0, RA, BASE | addi PC, PC, 4 | lwz CARG2, 4(RA) | lwzux TMP1, RD, BASE | lwz TMP2, -4(PC) | checknum cr0, TMP0 | lwz CARG3, 4(RD) | decode_RD4 TMP2, TMP2 | checknum cr1, TMP1 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | bne cr0, >7 | bne cr1, >8 | cmpw CARG2, CARG3 if (op == BC_ISLT) { | bge >2 } else if (op == BC_ISGE) { | blt >2 } else if (op == BC_ISLE) { | bgt >2 } else { | ble >2 } |1: | add PC, PC, TMP2 |2: | ins_next | |7: // RA is not an integer. | bgt cr0, ->vmeta_comp | // RA is a number. | lfd f0, 0(RA) | bgt cr1, ->vmeta_comp | blt cr1, >4 | // RA is a number, RD is an integer. | tonum_i f1, CARG3 | b >5 | |8: // RA is an integer, RD is not an integer. | bgt cr1, ->vmeta_comp | // RA is an integer, RD is a number. | tonum_i f0, CARG2 |4: | lfd f1, 0(RD) |5: | fcmpu cr0, f0, f1 if (op == BC_ISLT) { | bge <2 } else if (op == BC_ISGE) { | blt <2 } else if (op == BC_ISLE) { | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq | bge <2 } else { | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq | blt <2 } | b <1 |.else | lwzx TMP0, BASE, RA | addi PC, PC, 4 | lfdx f0, BASE, RA | lwzx TMP1, BASE, RD | checknum cr0, TMP0 | lwz TMP2, -4(PC) | lfdx f1, BASE, RD | checknum cr1, TMP1 | decode_RD4 TMP2, TMP2 | bge cr0, ->vmeta_comp | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | bge cr1, ->vmeta_comp | fcmpu cr0, f0, f1 if (op == BC_ISLT) { | bge >1 } else if (op == BC_ISGE) { | blt >1 } else if (op == BC_ISLE) { | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq | bge >1 } else { | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+eq | blt >1 } | add PC, PC, TMP2 |1: | ins_next |.endif break; case BC_ISEQV: case BC_ISNEV: vk = op == BC_ISEQV; | // RA = src1*8, RD = src2*8, JMP with RD = target |.if DUALNUM | lwzux TMP0, RA, BASE | addi PC, PC, 4 | lwz CARG2, 4(RA) | lwzux TMP1, RD, BASE | checknum cr0, TMP0 | lwz TMP2, -4(PC) | checknum cr1, TMP1 | decode_RD4 TMP2, TMP2 | lwz CARG3, 4(RD) | cror 4*cr7+gt, 4*cr0+gt, 4*cr1+gt | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) if (vk) { | ble cr7, ->BC_ISEQN_Z } else { | ble cr7, ->BC_ISNEN_Z } |.else | lwzux TMP0, RA, BASE | lwz TMP2, 0(PC) | lfd f0, 0(RA) | addi PC, PC, 4 | lwzux TMP1, RD, BASE | checknum cr0, TMP0 | decode_RD4 TMP2, TMP2 | lfd f1, 0(RD) | checknum cr1, TMP1 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | bge cr0, >5 | bge cr1, >5 | fcmpu cr0, f0, f1 if (vk) { | bne >1 | add PC, PC, TMP2 } else { | beq >1 | add PC, PC, TMP2 } |1: | ins_next |.endif |5: // Either or both types are not numbers. |.if not DUALNUM | lwz CARG2, 4(RA) | lwz CARG3, 4(RD) |.endif |.if FFI | cmpwi cr7, TMP0, LJ_TCDATA | cmpwi cr5, TMP1, LJ_TCDATA |.endif | not TMP3, TMP0 | cmplw TMP0, TMP1 | cmplwi cr1, TMP3, ~LJ_TISPRI // Primitive? |.if FFI | cror 4*cr7+eq, 4*cr7+eq, 4*cr5+eq |.endif | cmplwi cr6, TMP3, ~LJ_TISTABUD // Table or userdata? |.if FFI | beq cr7, ->vmeta_equal_cd |.endif | cmplw cr5, CARG2, CARG3 | crandc 4*cr0+gt, 4*cr0+eq, 4*cr1+gt // 2: Same type and primitive. | crorc 4*cr0+lt, 4*cr5+eq, 4*cr0+eq // 1: Same tv or different type. | crand 4*cr0+eq, 4*cr0+eq, 4*cr5+eq // 0: Same type and same tv. | mr SAVE0, PC | cror 4*cr0+eq, 4*cr0+eq, 4*cr0+gt // 0 or 2. | cror 4*cr0+lt, 4*cr0+lt, 4*cr0+gt // 1 or 2. if (vk) { | bne cr0, >6 | add PC, PC, TMP2 |6: } else { | beq cr0, >6 | add PC, PC, TMP2 |6: } |.if DUALNUM | bge cr0, >2 // Done if 1 or 2. |1: | ins_next |2: |.else | blt cr0, <1 // Done if 1 or 2. |.endif | blt cr6, <1 // Done if not tab/ud. | | // Different tables or userdatas. Need to check __eq metamethod. | // Field metatable must be at same offset for GCtab and GCudata! | lwz TAB:TMP2, TAB:CARG2->metatable | li CARG4, 1-vk // ne = 0 or 1. | cmplwi TAB:TMP2, 0 | beq <1 // No metatable? | lbz TMP2, TAB:TMP2->nomm | andix. TMP2, TMP2, 1<vmeta_equal // Handle __eq metamethod. break; case BC_ISEQS: case BC_ISNES: vk = op == BC_ISEQS; | // RA = src*8, RD = str_const*8 (~), JMP with RD = target | lwzux TMP0, RA, BASE | srwi RD, RD, 1 | lwz STR:TMP3, 4(RA) | lwz TMP2, 0(PC) | subfic RD, RD, -4 | addi PC, PC, 4 |.if FFI | cmpwi TMP0, LJ_TCDATA |.endif | lwzx STR:TMP1, KBASE, RD // KBASE-4-str_const*4 | .gpr64 extsw TMP0, TMP0 | subfic TMP0, TMP0, LJ_TSTR |.if FFI | beq ->vmeta_equal_cd |.endif | sub TMP1, STR:TMP1, STR:TMP3 | or TMP0, TMP0, TMP1 | decode_RD4 TMP2, TMP2 | subfic TMP0, TMP0, 0 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | subfe TMP1, TMP1, TMP1 if (vk) { | andc TMP2, TMP2, TMP1 } else { | and TMP2, TMP2, TMP1 } | add PC, PC, TMP2 | ins_next break; case BC_ISEQN: case BC_ISNEN: vk = op == BC_ISEQN; | // RA = src*8, RD = num_const*8, JMP with RD = target |.if DUALNUM | lwzux TMP0, RA, BASE | addi PC, PC, 4 | lwz CARG2, 4(RA) | lwzux TMP1, RD, KBASE | checknum cr0, TMP0 | lwz TMP2, -4(PC) | checknum cr1, TMP1 | decode_RD4 TMP2, TMP2 | lwz CARG3, 4(RD) | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) if (vk) { |->BC_ISEQN_Z: } else { |->BC_ISNEN_Z: } | bne cr0, >7 | bne cr1, >8 | cmpw CARG2, CARG3 |4: |.else if (vk) { |->BC_ISEQN_Z: // Dummy label. } else { |->BC_ISNEN_Z: // Dummy label. } | lwzx TMP0, BASE, RA | addi PC, PC, 4 | lfdx f0, BASE, RA | lwz TMP2, -4(PC) | lfdx f1, KBASE, RD | decode_RD4 TMP2, TMP2 | checknum TMP0 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | bge >3 | fcmpu cr0, f0, f1 |.endif if (vk) { | bne >1 | add PC, PC, TMP2 |1: |.if not FFI |3: |.endif } else { | beq >2 |1: |.if not FFI |3: |.endif | add PC, PC, TMP2 |2: } | ins_next |.if FFI |3: | cmpwi TMP0, LJ_TCDATA | beq ->vmeta_equal_cd | b <1 |.endif |.if DUALNUM |7: // RA is not an integer. | bge cr0, <3 | // RA is a number. | lfd f0, 0(RA) | blt cr1, >1 | // RA is a number, RD is an integer. | tonum_i f1, CARG3 | b >2 | |8: // RA is an integer, RD is a number. | tonum_i f0, CARG2 |1: | lfd f1, 0(RD) |2: | fcmpu cr0, f0, f1 | b <4 |.endif break; case BC_ISEQP: case BC_ISNEP: vk = op == BC_ISEQP; | // RA = src*8, RD = primitive_type*8 (~), JMP with RD = target | lwzx TMP0, BASE, RA | srwi TMP1, RD, 3 | lwz TMP2, 0(PC) | not TMP1, TMP1 | addi PC, PC, 4 |.if FFI | cmpwi TMP0, LJ_TCDATA |.endif | sub TMP0, TMP0, TMP1 |.if FFI | beq ->vmeta_equal_cd |.endif | decode_RD4 TMP2, TMP2 | .gpr64 extsw TMP0, TMP0 | addic TMP0, TMP0, -1 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) | subfe TMP1, TMP1, TMP1 if (vk) { | and TMP2, TMP2, TMP1 } else { | andc TMP2, TMP2, TMP1 } | add PC, PC, TMP2 | ins_next break; /* -- Unary test and copy ops ------------------------------------------- */ case BC_ISTC: case BC_ISFC: case BC_IST: case BC_ISF: | // RA = dst*8 or unused, RD = src*8, JMP with RD = target | lwzx TMP0, BASE, RD | lwz INS, 0(PC) | addi PC, PC, 4 if (op == BC_IST || op == BC_ISF) { | .gpr64 extsw TMP0, TMP0 | subfic TMP0, TMP0, LJ_TTRUE | decode_RD4 TMP2, INS | subfe TMP1, TMP1, TMP1 | addis TMP2, TMP2, -(BCBIAS_J*4 >> 16) if (op == BC_IST) { | andc TMP2, TMP2, TMP1 } else { | and TMP2, TMP2, TMP1 } | add PC, PC, TMP2 } else { | li TMP1, LJ_TFALSE | lfdx f0, BASE, RD | cmplw TMP0, TMP1 if (op == BC_ISTC) { | bge >1 } else { | blt >1 } | addis PC, PC, -(BCBIAS_J*4 >> 16) | decode_RD4 TMP2, INS | stfdx f0, BASE, RA | add PC, PC, TMP2 |1: } | ins_next break; case BC_ISTYPE: | // RA = src*8, RD = -type*8 | lwzx TMP0, BASE, RA | srwi TMP1, RD, 3 | ins_next1 |.if not PPE and not GPR64 | add. TMP0, TMP0, TMP1 |.else | neg TMP1, TMP1 | cmpw TMP0, TMP1 |.endif | bne ->vmeta_istype | ins_next2 break; case BC_ISNUM: | // RA = src*8, RD = -(TISNUM-1)*8 | lwzx TMP0, BASE, RA | ins_next1 | checknum TMP0 | bge ->vmeta_istype | ins_next2 break; /* -- Unary ops --------------------------------------------------------- */ case BC_MOV: | // RA = dst*8, RD = src*8 | ins_next1 | lfdx f0, BASE, RD | stfdx f0, BASE, RA | ins_next2 break; case BC_NOT: | // RA = dst*8, RD = src*8 | ins_next1 | lwzx TMP0, BASE, RD | .gpr64 extsw TMP0, TMP0 | subfic TMP1, TMP0, LJ_TTRUE | adde TMP0, TMP0, TMP1 | stwx TMP0, BASE, RA | ins_next2 break; case BC_UNM: | // RA = dst*8, RD = src*8 | lwzux TMP1, RD, BASE | lwz TMP0, 4(RD) | checknum TMP1 |.if DUALNUM | bne >5 |.if GPR64 | lus TMP2, 0x8000 | neg TMP0, TMP0 | cmplw TMP0, TMP2 | beq >4 |.else | nego. TMP0, TMP0 | bso >4 |1: |.endif | ins_next1 | stwux TISNUM, RA, BASE | stw TMP0, 4(RA) |3: | ins_next2 |4: |.if not GPR64 | // Potential overflow. | checkov TMP1, <1 // Ignore unrelated overflow. |.endif | lus TMP1, 0x41e0 // 2^31. | li TMP0, 0 | b >7 |.endif |5: | bge ->vmeta_unm | xoris TMP1, TMP1, 0x8000 |7: | ins_next1 | stwux TMP1, RA, BASE | stw TMP0, 4(RA) |.if DUALNUM | b <3 |.else | ins_next2 |.endif break; case BC_LEN: | // RA = dst*8, RD = src*8 | lwzux TMP0, RD, BASE | lwz CARG1, 4(RD) | checkstr TMP0; bne >2 | lwz CRET1, STR:CARG1->len |1: |.if DUALNUM | ins_next1 | stwux TISNUM, RA, BASE | stw CRET1, 4(RA) |.else | tonum_u f0, CRET1 // Result is a non-negative integer. | ins_next1 | stfdx f0, BASE, RA |.endif | ins_next2 |2: | checktab TMP0; bne ->vmeta_len #if LJ_52 | lwz TAB:TMP2, TAB:CARG1->metatable | cmplwi TAB:TMP2, 0 | bne >9 |3: #endif |->BC_LEN_Z: | bl extern lj_tab_len // (GCtab *t) | // Returns uint32_t (but less than 2^31). | b <1 #if LJ_52 |9: | lbz TMP0, TAB:TMP2->nomm | andix. TMP0, TMP0, 1<vmeta_len #endif break; /* -- Binary ops -------------------------------------------------------- */ |.macro ins_arithpre | // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8 ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | lwzx TMP1, BASE, RB | .if DUALNUM | lwzx TMP2, KBASE, RC | .endif | lfdx f14, BASE, RB | lfdx f15, KBASE, RC | .if DUALNUM | checknum cr0, TMP1 | checknum cr1, TMP2 | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | bge ->vmeta_arith_vn | .else | checknum TMP1; bge ->vmeta_arith_vn | .endif || break; ||case 1: | lwzx TMP1, BASE, RB | .if DUALNUM | lwzx TMP2, KBASE, RC | .endif | lfdx f15, BASE, RB | lfdx f14, KBASE, RC | .if DUALNUM | checknum cr0, TMP1 | checknum cr1, TMP2 | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | bge ->vmeta_arith_nv | .else | checknum TMP1; bge ->vmeta_arith_nv | .endif || break; ||default: | lwzx TMP1, BASE, RB | lwzx TMP2, BASE, RC | lfdx f14, BASE, RB | lfdx f15, BASE, RC | checknum cr0, TMP1 | checknum cr1, TMP2 | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | bge ->vmeta_arith_vv || break; ||} |.endmacro | |.macro ins_arithfallback, ins ||switch (vk) { ||case 0: | ins ->vmeta_arith_vn2 || break; ||case 1: | ins ->vmeta_arith_nv2 || break; ||default: | ins ->vmeta_arith_vv2 || break; ||} |.endmacro | |.macro intmod, a, b, c | bl ->vm_modi |.endmacro | |.macro fpmod, a, b, c |->BC_MODVN_Z: | fdiv FARG1, b, c | // NYI: Use internal implementation of floor. | blex floor // floor(b/c) | fmul a, FARG1, c | fsub a, b, a // b - floor(b/c)*c |.endmacro | |.macro ins_arithfp, fpins | ins_arithpre |.if "fpins" == "fpmod_" | b ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway. |.else | fpins f0, f14, f15 | ins_next1 | stfdx f0, BASE, RA | ins_next2 |.endif |.endmacro | |.macro ins_arithdn, intins, fpins | // RA = dst*8, RB = src1*8, RC = src2*8 | num_const*8 ||vk = ((int)op - BC_ADDVN) / (BC_ADDNV-BC_ADDVN); ||switch (vk) { ||case 0: | lwzux TMP1, RB, BASE | lwzux TMP2, RC, KBASE | lwz CARG1, 4(RB) | checknum cr0, TMP1 | lwz CARG2, 4(RC) || break; ||case 1: | lwzux TMP1, RB, BASE | lwzux TMP2, RC, KBASE | lwz CARG2, 4(RB) | checknum cr0, TMP1 | lwz CARG1, 4(RC) || break; ||default: | lwzux TMP1, RB, BASE | lwzux TMP2, RC, BASE | lwz CARG1, 4(RB) | checknum cr0, TMP1 | lwz CARG2, 4(RC) || break; ||} | checknum cr1, TMP2 | bne >5 | bne cr1, >5 | intins CARG1, CARG1, CARG2 | bso >4 |1: | ins_next1 | stwux TISNUM, RA, BASE | stw CARG1, 4(RA) |2: | ins_next2 |4: // Overflow. | checkov TMP0, <1 // Ignore unrelated overflow. | ins_arithfallback b |5: // FP variant. ||if (vk == 1) { | lfd f15, 0(RB) | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | lfd f14, 0(RC) ||} else { | lfd f14, 0(RB) | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | lfd f15, 0(RC) ||} | ins_arithfallback bge |.if "fpins" == "fpmod_" | b ->BC_MODVN_Z // Avoid 3 copies. It's slow anyway. |.else | fpins f0, f14, f15 | ins_next1 | stfdx f0, BASE, RA | b <2 |.endif |.endmacro | |.macro ins_arith, intins, fpins |.if DUALNUM | ins_arithdn intins, fpins |.else | ins_arithfp fpins |.endif |.endmacro case BC_ADDVN: case BC_ADDNV: case BC_ADDVV: |.if GPR64 |.macro addo32., y, a, b | // Need to check overflow for (a<<32) + (b<<32). | rldicr TMP0, a, 32, 31 | rldicr TMP3, b, 32, 31 | addo. TMP0, TMP0, TMP3 | add y, a, b |.endmacro | ins_arith addo32., fadd |.else | ins_arith addo., fadd |.endif break; case BC_SUBVN: case BC_SUBNV: case BC_SUBVV: |.if GPR64 |.macro subo32., y, a, b | // Need to check overflow for (a<<32) - (b<<32). | rldicr TMP0, a, 32, 31 | rldicr TMP3, b, 32, 31 | subo. TMP0, TMP0, TMP3 | sub y, a, b |.endmacro | ins_arith subo32., fsub |.else | ins_arith subo., fsub |.endif break; case BC_MULVN: case BC_MULNV: case BC_MULVV: | ins_arith mullwo., fmul break; case BC_DIVVN: case BC_DIVNV: case BC_DIVVV: | ins_arithfp fdiv break; case BC_MODVN: | ins_arith intmod, fpmod break; case BC_MODNV: case BC_MODVV: | ins_arith intmod, fpmod_ break; case BC_POW: | // NYI: (partial) integer arithmetic. | lwzx TMP1, BASE, RB | lfdx FARG1, BASE, RB | lwzx TMP2, BASE, RC | lfdx FARG2, BASE, RC | checknum cr0, TMP1 | checknum cr1, TMP2 | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | bge ->vmeta_arith_vv | blex pow | ins_next1 | stfdx FARG1, BASE, RA | ins_next2 break; case BC_CAT: | // RA = dst*8, RB = src_start*8, RC = src_end*8 | sub CARG3, RC, RB | stp BASE, L->base | add CARG2, BASE, RC | mr SAVE0, RB |->BC_CAT_Z: | stw PC, SAVE_PC | mr CARG1, L | srwi CARG3, CARG3, 3 | bl extern lj_meta_cat // (lua_State *L, TValue *top, int left) | // Returns NULL (finished) or TValue * (metamethod). | cmplwi CRET1, 0 | lp BASE, L->base | bne ->vmeta_binop | ins_next1 | lfdx f0, BASE, SAVE0 // Copy result from RB to RA. | stfdx f0, BASE, RA | ins_next2 break; /* -- Constant ops ------------------------------------------------------ */ case BC_KSTR: | // RA = dst*8, RD = str_const*8 (~) | srwi TMP1, RD, 1 | subfic TMP1, TMP1, -4 | ins_next1 | lwzx TMP0, KBASE, TMP1 // KBASE-4-str_const*4 | li TMP2, LJ_TSTR | stwux TMP2, RA, BASE | stw TMP0, 4(RA) | ins_next2 break; case BC_KCDATA: |.if FFI | // RA = dst*8, RD = cdata_const*8 (~) | srwi TMP1, RD, 1 | subfic TMP1, TMP1, -4 | ins_next1 | lwzx TMP0, KBASE, TMP1 // KBASE-4-cdata_const*4 | li TMP2, LJ_TCDATA | stwux TMP2, RA, BASE | stw TMP0, 4(RA) | ins_next2 |.endif break; case BC_KSHORT: | // RA = dst*8, RD = int16_literal*8 |.if DUALNUM | slwi RD, RD, 13 | srawi RD, RD, 16 | ins_next1 | stwux TISNUM, RA, BASE | stw RD, 4(RA) | ins_next2 |.else | // The soft-float approach is faster. | slwi RD, RD, 13 | srawi TMP1, RD, 31 | xor TMP2, TMP1, RD | sub TMP2, TMP2, TMP1 // TMP2 = abs(x) | cntlzw TMP3, TMP2 | subfic TMP1, TMP3, 0x40d // TMP1 = exponent-1 | slw TMP2, TMP2, TMP3 // TMP2 = left aligned mantissa | subfic TMP3, RD, 0 | slwi TMP1, TMP1, 20 | rlwimi RD, TMP2, 21, 1, 31 // hi = sign(x) | (mantissa>>11) | subfe TMP0, TMP0, TMP0 | add RD, RD, TMP1 // hi = hi + exponent-1 | and RD, RD, TMP0 // hi = x == 0 ? 0 : hi | ins_next1 | stwux RD, RA, BASE | stw ZERO, 4(RA) | ins_next2 |.endif break; case BC_KNUM: | // RA = dst*8, RD = num_const*8 | ins_next1 | lfdx f0, KBASE, RD | stfdx f0, BASE, RA | ins_next2 break; case BC_KPRI: | // RA = dst*8, RD = primitive_type*8 (~) | srwi TMP1, RD, 3 | not TMP0, TMP1 | ins_next1 | stwx TMP0, BASE, RA | ins_next2 break; case BC_KNIL: | // RA = base*8, RD = end*8 | stwx TISNIL, BASE, RA | addi RA, RA, 8 |1: | stwx TISNIL, BASE, RA | cmpw RA, RD | addi RA, RA, 8 | blt <1 | ins_next_ break; /* -- Upvalue and function ops ------------------------------------------ */ case BC_UGET: | // RA = dst*8, RD = uvnum*8 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RD, RD, 1 | addi RD, RD, offsetof(GCfuncL, uvptr) | lwzx UPVAL:RB, LFUNC:RB, RD | ins_next1 | lwz TMP1, UPVAL:RB->v | lfd f0, 0(TMP1) | stfdx f0, BASE, RA | ins_next2 break; case BC_USETV: | // RA = uvnum*8, RD = src*8 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RA, RA, 1 | addi RA, RA, offsetof(GCfuncL, uvptr) | lfdux f0, RD, BASE | lwzx UPVAL:RB, LFUNC:RB, RA | lbz TMP3, UPVAL:RB->marked | lwz CARG2, UPVAL:RB->v | andix. TMP3, TMP3, LJ_GC_BLACK // isblack(uv) | lbz TMP0, UPVAL:RB->closed | lwz TMP2, 0(RD) | stfd f0, 0(CARG2) | cmplwi cr1, TMP0, 0 | lwz TMP1, 4(RD) | cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | subi TMP2, TMP2, (LJ_TNUMX+1) | bne >2 // Upvalue is closed and black? |1: | ins_next | |2: // Check if new value is collectable. | cmplwi TMP2, LJ_TISGCV - (LJ_TNUMX+1) | bge <1 // tvisgcv(v) | lbz TMP3, GCOBJ:TMP1->gch.marked | andix. TMP3, TMP3, LJ_GC_WHITES // iswhite(v) | la CARG1, GG_DISP2G(DISPATCH) | // Crossed a write barrier. Move the barrier forward. | beq <1 | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | b <1 break; case BC_USETS: | // RA = uvnum*8, RD = str_const*8 (~) | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi TMP1, RD, 1 | srwi RA, RA, 1 | subfic TMP1, TMP1, -4 | addi RA, RA, offsetof(GCfuncL, uvptr) | lwzx STR:TMP1, KBASE, TMP1 // KBASE-4-str_const*4 | lwzx UPVAL:RB, LFUNC:RB, RA | lbz TMP3, UPVAL:RB->marked | lwz CARG2, UPVAL:RB->v | andix. TMP3, TMP3, LJ_GC_BLACK // isblack(uv) | lbz TMP3, STR:TMP1->marked | lbz TMP2, UPVAL:RB->closed | li TMP0, LJ_TSTR | stw STR:TMP1, 4(CARG2) | stw TMP0, 0(CARG2) | bne >2 |1: | ins_next | |2: // Check if string is white and ensure upvalue is closed. | andix. TMP3, TMP3, LJ_GC_WHITES // iswhite(str) | cmplwi cr1, TMP2, 0 | cror 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | la CARG1, GG_DISP2G(DISPATCH) | // Crossed a write barrier. Move the barrier forward. | beq <1 | bl extern lj_gc_barrieruv // (global_State *g, TValue *tv) | b <1 break; case BC_USETN: | // RA = uvnum*8, RD = num_const*8 | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RA, RA, 1 | addi RA, RA, offsetof(GCfuncL, uvptr) | lfdx f0, KBASE, RD | lwzx UPVAL:RB, LFUNC:RB, RA | ins_next1 | lwz TMP1, UPVAL:RB->v | stfd f0, 0(TMP1) | ins_next2 break; case BC_USETP: | // RA = uvnum*8, RD = primitive_type*8 (~) | lwz LFUNC:RB, FRAME_FUNC(BASE) | srwi RA, RA, 1 | srwi TMP0, RD, 3 | addi RA, RA, offsetof(GCfuncL, uvptr) | not TMP0, TMP0 | lwzx UPVAL:RB, LFUNC:RB, RA | ins_next1 | lwz TMP1, UPVAL:RB->v | stw TMP0, 0(TMP1) | ins_next2 break; case BC_UCLO: | // RA = level*8, RD = target | lwz TMP1, L->openupval | branch_RD // Do this first since RD is not saved. | stp BASE, L->base | cmplwi TMP1, 0 | mr CARG1, L | beq >1 | add CARG2, BASE, RA | bl extern lj_func_closeuv // (lua_State *L, TValue *level) | lp BASE, L->base |1: | ins_next break; case BC_FNEW: | // RA = dst*8, RD = proto_const*8 (~) (holding function prototype) | srwi TMP1, RD, 1 | stp BASE, L->base | subfic TMP1, TMP1, -4 | stw PC, SAVE_PC | lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4 | mr CARG1, L | lwz CARG3, FRAME_FUNC(BASE) | // (lua_State *L, GCproto *pt, GCfuncL *parent) | bl extern lj_func_newL_gc | // Returns GCfuncL *. | lp BASE, L->base | li TMP0, LJ_TFUNC | stwux TMP0, RA, BASE | stw LFUNC:CRET1, 4(RA) | ins_next break; /* -- Table ops --------------------------------------------------------- */ case BC_TNEW: case BC_TDUP: | // RA = dst*8, RD = (hbits|asize)*8 | tab_const*8 (~) | lwz TMP0, DISPATCH_GL(gc.total)(DISPATCH) | mr CARG1, L | lwz TMP1, DISPATCH_GL(gc.threshold)(DISPATCH) | stp BASE, L->base | cmplw TMP0, TMP1 | stw PC, SAVE_PC | bge >5 |1: if (op == BC_TNEW) { | rlwinm CARG2, RD, 29, 21, 31 | rlwinm CARG3, RD, 18, 27, 31 | cmpwi CARG2, 0x7ff; beq >3 |2: | bl extern lj_tab_new // (lua_State *L, int32_t asize, uint32_t hbits) | // Returns Table *. } else { | srwi TMP1, RD, 1 | subfic TMP1, TMP1, -4 | lwzx CARG2, KBASE, TMP1 // KBASE-4-tab_const*4 | bl extern lj_tab_dup // (lua_State *L, Table *kt) | // Returns Table *. } | lp BASE, L->base | li TMP0, LJ_TTAB | stwux TMP0, RA, BASE | stw TAB:CRET1, 4(RA) | ins_next if (op == BC_TNEW) { |3: | li CARG2, 0x801 | b <2 } |5: | mr SAVE0, RD | bl extern lj_gc_step_fixtop // (lua_State *L) | mr RD, SAVE0 | mr CARG1, L | b <1 break; case BC_GGET: | // RA = dst*8, RD = str_const*8 (~) case BC_GSET: | // RA = src*8, RD = str_const*8 (~) | lwz LFUNC:TMP2, FRAME_FUNC(BASE) | srwi TMP1, RD, 1 | lwz TAB:RB, LFUNC:TMP2->env | subfic TMP1, TMP1, -4 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4 if (op == BC_GGET) { | b ->BC_TGETS_Z } else { | b ->BC_TSETS_Z } break; case BC_TGETV: | // RA = dst*8, RB = table*8, RC = key*8 | lwzux CARG1, RB, BASE | lwzux CARG2, RC, BASE | lwz TAB:RB, 4(RB) |.if DUALNUM | lwz RC, 4(RC) |.else | lfd f0, 0(RC) |.endif | checktab CARG1 | checknum cr1, CARG2 | bne ->vmeta_tgetv |.if DUALNUM | lwz TMP0, TAB:RB->asize | bne cr1, >5 | lwz TMP1, TAB:RB->array | cmplw TMP0, RC | slwi TMP2, RC, 3 |.else | bge cr1, >5 | // Convert number key to integer, check for integerness and range. | fctiwz f1, f0 | fadd f2, f0, TOBIT | stfd f1, TMPD | lwz TMP0, TAB:RB->asize | fsub f2, f2, TOBIT | lwz TMP2, TMPD_LO | lwz TMP1, TAB:RB->array | fcmpu cr1, f0, f2 | cmplw cr0, TMP0, TMP2 | crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq | slwi TMP2, TMP2, 3 |.endif | ble ->vmeta_tgetv // Integer key and in array part? | lwzx TMP0, TMP1, TMP2 | lfdx f14, TMP1, TMP2 | checknil TMP0; beq >2 |1: | ins_next1 | stfdx f14, BASE, RA | ins_next2 | |2: // Check for __index if table value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <1 // No metatable: done. | lbz TMP0, TAB:TMP2->nomm | andix. TMP0, TMP0, 1<vmeta_tgetv | |5: | checkstr CARG2; bne ->vmeta_tgetv |.if not DUALNUM | lwz STR:RC, 4(RC) |.endif | b ->BC_TGETS_Z // String key? break; case BC_TGETS: | // RA = dst*8, RB = table*8, RC = str_const*8 (~) | lwzux CARG1, RB, BASE | srwi TMP1, RC, 1 | lwz TAB:RB, 4(RB) | subfic TMP1, TMP1, -4 | checktab CARG1 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4 | bne ->vmeta_tgets1 |->BC_TGETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = dst*8 | lwz TMP0, TAB:RB->hmask | lwz TMP1, STR:RC->hash | lwz NODE:TMP2, TAB:RB->node | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | slwi TMP0, TMP1, 5 | slwi TMP1, TMP1, 3 | sub TMP1, TMP0, TMP1 | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |1: | lwz CARG1, NODE:TMP2->key | lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2) | lwz CARG2, NODE:TMP2->val | lwz TMP1, 4+offsetof(Node, val)(NODE:TMP2) | checkstr CARG1; bne >4 | cmpw TMP0, STR:RC; bne >4 | checknil CARG2; beq >5 // Key found, but nil value? |3: | stwux CARG2, RA, BASE | stw TMP1, 4(RA) | ins_next | |4: // Follow hash chain. | lwz NODE:TMP2, NODE:TMP2->next | cmplwi NODE:TMP2, 0 | bne <1 | // End of hash chain: key not found, nil result. | li CARG2, LJ_TNIL | |5: // Check for __index if table value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <3 // No metatable: done. | lbz TMP0, TAB:TMP2->nomm | andix. TMP0, TMP0, 1<vmeta_tgets break; case BC_TGETB: | // RA = dst*8, RB = table*8, RC = index*8 | lwzux CARG1, RB, BASE | srwi TMP0, RC, 3 | lwz TAB:RB, 4(RB) | checktab CARG1; bne ->vmeta_tgetb | lwz TMP1, TAB:RB->asize | lwz TMP2, TAB:RB->array | cmplw TMP0, TMP1; bge ->vmeta_tgetb | lwzx TMP1, TMP2, RC | lfdx f0, TMP2, RC | checknil TMP1; beq >5 |1: | ins_next1 | stfdx f0, BASE, RA | ins_next2 | |5: // Check for __index if table value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <1 // No metatable: done. | lbz TMP2, TAB:TMP2->nomm | andix. TMP2, TMP2, 1<vmeta_tgetb // Caveat: preserve TMP0! break; case BC_TGETR: | // RA = dst*8, RB = table*8, RC = key*8 | add RB, BASE, RB | lwz TAB:CARG1, 4(RB) |.if DUALNUM | add RC, BASE, RC | lwz TMP0, TAB:CARG1->asize | lwz CARG2, 4(RC) | lwz TMP1, TAB:CARG1->array |.else | lfdx f0, BASE, RC | lwz TMP0, TAB:CARG1->asize | toint CARG2, f0 | lwz TMP1, TAB:CARG1->array |.endif | cmplw TMP0, CARG2 | slwi TMP2, CARG2, 3 | ble ->vmeta_tgetr // In array part? | lfdx f14, TMP1, TMP2 |->BC_TGETR_Z: | ins_next1 | stfdx f14, BASE, RA | ins_next2 break; case BC_TSETV: | // RA = src*8, RB = table*8, RC = key*8 | lwzux CARG1, RB, BASE | lwzux CARG2, RC, BASE | lwz TAB:RB, 4(RB) |.if DUALNUM | lwz RC, 4(RC) |.else | lfd f0, 0(RC) |.endif | checktab CARG1 | checknum cr1, CARG2 | bne ->vmeta_tsetv |.if DUALNUM | lwz TMP0, TAB:RB->asize | bne cr1, >5 | lwz TMP1, TAB:RB->array | cmplw TMP0, RC | slwi TMP0, RC, 3 |.else | bge cr1, >5 | // Convert number key to integer, check for integerness and range. | fctiwz f1, f0 | fadd f2, f0, TOBIT | stfd f1, TMPD | lwz TMP0, TAB:RB->asize | fsub f2, f2, TOBIT | lwz TMP2, TMPD_LO | lwz TMP1, TAB:RB->array | fcmpu cr1, f0, f2 | cmplw cr0, TMP0, TMP2 | crand 4*cr0+gt, 4*cr0+gt, 4*cr1+eq | slwi TMP0, TMP2, 3 |.endif | ble ->vmeta_tsetv // Integer key and in array part? | lwzx TMP2, TMP1, TMP0 | lbz TMP3, TAB:RB->marked | lfdx f14, BASE, RA | checknil TMP2; beq >3 |1: | andix. TMP2, TMP3, LJ_GC_BLACK // isblack(table) | stfdx f14, TMP1, TMP0 | bne >7 |2: | ins_next | |3: // Check for __newindex if previous value is nil. | lwz TAB:TMP2, TAB:RB->metatable | cmplwi TAB:TMP2, 0 | beq <1 // No metatable: done. | lbz TMP2, TAB:TMP2->nomm | andix. TMP2, TMP2, 1<vmeta_tsetv | |5: | checkstr CARG2; bne ->vmeta_tsetv |.if not DUALNUM | lwz STR:RC, 4(RC) |.endif | b ->BC_TSETS_Z // String key? | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0 | b <2 break; case BC_TSETS: | // RA = src*8, RB = table*8, RC = str_const*8 (~) | lwzux CARG1, RB, BASE | srwi TMP1, RC, 1 | lwz TAB:RB, 4(RB) | subfic TMP1, TMP1, -4 | checktab CARG1 | lwzx STR:RC, KBASE, TMP1 // KBASE-4-str_const*4 | bne ->vmeta_tsets1 |->BC_TSETS_Z: | // TAB:RB = GCtab *, STR:RC = GCstr *, RA = src*8 | lwz TMP0, TAB:RB->hmask | lwz TMP1, STR:RC->hash | lwz NODE:TMP2, TAB:RB->node | stb ZERO, TAB:RB->nomm // Clear metamethod cache. | and TMP1, TMP1, TMP0 // idx = str->hash & tab->hmask | lfdx f14, BASE, RA | slwi TMP0, TMP1, 5 | slwi TMP1, TMP1, 3 | sub TMP1, TMP0, TMP1 | lbz TMP3, TAB:RB->marked | add NODE:TMP2, NODE:TMP2, TMP1 // node = tab->node + (idx*32-idx*8) |1: | lwz CARG1, NODE:TMP2->key | lwz TMP0, 4+offsetof(Node, key)(NODE:TMP2) | lwz CARG2, NODE:TMP2->val | lwz NODE:TMP1, NODE:TMP2->next | checkstr CARG1; bne >5 | cmpw TMP0, STR:RC; bne >5 | checknil CARG2; beq >4 // Key found, but nil value? |2: | andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table) | stfd f14, NODE:TMP2->val | bne >7 |3: | ins_next | |4: // Check for __newindex if previous value is nil. | lwz TAB:TMP1, TAB:RB->metatable | cmplwi TAB:TMP1, 0 | beq <2 // No metatable: done. | lbz TMP0, TAB:TMP1->nomm | andix. TMP0, TMP0, 1<vmeta_tsets | |5: // Follow hash chain. | cmplwi NODE:TMP1, 0 | mr NODE:TMP2, NODE:TMP1 | bne <1 | // End of hash chain: key not found, add a new one. | | // But check for __newindex first. | lwz TAB:TMP1, TAB:RB->metatable | la CARG3, DISPATCH_GL(tmptv)(DISPATCH) | stw PC, SAVE_PC | mr CARG1, L | cmplwi TAB:TMP1, 0 | stp BASE, L->base | beq >6 // No metatable: continue. | lbz TMP0, TAB:TMP1->nomm | andix. TMP0, TMP0, 1<vmeta_tsets // 'no __newindex' flag NOT set: check. |6: | li TMP0, LJ_TSTR | stw STR:RC, 4(CARG3) | mr CARG2, TAB:RB | stw TMP0, 0(CARG3) | bl extern lj_tab_newkey // (lua_State *L, GCtab *t, TValue *k) | // Returns TValue *. | lp BASE, L->base | stfd f14, 0(CRET1) | b <3 // No 2nd write barrier needed. | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0 | b <3 break; case BC_TSETB: | // RA = src*8, RB = table*8, RC = index*8 | lwzux CARG1, RB, BASE | srwi TMP0, RC, 3 | lwz TAB:RB, 4(RB) | checktab CARG1; bne ->vmeta_tsetb | lwz TMP1, TAB:RB->asize | lwz TMP2, TAB:RB->array | lbz TMP3, TAB:RB->marked | cmplw TMP0, TMP1 | lfdx f14, BASE, RA | bge ->vmeta_tsetb | lwzx TMP1, TMP2, RC | checknil TMP1; beq >5 |1: | andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table) | stfdx f14, TMP2, RC | bne >7 |2: | ins_next | |5: // Check for __newindex if previous value is nil. | lwz TAB:TMP1, TAB:RB->metatable | cmplwi TAB:TMP1, 0 | beq <1 // No metatable: done. | lbz TMP1, TAB:TMP1->nomm | andix. TMP1, TMP1, 1<vmeta_tsetb // Caveat: preserve TMP0! | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:RB, TMP3, TMP0 | b <2 break; case BC_TSETR: | // RA = dst*8, RB = table*8, RC = key*8 | add RB, BASE, RB | lwz TAB:CARG2, 4(RB) |.if DUALNUM | add RC, BASE, RC | lbz TMP3, TAB:CARG2->marked | lwz TMP0, TAB:CARG2->asize | lwz CARG3, 4(RC) | lwz TMP1, TAB:CARG2->array |.else | lfdx f0, BASE, RC | lbz TMP3, TAB:CARG2->marked | lwz TMP0, TAB:CARG2->asize | toint CARG3, f0 | lwz TMP1, TAB:CARG2->array |.endif | andix. TMP2, TMP3, LJ_GC_BLACK // isblack(table) | bne >7 |2: | cmplw TMP0, CARG3 | slwi TMP2, CARG3, 3 | lfdx f14, BASE, RA | ble ->vmeta_tsetr // In array part? | ins_next1 | stfdx f14, TMP1, TMP2 | ins_next2 | |7: // Possible table write barrier for the value. Skip valiswhite check. | barrierback TAB:CARG2, TMP3, TMP2 | b <2 break; case BC_TSETM: | // RA = base*8 (table at base-1), RD = num_const*8 (start index) | add RA, BASE, RA |1: | add TMP3, KBASE, RD | lwz TAB:CARG2, -4(RA) // Guaranteed to be a table. | addic. TMP0, MULTRES, -8 | lwz TMP3, 4(TMP3) // Integer constant is in lo-word. | srwi CARG3, TMP0, 3 | beq >4 // Nothing to copy? | add CARG3, CARG3, TMP3 | lwz TMP2, TAB:CARG2->asize | slwi TMP1, TMP3, 3 | lbz TMP3, TAB:CARG2->marked | cmplw CARG3, TMP2 | add TMP2, RA, TMP0 | lwz TMP0, TAB:CARG2->array | bgt >5 | add TMP1, TMP1, TMP0 | andix. TMP0, TMP3, LJ_GC_BLACK // isblack(table) |3: // Copy result slots to table. | lfd f0, 0(RA) | addi RA, RA, 8 | cmpw cr1, RA, TMP2 | stfd f0, 0(TMP1) | addi TMP1, TMP1, 8 | blt cr1, <3 | bne >7 |4: | ins_next | |5: // Need to resize array part. | stp BASE, L->base | mr CARG1, L | stw PC, SAVE_PC | mr SAVE0, RD | bl extern lj_tab_reasize // (lua_State *L, GCtab *t, int nasize) | // Must not reallocate the stack. | mr RD, SAVE0 | b <1 | |7: // Possible table write barrier for any value. Skip valiswhite check. | barrierback TAB:CARG2, TMP3, TMP0 | b <4 break; /* -- Calls and vararg handling ----------------------------------------- */ case BC_CALLM: | // RA = base*8, (RB = (nresults+1)*8,) RC = extra_nargs*8 | add NARGS8:RC, NARGS8:RC, MULTRES | // Fall through. Assumes BC_CALL follows. break; case BC_CALL: | // RA = base*8, (RB = (nresults+1)*8,) RC = (nargs+1)*8 | mr TMP2, BASE | lwzux TMP0, BASE, RA | lwz LFUNC:RB, 4(BASE) | subi NARGS8:RC, NARGS8:RC, 8 | addi BASE, BASE, 8 | checkfunc TMP0; bne ->vmeta_call | ins_call break; case BC_CALLMT: | // RA = base*8, (RB = 0,) RC = extra_nargs*8 | add NARGS8:RC, NARGS8:RC, MULTRES | // Fall through. Assumes BC_CALLT follows. break; case BC_CALLT: | // RA = base*8, (RB = 0,) RC = (nargs+1)*8 | lwzux TMP0, RA, BASE | lwz LFUNC:RB, 4(RA) | subi NARGS8:RC, NARGS8:RC, 8 | lwz TMP1, FRAME_PC(BASE) | checkfunc TMP0 | addi RA, RA, 8 | bne ->vmeta_callt |->BC_CALLT_Z: | andix. TMP0, TMP1, FRAME_TYPE // Caveat: preserve cr0 until the crand. | lbz TMP3, LFUNC:RB->ffid | xori TMP2, TMP1, FRAME_VARG | cmplwi cr1, NARGS8:RC, 0 | bne >7 |1: | stw LFUNC:RB, FRAME_FUNC(BASE) // Copy function down, but keep PC. | li TMP2, 0 | cmplwi cr7, TMP3, 1 // (> FF_C) Calling a fast function? | beq cr1, >3 |2: | addi TMP3, TMP2, 8 | lfdx f0, RA, TMP2 | cmplw cr1, TMP3, NARGS8:RC | stfdx f0, BASE, TMP2 | mr TMP2, TMP3 | bne cr1, <2 |3: | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+gt | beq >5 |4: | ins_callt | |5: // Tailcall to a fast function with a Lua frame below. | lwz INS, -4(TMP1) | decode_RA8 RA, INS | sub TMP1, BASE, RA | lwz LFUNC:TMP1, FRAME_FUNC-8(TMP1) | lwz TMP1, LFUNC:TMP1->pc | lwz KBASE, PC2PROTO(k)(TMP1) // Need to prepare KBASE. | b <4 | |7: // Tailcall from a vararg function. | andix. TMP0, TMP2, FRAME_TYPEP | bne <1 // Vararg frame below? | sub BASE, BASE, TMP2 // Relocate BASE down. | lwz TMP1, FRAME_PC(BASE) | andix. TMP0, TMP1, FRAME_TYPE | b <1 break; case BC_ITERC: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 ((2+1)*8)) | mr TMP2, BASE | add BASE, BASE, RA | lwz TMP1, -24(BASE) | lwz LFUNC:RB, -20(BASE) | lfd f1, -8(BASE) | lfd f0, -16(BASE) | stw TMP1, 0(BASE) // Copy callable. | stw LFUNC:RB, 4(BASE) | checkfunc TMP1 | stfd f1, 16(BASE) // Copy control var. | li NARGS8:RC, 16 // Iterators get 2 arguments. | stfdu f0, 8(BASE) // Copy state. | bne ->vmeta_call | ins_call break; case BC_ITERN: | // RA = base*8, (RB = (nresults+1)*8, RC = (nargs+1)*8 (2+1)*8) |.if JIT | // NYI: add hotloop, record BC_ITERN. |.endif | add RA, BASE, RA | lwz TAB:RB, -12(RA) | lwz RC, -4(RA) // Get index from control var. | lwz TMP0, TAB:RB->asize | lwz TMP1, TAB:RB->array | addi PC, PC, 4 |1: // Traverse array part. | cmplw RC, TMP0 | slwi TMP3, RC, 3 | bge >5 // Index points after array part? | lwzx TMP2, TMP1, TMP3 | lfdx f0, TMP1, TMP3 | checknil TMP2 | lwz INS, -4(PC) | beq >4 |.if DUALNUM | stw RC, 4(RA) | stw TISNUM, 0(RA) |.else | tonum_u f1, RC |.endif | addi RC, RC, 1 | addis TMP3, PC, -(BCBIAS_J*4 >> 16) | stfd f0, 8(RA) | decode_RD4 TMP1, INS | stw RC, -4(RA) // Update control var. | add PC, TMP1, TMP3 |.if not DUALNUM | stfd f1, 0(RA) |.endif |3: | ins_next | |4: // Skip holes in array part. | addi RC, RC, 1 | b <1 | |5: // Traverse hash part. | lwz TMP1, TAB:RB->hmask | sub RC, RC, TMP0 | lwz TMP2, TAB:RB->node |6: | cmplw RC, TMP1 // End of iteration? Branch to ITERL+1. | slwi TMP3, RC, 5 | bgty <3 | slwi RB, RC, 3 | sub TMP3, TMP3, RB | lwzx RB, TMP2, TMP3 | lfdx f0, TMP2, TMP3 | add NODE:TMP3, TMP2, TMP3 | checknil RB | lwz INS, -4(PC) | beq >7 | lfd f1, NODE:TMP3->key | addis TMP2, PC, -(BCBIAS_J*4 >> 16) | stfd f0, 8(RA) | add RC, RC, TMP0 | decode_RD4 TMP1, INS | stfd f1, 0(RA) | addi RC, RC, 1 | add PC, TMP1, TMP2 | stw RC, -4(RA) // Update control var. | b <3 | |7: // Skip holes in hash part. | addi RC, RC, 1 | b <6 break; case BC_ISNEXT: | // RA = base*8, RD = target (points to ITERN) | add RA, BASE, RA | lwz TMP0, -24(RA) | lwz CFUNC:TMP1, -20(RA) | lwz TMP2, -16(RA) | lwz TMP3, -8(RA) | cmpwi cr0, TMP2, LJ_TTAB | cmpwi cr1, TMP0, LJ_TFUNC | cmpwi cr6, TMP3, LJ_TNIL | bne cr1, >5 | lbz TMP1, CFUNC:TMP1->ffid | crand 4*cr0+eq, 4*cr0+eq, 4*cr6+eq | cmpwi cr7, TMP1, FF_next_N | srwi TMP0, RD, 1 | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq | add TMP3, PC, TMP0 | bne cr0, >5 | lus TMP1, 0xfffe | ori TMP1, TMP1, 0x7fff | stw ZERO, -4(RA) // Initialize control var. | stw TMP1, -8(RA) | addis PC, TMP3, -(BCBIAS_J*4 >> 16) |1: | ins_next |5: // Despecialize bytecode if any of the checks fail. | li TMP0, BC_JMP | li TMP1, BC_ITERC | stb TMP0, -1(PC) | addis PC, TMP3, -(BCBIAS_J*4 >> 16) | stb TMP1, 3(PC) | b <1 break; case BC_VARG: | // RA = base*8, RB = (nresults+1)*8, RC = numparams*8 | lwz TMP0, FRAME_PC(BASE) | add RC, BASE, RC | add RA, BASE, RA | addi RC, RC, FRAME_VARG | add TMP2, RA, RB | subi TMP3, BASE, 8 // TMP3 = vtop | sub RC, RC, TMP0 // RC = vbase | // Note: RC may now be even _above_ BASE if nargs was < numparams. | cmplwi cr1, RB, 0 |.if PPE | sub TMP1, TMP3, RC | cmpwi TMP1, 0 |.else | sub. TMP1, TMP3, RC |.endif | beq cr1, >5 // Copy all varargs? | subi TMP2, TMP2, 16 | ble >2 // No vararg slots? |1: // Copy vararg slots to destination slots. | lfd f0, 0(RC) | addi RC, RC, 8 | stfd f0, 0(RA) | cmplw RA, TMP2 | cmplw cr1, RC, TMP3 | bge >3 // All destination slots filled? | addi RA, RA, 8 | blt cr1, <1 // More vararg slots? |2: // Fill up remainder with nil. | stw TISNIL, 0(RA) | cmplw RA, TMP2 | addi RA, RA, 8 | blt <2 |3: | ins_next | |5: // Copy all varargs. | lwz TMP0, L->maxstack | li MULTRES, 8 // MULTRES = (0+1)*8 | bley <3 // No vararg slots? | add TMP2, RA, TMP1 | cmplw TMP2, TMP0 | addi MULTRES, TMP1, 8 | bgt >7 |6: | lfd f0, 0(RC) | addi RC, RC, 8 | stfd f0, 0(RA) | cmplw RC, TMP3 | addi RA, RA, 8 | blt <6 // More vararg slots? | b <3 | |7: // Grow stack for varargs. | mr CARG1, L | stp RA, L->top | sub SAVE0, RC, BASE // Need delta, because BASE may change. | stp BASE, L->base | sub RA, RA, BASE | stw PC, SAVE_PC | srwi CARG2, TMP1, 3 | bl extern lj_state_growstack // (lua_State *L, int n) | lp BASE, L->base | add RA, BASE, RA | add RC, BASE, SAVE0 | subi TMP3, BASE, 8 | b <6 break; /* -- Returns ----------------------------------------------------------- */ case BC_RETM: | // RA = results*8, RD = extra_nresults*8 | add RD, RD, MULTRES // MULTRES >= 8, so RD >= 8. | // Fall through. Assumes BC_RET follows. break; case BC_RET: | // RA = results*8, RD = (nresults+1)*8 | lwz PC, FRAME_PC(BASE) | add RA, BASE, RA | mr MULTRES, RD |1: | andix. TMP0, PC, FRAME_TYPE | xori TMP1, PC, FRAME_VARG | bne ->BC_RETV_Z | |->BC_RET_Z: | // BASE = base, RA = resultptr, RD = (nresults+1)*8, PC = return | lwz INS, -4(PC) | cmpwi RD, 8 | subi TMP2, BASE, 8 | subi RC, RD, 8 | decode_RB8 RB, INS | beq >3 | li TMP1, 0 |2: | addi TMP3, TMP1, 8 | lfdx f0, RA, TMP1 | cmpw TMP3, RC | stfdx f0, TMP2, TMP1 | beq >3 | addi TMP1, TMP3, 8 | lfdx f1, RA, TMP3 | cmpw TMP1, RC | stfdx f1, TMP2, TMP3 | bne <2 |3: |5: | cmplw RB, RD | decode_RA8 RA, INS | bgt >6 | sub BASE, TMP2, RA | lwz LFUNC:TMP1, FRAME_FUNC(BASE) | ins_next1 | lwz TMP1, LFUNC:TMP1->pc | lwz KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | subi TMP1, RD, 8 | addi RD, RD, 8 | stwx TISNIL, TMP2, TMP1 | b <5 | |->BC_RETV_Z: // Non-standard return case. | andix. TMP2, TMP1, FRAME_TYPEP | bne ->vm_return | // Return from vararg function: relocate BASE down. | sub BASE, BASE, TMP1 | lwz PC, FRAME_PC(BASE) | b <1 break; case BC_RET0: case BC_RET1: | // RA = results*8, RD = (nresults+1)*8 | lwz PC, FRAME_PC(BASE) | add RA, BASE, RA | mr MULTRES, RD | andix. TMP0, PC, FRAME_TYPE | xori TMP1, PC, FRAME_VARG | bney ->BC_RETV_Z | | lwz INS, -4(PC) | subi TMP2, BASE, 8 | decode_RB8 RB, INS if (op == BC_RET1) { | lfd f0, 0(RA) | stfd f0, 0(TMP2) } |5: | cmplw RB, RD | decode_RA8 RA, INS | bgt >6 | sub BASE, TMP2, RA | lwz LFUNC:TMP1, FRAME_FUNC(BASE) | ins_next1 | lwz TMP1, LFUNC:TMP1->pc | lwz KBASE, PC2PROTO(k)(TMP1) | ins_next2 | |6: // Fill up results with nil. | subi TMP1, RD, 8 | addi RD, RD, 8 | stwx TISNIL, TMP2, TMP1 | b <5 break; /* -- Loops and branches ------------------------------------------------ */ case BC_FORL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IFORL follows. break; case BC_JFORI: case BC_JFORL: #if !LJ_HASJIT break; #endif case BC_FORI: case BC_IFORL: | // RA = base*8, RD = target (after end of loop or start of loop) vk = (op == BC_IFORL || op == BC_JFORL); |.if DUALNUM | // Integer loop. | lwzux TMP1, RA, BASE | lwz CARG1, FORL_IDX*8+4(RA) | cmplw cr0, TMP1, TISNUM if (vk) { | lwz CARG3, FORL_STEP*8+4(RA) | bne >9 |.if GPR64 | // Need to check overflow for (a<<32) + (b<<32). | rldicr TMP0, CARG1, 32, 31 | rldicr TMP2, CARG3, 32, 31 | add CARG1, CARG1, CARG3 | addo. TMP0, TMP0, TMP2 |.else | addo. CARG1, CARG1, CARG3 |.endif | cmpwi cr6, CARG3, 0 | lwz CARG2, FORL_STOP*8+4(RA) | bso >6 |4: | stw CARG1, FORL_IDX*8+4(RA) } else { | lwz TMP3, FORL_STEP*8(RA) | lwz CARG3, FORL_STEP*8+4(RA) | lwz TMP2, FORL_STOP*8(RA) | lwz CARG2, FORL_STOP*8+4(RA) | cmplw cr7, TMP3, TISNUM | cmplw cr1, TMP2, TISNUM | crand 4*cr0+eq, 4*cr0+eq, 4*cr7+eq | crand 4*cr0+eq, 4*cr0+eq, 4*cr1+eq | cmpwi cr6, CARG3, 0 | bne >9 } | blt cr6, >5 | cmpw CARG1, CARG2 |1: | stw TISNUM, FORL_EXT*8(RA) if (op != BC_JFORL) { | srwi RD, RD, 1 } | stw CARG1, FORL_EXT*8+4(RA) if (op != BC_JFORL) { | add RD, PC, RD } if (op == BC_FORI) { | bgt >3 // See FP loop below. } else if (op == BC_JFORI) { | addis PC, RD, -(BCBIAS_J*4 >> 16) | bley >7 } else if (op == BC_IFORL) { | bgt >2 | addis PC, RD, -(BCBIAS_J*4 >> 16) } else { | bley =>BC_JLOOP } |2: | ins_next |5: // Invert check for negative step. | cmpw CARG2, CARG1 | b <1 if (vk) { |6: // Potential overflow. | checkov TMP0, <4 // Ignore unrelated overflow. | b <2 } |.endif if (vk) { |.if DUALNUM |9: // FP loop. | lfd f1, FORL_IDX*8(RA) |.else | lfdux f1, RA, BASE |.endif | lfd f3, FORL_STEP*8(RA) | lfd f2, FORL_STOP*8(RA) | lwz TMP3, FORL_STEP*8(RA) | fadd f1, f1, f3 | stfd f1, FORL_IDX*8(RA) } else { |.if DUALNUM |9: // FP loop. |.else | lwzux TMP1, RA, BASE | lwz TMP3, FORL_STEP*8(RA) | lwz TMP2, FORL_STOP*8(RA) | cmplw cr0, TMP1, TISNUM | cmplw cr7, TMP3, TISNUM | cmplw cr1, TMP2, TISNUM |.endif | lfd f1, FORL_IDX*8(RA) | crand 4*cr0+lt, 4*cr0+lt, 4*cr7+lt | crand 4*cr0+lt, 4*cr0+lt, 4*cr1+lt | lfd f2, FORL_STOP*8(RA) | bge ->vmeta_for } | cmpwi cr6, TMP3, 0 if (op != BC_JFORL) { | srwi RD, RD, 1 } | stfd f1, FORL_EXT*8(RA) if (op != BC_JFORL) { | add RD, PC, RD } | fcmpu cr0, f1, f2 if (op == BC_JFORI) { | addis PC, RD, -(BCBIAS_J*4 >> 16) } | blt cr6, >5 if (op == BC_FORI) { | bgt >3 } else if (op == BC_IFORL) { |.if DUALNUM | bgty <2 |.else | bgt >2 |.endif |1: | addis PC, RD, -(BCBIAS_J*4 >> 16) } else if (op == BC_JFORI) { | bley >7 } else { | bley =>BC_JLOOP } |.if DUALNUM | b <2 |.else |2: | ins_next |.endif |5: // Negative step. if (op == BC_FORI) { | bge <2 |3: // Used by integer loop, too. | addis PC, RD, -(BCBIAS_J*4 >> 16) } else if (op == BC_IFORL) { | bgey <1 } else if (op == BC_JFORI) { | bgey >7 } else { | bgey =>BC_JLOOP } | b <2 if (op == BC_JFORI) { |7: | lwz INS, -4(PC) | decode_RD8 RD, INS | b =>BC_JLOOP } break; case BC_ITERL: |.if JIT | hotloop |.endif | // Fall through. Assumes BC_IITERL follows. break; case BC_JITERL: #if !LJ_HASJIT break; #endif case BC_IITERL: | // RA = base*8, RD = target | lwzux TMP1, RA, BASE | lwz TMP2, 4(RA) | checknil TMP1; beq >1 // Stop if iterator returned nil. if (op == BC_JITERL) { | stw TMP1, -8(RA) | stw TMP2, -4(RA) | b =>BC_JLOOP } else { | branch_RD // Otherwise save control var + branch. | stw TMP1, -8(RA) | stw TMP2, -4(RA) } |1: | ins_next break; case BC_LOOP: | // RA = base*8, RD = target (loop extent) | // Note: RA/RD is only used by trace recorder to determine scope/extent | // This opcode does NOT jump, it's only purpose is to detect a hot loop. |.if JIT | hotloop |.endif | // Fall through. Assumes BC_ILOOP follows. break; case BC_ILOOP: | // RA = base*8, RD = target (loop extent) | ins_next break; case BC_JLOOP: |.if JIT | // RA = base*8 (ignored), RD = traceno*8 | lwz TMP1, DISPATCH_J(trace)(DISPATCH) | srwi RD, RD, 1 | // Traces on PPC don't store the trace number, so use 0. | stw ZERO, DISPATCH_GL(vmstate)(DISPATCH) | lwzx TRACE:TMP2, TMP1, RD | clrso TMP1 | lp TMP2, TRACE:TMP2->mcode | stw BASE, DISPATCH_GL(jit_base)(DISPATCH) | mtctr TMP2 | addi JGL, DISPATCH, GG_DISP2G+32768 | stw L, DISPATCH_GL(tmpbuf.L)(DISPATCH) | bctr |.endif break; case BC_JMP: | // RA = base*8 (only used by trace recorder), RD = target | branch_RD | ins_next break; /* -- Function headers -------------------------------------------------- */ case BC_FUNCF: |.if JIT | hotcall |.endif case BC_FUNCV: /* NYI: compiled vararg functions. */ | // Fall through. Assumes BC_IFUNCF/BC_IFUNCV follow. break; case BC_JFUNCF: #if !LJ_HASJIT break; #endif case BC_IFUNCF: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | lwz TMP2, L->maxstack | lbz TMP1, -4+PC2PROTO(numparams)(PC) | lwz KBASE, -4+PC2PROTO(k)(PC) | cmplw RA, TMP2 | slwi TMP1, TMP1, 3 | bgt ->vm_growstack_l if (op != BC_JFUNCF) { | ins_next1 } |2: | cmplw NARGS8:RC, TMP1 // Check for missing parameters. | blt >3 if (op == BC_JFUNCF) { | decode_RD8 RD, INS | b =>BC_JLOOP } else { | ins_next2 } | |3: // Clear missing parameters. | stwx TISNIL, BASE, NARGS8:RC | addi NARGS8:RC, NARGS8:RC, 8 | b <2 break; case BC_JFUNCV: #if !LJ_HASJIT break; #endif | NYI // NYI: compiled vararg functions break; /* NYI: compiled vararg functions. */ case BC_IFUNCV: | // BASE = new base, RA = BASE+framesize*8, RB = LFUNC, RC = nargs*8 | lwz TMP2, L->maxstack | add TMP1, BASE, RC | add TMP0, RA, RC | stw LFUNC:RB, 4(TMP1) // Store copy of LFUNC. | addi TMP3, RC, 8+FRAME_VARG | lwz KBASE, -4+PC2PROTO(k)(PC) | cmplw TMP0, TMP2 | stw TMP3, 0(TMP1) // Store delta + FRAME_VARG. | bge ->vm_growstack_l | lbz TMP2, -4+PC2PROTO(numparams)(PC) | mr RA, BASE | mr RC, TMP1 | ins_next1 | cmpwi TMP2, 0 | addi BASE, TMP1, 8 | beq >3 |1: | cmplw RA, RC // Less args than parameters? | lwz TMP0, 0(RA) | lwz TMP3, 4(RA) | bge >4 | stw TISNIL, 0(RA) // Clear old fixarg slot (help the GC). | addi RA, RA, 8 |2: | addic. TMP2, TMP2, -1 | stw TMP0, 8(TMP1) | stw TMP3, 12(TMP1) | addi TMP1, TMP1, 8 | bne <1 |3: | ins_next2 | |4: // Clear missing parameters. | li TMP0, LJ_TNIL | b <2 break; case BC_FUNCC: case BC_FUNCCW: | // BASE = new base, RA = BASE+framesize*8, RB = CFUNC, RC = nargs*8 if (op == BC_FUNCC) { | lp RD, CFUNC:RB->f } else { | lp RD, DISPATCH_GL(wrapf)(DISPATCH) } | add TMP1, RA, NARGS8:RC | lwz TMP2, L->maxstack | .toc lp TMP3, 0(RD) | add RC, BASE, NARGS8:RC | stp BASE, L->base | cmplw TMP1, TMP2 | stp RC, L->top | li_vmstate C |.if TOC | mtctr TMP3 |.else | mtctr RD |.endif if (op == BC_FUNCCW) { | lp CARG2, CFUNC:RB->f } | mr CARG1, L | bgt ->vm_growstack_c // Need to grow stack. | .toc lp TOCREG, TOC_OFS(RD) | .tocenv lp ENVREG, ENV_OFS(RD) | st_vmstate | bctrl // (lua_State *L [, lua_CFunction f]) | // Returns nresults. | lp BASE, L->base | .toc ld TOCREG, SAVE_TOC | slwi RD, CRET1, 3 | lp TMP1, L->top | li_vmstate INTERP | lwz PC, FRAME_PC(BASE) // Fetch PC of caller. | stw L, DISPATCH_GL(cur_L)(DISPATCH) | sub RA, TMP1, RD // RA = L->top - nresults*8 | st_vmstate | b ->vm_returnc break; /* ---------------------------------------------------------------------- */ default: fprintf(stderr, "Error: undefined opcode BC_%s\n", bc_names[op]); exit(2); break; } } static int build_backend(BuildCtx *ctx) { int op; dasm_growpc(Dst, BC__MAX); build_subroutines(ctx); |.code_op for (op = 0; op < BC__MAX; op++) build_ins(ctx, (BCOp)op, op); return BC__MAX; } /* Emit pseudo frame-info for all assembler functions. */ static void emit_asm_debug(BuildCtx *ctx) { int fcofs = (int)((uint8_t *)ctx->glob[GLOB_vm_ffi_call] - ctx->code); int i; switch (ctx->mode) { case BUILD_elfasm: fprintf(ctx->fp, "\t.section .debug_frame,\"\",@progbits\n"); fprintf(ctx->fp, ".Lframe0:\n" "\t.long .LECIE0-.LSCIE0\n" ".LSCIE0:\n" "\t.long 0xffffffff\n" "\t.byte 0x1\n" "\t.string \"\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 65\n" "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE0:\n\n"); fprintf(ctx->fp, ".LSFDE0:\n" "\t.long .LEFDE0-.LASFDE0\n" ".LASFDE0:\n" "\t.long .Lframe0\n" "\t.long .Lbegin\n" "\t.long %d\n" "\t.byte 0xe\n\t.uleb128 %d\n" "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n", fcofs, CFRAME_SIZE); for (i = 14; i <= 31; i++) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n" "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i)); fprintf(ctx->fp, "\t.align 2\n" ".LEFDE0:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".LSFDE1:\n" "\t.long .LEFDE1-.LASFDE1\n" ".LASFDE1:\n" "\t.long .Lframe0\n" #if LJ_TARGET_PS3 "\t.long .lj_vm_ffi_call\n" #else "\t.long lj_vm_ffi_call\n" #endif "\t.long %d\n" "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x8e\n\t.uleb128 2\n" "\t.byte 0xd\n\t.uleb128 0xe\n" "\t.align 2\n" ".LEFDE1:\n\n", (int)ctx->codesz - fcofs); #endif #if !LJ_NO_UNWIND fprintf(ctx->fp, "\t.section .eh_frame,\"a\",@progbits\n"); fprintf(ctx->fp, ".Lframe1:\n" "\t.long .LECIE1-.LSCIE1\n" ".LSCIE1:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zPR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 65\n" "\t.uleb128 6\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.long lj_err_unwind_dwarf-.\n" "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE1:\n\n"); fprintf(ctx->fp, ".LSFDE2:\n" "\t.long .LEFDE2-.LASFDE2\n" ".LASFDE2:\n" "\t.long .LASFDE2-.Lframe1\n" "\t.long .Lbegin-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0xe\n\t.uleb128 %d\n" "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x5\n\t.uleb128 70\n\t.uleb128 55\n", fcofs, CFRAME_SIZE); for (i = 14; i <= 31; i++) fprintf(ctx->fp, "\t.byte %d\n\t.uleb128 %d\n" "\t.byte %d\n\t.uleb128 %d\n", 0x80+i, 37+(31-i), 0x80+32+i, 2+2*(31-i)); fprintf(ctx->fp, "\t.align 2\n" ".LEFDE2:\n\n"); #if LJ_HASFFI fprintf(ctx->fp, ".Lframe2:\n" "\t.long .LECIE2-.LSCIE2\n" ".LSCIE2:\n" "\t.long 0\n" "\t.byte 0x1\n" "\t.string \"zR\"\n" "\t.uleb128 0x1\n" "\t.sleb128 -4\n" "\t.byte 65\n" "\t.uleb128 1\n" /* augmentation length */ "\t.byte 0x1b\n" /* pcrel|sdata4 */ "\t.byte 0xc\n\t.uleb128 1\n\t.uleb128 0\n" "\t.align 2\n" ".LECIE2:\n\n"); fprintf(ctx->fp, ".LSFDE3:\n" "\t.long .LEFDE3-.LASFDE3\n" ".LASFDE3:\n" "\t.long .LASFDE3-.Lframe2\n" "\t.long lj_vm_ffi_call-.\n" "\t.long %d\n" "\t.uleb128 0\n" /* augmentation length */ "\t.byte 0x11\n\t.uleb128 65\n\t.sleb128 -1\n" "\t.byte 0x8e\n\t.uleb128 2\n" "\t.byte 0xd\n\t.uleb128 0xe\n" "\t.align 2\n" ".LEFDE3:\n\n", (int)ctx->codesz - fcofs); #endif #endif break; default: break; } }