#
# = Mathematical Functions
# Contents:
# 1. {Mathematical Constants}[link:rdoc/math_rdoc.html#label-Mathematical+Constants]
# 1. {Infinities and Not-a-number}[link:rdoc/math_rdoc.html#label-Infinities+and+Not-a-number]
# 1. {Constants}[link:rdoc/math_rdoc.html#label-Constants]
# 1. {Module functions}[link:rdoc/math_rdoc.html#label-Module+functions]
# 1. {Elementary Functions}[link:rdoc/math_rdoc.html#label-Elementary+Functions]
# 1. {Small Integer Powers}[link:rdoc/math_rdoc.html#label-Small+Integer+Powers]
# 1. {Testing the Sign of Numbers}[link:rdoc/math_rdoc.html#label-Testing+the+Sign+of+Numbers]
# 1. {Testing for Odd and Even Numbers}[link:rdoc/math_rdoc.html#label-Testing+for+Odd+and+Even+Numbers]
# 1. {Maximum and Minimum functions}[link:rdoc/math_rdoc.html#label-Maximum+and+Minimum+functions]
# 1. {Approximate Comparison of Floating Point Numbers}[link:rdoc/math_rdoc.html#label-Approximate+Comparison+of+Floating+Point+Numbers]
#
# == Mathematical Constants
# ---
# * GSL::M_E
#
# The base of exponentials, e
# ---
# * GSL::M_LOG2E
#
# The base-2 logarithm of e, log_2(e)
# ---
# * GSL::M_LOG10E
#
# The base-10 logarithm of e, log_10(e)
# ---
# * GSL::M_SQRT2
#
# The square root of two, sqrt(2)
# ---
# * GSL::M_SQRT1_2
#
# The square root of one-half, sqrt(1/2)
# ---
# * GSL::M_SQRT3
#
# The square root of three, sqrt(3)
# ---
# * GSL::M_PI
#
# The constant pi
# ---
# * GSL::M_PI_2
#
# Pi divided by two
# ---
# * GSL::M_PI_4
#
# Pi divided by four
# ---
# * GSL::M_SQRTPI
#
# The square root of pi
# ---
# * GSL::M_2_SQRTPI
#
# Two divided by the square root of pi
# ---
# * GSL::M_1_PI
#
# The reciprocal of pi, 1/pi
# ---
# * GSL::M_2_PI
#
# Twice the reciprocal of pi, 2/pi
# ---
# * GSL::M_LN10
#
# The natural logarithm of ten, ln(10)
# ---
# * GSL::M_LN2
#
# The natural logarithm of ten, ln(2)
# ---
# * GSL::M_LNPI
#
# The natural logarithm of ten, ln(pi)
# ---
# * GSL::M_EULER
#
# Euler's constant
#
# == Infinities and Not-a-number
#
# === Constants
# ---
# * GSL::POSINF
#
# The IEEE representation of positive infinity,
# computed from the expression +1.0/0.0.
# ---
# * GSL::NEGINF
#
# The IEEE representation of negative infinity,
# computed from the expression -1.0/0.0.
# ---
# * GSL::NAN
#
# The IEEE representation of the Not-a-Number symbol,
# computed from the ratio 0.0/0.0.
#
# === Module functions
# ---
# * GSL::isnan(x)
#
# This returns 1 if x is not-a-number.
# ---
# * GSL::isnan?(x)
#
# This returns true if x is not-a-number, and false otherwise.
# ---
# * GSL::isinf(x)
#
# This returns +1 if x is positive infinity,
# -1 if x is negative infinity and 0 otherwise.
# NOTE: In Darwin9.5.0-gcc4.0.1, this method returns 1 for -inf.
# ---
# * GSL::isinf?(x)
#
# This returns true if x is positive or negative infinity,
# and false otherwise.
# ---
# * GSL::finite(x)
#
# This returns 1 if x is a real number,
# and 0 if it is infinite or not-a-number.
# ---
# * GSL::finite?(x)
#
# This returns true if x is a real number,
# and false if it is infinite or not-a-number.
#
# == Elementary Functions
# ---
# * GSL::log1p(x)
#
# This method computes the value of log(1+x)
# in a way that is accurate for small x. It provides an alternative
# to the BSD math function log1p(x).
# ---
# * GSL::expm1(x)
#
# This method computes the value of exp(x)-1
# in a way that is accurate for small x. It provides an alternative
# to the BSD math function expm1(x).
# ---
# * GSL::hypot(x, y)
#
# This method computes the value of sqrt{x^2 + y^2} in a way that
# avoids overflow.
# ---
# * GSL::hypot3(x, y, z)
#
# Computes the value of sqrt{x^2 + y^2 + z^2} in a way that avoids overflow.
# ---
# * GSL::acosh(x)
#
# This method computes the value of arccosh(x).
# ---
# * GSL::asinh(x)
#
# This method computes the value of arcsinh(x).
# ---
# * GSL::atanh(x)
#
# This method computes the value of arctanh(x).
#
# These methods above can take argument x of
# Integer, Float, Array, Vector or Matrix.
#
# ---
# * GSL::ldexp(x)
#
# This method computes the value of x * 2^e.
# ---
# * GSL::frexp(x)
#
# This method splits the number x into its normalized fraction
# f and exponent e, such that x = f * 2^e and 0.5 <= f < 1.
# The method returns f and the exponent e as an array, [f, e].
# If x is zero, both f and e are set to zero.
#
# == Small Integer Powers
# ---
# * GSL::pow_int(x, n)
#
# This routine computes the power x^n for integer n.
# The power is computed efficiently -- for example, x^8 is computed as
# ((x^2)^2)^2, requiring only 3 multiplications.
#
# ---
# * GSL::pow_2(x)
# * GSL::pow_3(x)
# * GSL::pow_4(x)
# * GSL::pow_5(x)
# * GSL::pow_6(x)
# * GSL::pow_7(x)
# * GSL::pow_8(x)
# * GSL::pow_9(x)
#
# These methods can be used to compute small integer powers x^2, x^3, etc.
# efficiently.
#
# == Testing the Sign of Numbers
# ---
# * GSL::SIGN(x)
# * GSL::sign(x)
#
# Return the sign of x.
# It is defined as ((x) >= 0 ? 1 : -1).
# Note that with this definition the sign of zero is positive
# (regardless of its IEEE sign bit).
#
# == Testing for Odd and Even Numbers
# ---
# * GSL::is_odd(n)
# * GSL::IS_ODD(n)
#
# Evaluate to 1 if n is odd and 0 if n is even.
# The argument n must be of Fixnum type.
# ---
# * GSL::is_odd?(n)
# * GSL::IS_ODD?(n)
#
# Return true if n is odd and false if even.
# ---
# * GSL::is_even(n)
# * GSL::IS_EVEN(n)
#
# Evaluate to 1 if n is even and 0 if n is odd.
# The argument n must be of Fixnum type.
# ---
# * GSL::is_even?(n)
# * GSL::IS_even?(n)
#
# Return true if n is even and false if odd.
#
# == Maximum and Minimum functions
# ---
# * GSL::max(a, b)
# * GSL::MAX(a, b)
# * GSL::min(a, b)
# * GSL::MIN(a, b)
#
#
# == Approximate Comparison of Floating Point Numbers
# ---
# * GSL::fcmp(a, b, epsilon = 1e-10)
#
# This method determines whether x and y are approximately equal to a
# relative accuracy epsilon.
# ---
# * GSL::equal?(a, b, epsilon = 1e-10)
#
#
# == Module Constants
# ---
# * GSL::VERSION
#
# GSL version
#
# ---
# * GSL::RB_GSL_VERSION
# * GSL::RUBY_GSL_VERSION
#
# Ruby/GSL version
#
# {prev}[link:rdoc/ehandling_rdoc.html]
# {next}[link:rdoc/complex_rdoc.html]
#
# {Reference index}[link:rdoc/ref_rdoc.html]
# {top}[link:index.html]
#
#