/* * glMatrix.js - High performance matrix and vector operations for WebGL * version 0.9.5 */ /* * Copyright (c) 2010 Brandon Jones * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not * be misrepresented as being the original software. * * 3. This notice may not be removed or altered from any source * distribution. */ // Fallback for systems that don't support WebGL if(typeof Float32Array != 'undefined') { glMatrixArrayType = Float32Array; } else if(typeof WebGLFloatArray != 'undefined') { glMatrixArrayType = WebGLFloatArray; // This is officially deprecated and should dissapear in future revisions. } else { glMatrixArrayType = Array; } /** * vec3 * 3 Dimensional Vector **/ var vec3 = {}; /** * vec3.create([vec]) -> vec3 * - vec (vec3): optional vec3 containing values to initialize with * * Creates a new instance of a vec3 using the default array type * Any javascript array containing at least 3 numeric elements can serve as a vec3 * * Returns: * New vec3 **/ vec3.create = function(vec) { var dest = new glMatrixArrayType(3); if(vec) { dest[0] = vec[0]; dest[1] = vec[1]; dest[2] = vec[2]; } return dest; }; /** * vec3.set(vec, dest) -> vec3 * - vec (vec3) : vec3 containing values to copy * - dest (vec3) : vec3 receiving copied values * * Copies the values of one vec3 to another * * Returns: * dest **/ vec3.set = function(vec, dest) { dest[0] = vec[0]; dest[1] = vec[1]; dest[2] = vec[2]; return dest; }; /** * vec3.add(vec, vec2[, dest]) -> vec3 * - vec (vec3) : first operand * - vec2 (vec3) : second operand * - dest (vec3) : optional vec3 receiving operation result. If not specified, result is written to +vec+. * * Performs a vector addition * * Returns: * dest if specified, vec otherwise **/ vec3.add = function(vec, vec2, dest) { if(!dest || vec == dest) { vec[0] += vec2[0]; vec[1] += vec2[1]; vec[2] += vec2[2]; return vec; } dest[0] = vec[0] + vec2[0]; dest[1] = vec[1] + vec2[1]; dest[2] = vec[2] + vec2[2]; return dest; }; /** * vec3.subtract(vec, vec2[, dest]) -> vec3 * - vec (vec3) : first operand * - vec2 (vec3) : second operand * - dest (vec3) : optional vec3 receiving operation result. If not specified, result is written to +vec+. * * Performs a vector subtraction * * Returns: * dest if specified, vec otherwise **/ vec3.subtract = function(vec, vec2, dest) { if(!dest || vec == dest) { vec[0] -= vec2[0]; vec[1] -= vec2[1]; vec[2] -= vec2[2]; return vec; } dest[0] = vec[0] - vec2[0]; dest[1] = vec[1] - vec2[1]; dest[2] = vec[2] - vec2[2]; return dest; }; /** * vec3.negate(vec[, dest]) -> vec3 * - vec (vec3) : vec3 to negate * - dest (vec3) : optional vec3 receiving operation result. If not specified, result is written to +vec+. * * Negates the components of a vec3 * * Returns: * dest if specified, vec otherwise **/ vec3.negate = function(vec, dest) { if(!dest) { dest = vec; } dest[0] = -vec[0]; dest[1] = -vec[1]; dest[2] = -vec[2]; return dest; }; /** * vec3.scale(vec, val[, dest]) -> vec3 * - vec (vec3) : vec3 to scale * - val (Number) : numeric value to scale by * - dest (vec3) : optional vec3 receiving operation result. If not specified, result is written to +vec+. * * Multiplies the components of a vec3 by a scalar value * * Returns: * dest if specified, vec otherwise **/ vec3.scale = function(vec, val, dest) { if(!dest || vec == dest) { vec[0] *= val; vec[1] *= val; vec[2] *= val; return vec; } dest[0] = vec[0]*val; dest[1] = vec[1]*val; dest[2] = vec[2]*val; return dest; }; /** * vec3.normalize(vec[, dest]) -> vec3 * - vec (vec3) : vec3 to normalize * - dest (vec3) : optional vec3 receiving operation result. If not specified, result is written to +vec+. * * Generates a unit vector of the same direction as the provided vec3 * If vector length is 0, returns [0, 0, 0] * * Returns: * dest if specified, vec otherwise **/ vec3.normalize = function(vec, dest) { if(!dest) { dest = vec; } var x = vec[0], y = vec[1], z = vec[2]; var len = Math.sqrt(x*x + y*y + z*z); if (!len) { dest[0] = 0; dest[1] = 0; dest[2] = 0; return dest; } else if (len == 1) { dest[0] = x; dest[1] = y; dest[2] = z; return dest; } len = 1 / len; dest[0] = x*len; dest[1] = y*len; dest[2] = z*len; return dest; }; /** * vec3.cross(vec, vec2[, dest]) -> vec3 * - vec (vec3) : first operand * - vec2 (vec3) : second operand * - dest (vec3) : optional vec3 receiving operation result. If not specified, result is written to +vec+. * * Generates the cross product of two vec3s * * Returns: * dest if specified, vec otherwise **/ vec3.cross = function(vec, vec2, dest){ if(!dest) { dest = vec; } var x = vec[0], y = vec[1], z = vec[2]; var x2 = vec2[0], y2 = vec2[1], z2 = vec2[2]; dest[0] = y*z2 - z*y2; dest[1] = z*x2 - x*z2; dest[2] = x*y2 - y*x2; return dest; }; /** * vec3.length(vec) -> Number * - vec (vec3) : vec3 to calculate length of * * Caclulates the length of a vec3 * * Returns: * Length of vec **/ vec3.length = function(vec){ var x = vec[0], y = vec[1], z = vec[2]; return Math.sqrt(x*x + y*y + z*z); }; /** * vec3.dot(vec, vec2) -> Number * - vec (vec3) : first operand * - vec2 (vec3) : second operand * * Caclulates the dot product of two vec3s * * Returns: * Dot product of vec and vec2 **/ vec3.dot = function(vec, vec2){ return vec[0]*vec2[0] + vec[1]*vec2[1] + vec[2]*vec2[2]; }; /** * vec3.direction(vec, vec2[, dest]) -> vec3 * - vec (vec3) : origin vec3 * - vec2 (vec3) : vec3 to point to * - dest (vec3) : optional vec3 receiving operation result. If not specified, result is written to +vec+. * * Generates a unit vector pointing from one vector to another * * Returns: * dest if specified, vec otherwise **/ vec3.direction = function(vec, vec2, dest) { if(!dest) { dest = vec; } var x = vec[0] - vec2[0]; var y = vec[1] - vec2[1]; var z = vec[2] - vec2[2]; var len = Math.sqrt(x*x + y*y + z*z); if (!len) { dest[0] = 0; dest[1] = 0; dest[2] = 0; return dest; } len = 1 / len; dest[0] = x * len; dest[1] = y * len; dest[2] = z * len; return dest; }; /** * vec3.lerp(vec, vec2, lerp[, dest]) -> vec3 * - vec (vec3) : first vector * - vec2 (vec3) : second vector * - lerp (Number) : interpolation amount between the two inputs * - dest (vec3) : optional vec3 receiving operation result. If not specified, result is written to +vec+. * * Performs a linear interpolation between two vec3 * * Returns: * dest if specified, vec otherwise **/ vec3.lerp = function(vec, vec2, lerp, dest){ if(!dest) { dest = vec; } dest[0] = vec[0] + lerp * (vec2[0] - vec[0]); dest[1] = vec[1] + lerp * (vec2[1] - vec[1]); dest[2] = vec[2] + lerp * (vec2[2] - vec[2]); return dest; } /** * vec3.str(vec) -> String * - vec (vec3) : vec3 to represent as a string * * Returns a string representation of a vector * * Returns: * string representation of vec **/ vec3.str = function(vec) { return '[' + vec[0] + ', ' + vec[1] + ', ' + vec[2] + ']'; }; /** * mat3 * 3x3 Matrix **/ var mat3 = {}; /** * mat3.create([mat]) -> mat3 * - mat (mat3) : optional mat3 containing values to initialize with * * Creates a new instance of a mat3 using the default array type * Any javascript array containing at least 9 numeric elements can serve as a mat3 * * Returns: * New mat3 **/ mat3.create = function(mat) { var dest = new glMatrixArrayType(9); if(mat) { dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; dest[9] = mat[9]; } return dest; }; /** * mat3.set(mat, dest) -> mat3 * - mat (mat3) : mat3 containing values to copy * - dest (mat3) : mat3 receiving copied values * * Copies the values of one mat3 to another * * Returns: * dest **/ mat3.set = function(mat, dest) { dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; return dest; }; /** * mat3.identity(dest) -> mat3 * - dest (mat3) : mat3 to set * * Sets a mat3 to an identity matrix * * Returns: * dest **/ mat3.identity = function(dest) { dest[0] = 1; dest[1] = 0; dest[2] = 0; dest[3] = 0; dest[4] = 1; dest[5] = 0; dest[6] = 0; dest[7] = 0; dest[8] = 1; return dest; }; /** * mat3.transpose(mat[, dest]) -> mat3 * - mat (mat3) : mat3 to transpose * - dest (mat3) : optional mat3 receiving operation result. If not specified, result is written to +mat+. * * Transposes a mat3 (flips the values over the diagonal) * * Returns: * dest if specified, mat otherwise **/ mat3.transpose = function(mat, dest) { // If we are transposing ourselves we can skip a few steps but have to cache some values if(!dest || mat == dest) { var a01 = mat[1], a02 = mat[2]; var a12 = mat[5]; mat[1] = mat[3]; mat[2] = mat[6]; mat[3] = a01; mat[5] = mat[7]; mat[6] = a02; mat[7] = a12; return mat; } dest[0] = mat[0]; dest[1] = mat[3]; dest[2] = mat[6]; dest[3] = mat[1]; dest[4] = mat[4]; dest[5] = mat[7]; dest[6] = mat[2]; dest[7] = mat[5]; dest[8] = mat[8]; return dest; }; /** * mat3.toMat4(mat[, dest]) -> mat4 * - mat (mat3) : mat3 containing values to copy * - dest (mat4) : optional mat4 receiving operation result. If not specified, result is written to a new mat4. * * Copies the elements of a mat3 into the upper 3x3 elements of a mat4 * * Returns: * dest if specified, a new mat4 otherwise **/ mat3.toMat4 = function(mat, dest) { if(!dest) { dest = mat4.create(); } dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = 0; dest[4] = mat[3]; dest[5] = mat[4]; dest[6] = mat[5]; dest[7] = 0; dest[8] = mat[6]; dest[9] = mat[7]; dest[10] = mat[8]; dest[11] = 0; dest[12] = 0; dest[13] = 0; dest[14] = 0; dest[15] = 1; return dest; } /** * mat3.str(mat) -> String * - mat (mat3) : mat3 to represent as a string * * Returns a string representation of a mat3 * * Returns: * string representation of mat **/ mat3.str = function(mat) { return '[' + mat[0] + ', ' + mat[1] + ', ' + mat[2] + ', ' + mat[3] + ', '+ mat[4] + ', ' + mat[5] + ', ' + mat[6] + ', ' + mat[7] + ', '+ mat[8] + ']'; }; /** * mat4 * 4x4 Matrix **/ var mat4 = {}; /** * mat4.create([mat]) -> mat4 * - mat (mat4) : optional mat4 containing values to initialize with * * Creates a new instance of a mat4 using the default array type * Any javascript array containing at least 16 numeric elements can serve as a mat4 * * Returns: * New mat4 **/ mat4.create = function(mat) { var dest = new glMatrixArrayType(16); if(mat) { dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; dest[9] = mat[9]; dest[10] = mat[10]; dest[11] = mat[11]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } return dest; }; /** * mat4.set(mat, dest) -> mat4 * - mat (mat4) : mat4 containing values to copy * - dest (mat4) : mat4 receiving copied values * * Copies the values of one mat4 to another * * Returns: * dest **/ mat4.set = function(mat, dest) { dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; dest[9] = mat[9]; dest[10] = mat[10]; dest[11] = mat[11]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; return dest; }; /** * mat4.identity(dest) -> mat4 * - dest (mat4) : mat4 to set * * Sets a mat4 to an identity matrix * * Returns: * dest **/ mat4.identity = function(dest) { dest[0] = 1; dest[1] = 0; dest[2] = 0; dest[3] = 0; dest[4] = 0; dest[5] = 1; dest[6] = 0; dest[7] = 0; dest[8] = 0; dest[9] = 0; dest[10] = 1; dest[11] = 0; dest[12] = 0; dest[13] = 0; dest[14] = 0; dest[15] = 1; return dest; }; /** * mat4.transpose(mat[, dest]) -> mat4 * - mat (mat4) : mat4 to transpose * - dest (mat4) : optional mat4 receiving operation result. If not specified, result is written to +mat+. * * Transposes a mat4 (flips the values over the diagonal) * * Returns: * dest is specified, mat otherwise **/ mat4.transpose = function(mat, dest) { // If we are transposing ourselves we can skip a few steps but have to cache some values if(!dest || mat == dest) { var a01 = mat[1], a02 = mat[2], a03 = mat[3]; var a12 = mat[6], a13 = mat[7]; var a23 = mat[11]; mat[1] = mat[4]; mat[2] = mat[8]; mat[3] = mat[12]; mat[4] = a01; mat[6] = mat[9]; mat[7] = mat[13]; mat[8] = a02; mat[9] = a12; mat[11] = mat[14]; mat[12] = a03; mat[13] = a13; mat[14] = a23; return mat; } dest[0] = mat[0]; dest[1] = mat[4]; dest[2] = mat[8]; dest[3] = mat[12]; dest[4] = mat[1]; dest[5] = mat[5]; dest[6] = mat[9]; dest[7] = mat[13]; dest[8] = mat[2]; dest[9] = mat[6]; dest[10] = mat[10]; dest[11] = mat[14]; dest[12] = mat[3]; dest[13] = mat[7]; dest[14] = mat[11]; dest[15] = mat[15]; return dest; }; /** * mat4.determinant(mat) -> mat4 * - mat (mat4) : mat4 to calculate determinant of * * Calculates the determinant of a mat4 * * Returns: * determinant of mat **/ mat4.determinant = function(mat) { // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3]; var a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; var a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; var a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15]; return a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33; }; /** * mat4.inverse(mat[, dest]) -> mat4 * - mat (mat4) : mat4 to calculate inverse of * - dest (mat4) : optional mat4 receiving inverse matrix. If not specified, result is written to +mat+. * * Calculates the inverse matrix of a mat4 * * Returns: * dest is specified, mat otherwise **/ mat4.inverse = function(mat, dest) { if(!dest) { dest = mat; } // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3]; var a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; var a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; var a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15]; var b00 = a00*a11 - a01*a10; var b01 = a00*a12 - a02*a10; var b02 = a00*a13 - a03*a10; var b03 = a01*a12 - a02*a11; var b04 = a01*a13 - a03*a11; var b05 = a02*a13 - a03*a12; var b06 = a20*a31 - a21*a30; var b07 = a20*a32 - a22*a30; var b08 = a20*a33 - a23*a30; var b09 = a21*a32 - a22*a31; var b10 = a21*a33 - a23*a31; var b11 = a22*a33 - a23*a32; // Calculate the determinant (inlined to avoid double-caching) var invDet = 1/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); dest[0] = (a11*b11 - a12*b10 + a13*b09)*invDet; dest[1] = (-a01*b11 + a02*b10 - a03*b09)*invDet; dest[2] = (a31*b05 - a32*b04 + a33*b03)*invDet; dest[3] = (-a21*b05 + a22*b04 - a23*b03)*invDet; dest[4] = (-a10*b11 + a12*b08 - a13*b07)*invDet; dest[5] = (a00*b11 - a02*b08 + a03*b07)*invDet; dest[6] = (-a30*b05 + a32*b02 - a33*b01)*invDet; dest[7] = (a20*b05 - a22*b02 + a23*b01)*invDet; dest[8] = (a10*b10 - a11*b08 + a13*b06)*invDet; dest[9] = (-a00*b10 + a01*b08 - a03*b06)*invDet; dest[10] = (a30*b04 - a31*b02 + a33*b00)*invDet; dest[11] = (-a20*b04 + a21*b02 - a23*b00)*invDet; dest[12] = (-a10*b09 + a11*b07 - a12*b06)*invDet; dest[13] = (a00*b09 - a01*b07 + a02*b06)*invDet; dest[14] = (-a30*b03 + a31*b01 - a32*b00)*invDet; dest[15] = (a20*b03 - a21*b01 + a22*b00)*invDet; return dest; }; /** * mat4.toRotationMat(mat[, dest]) -> mat4 * - mat (mat4) : mat4 containing values to copy * - dest (mat4) : optional mat4 receiving copied values. If not specified, result is written to +mat+. * * Copies the upper 3x3 elements of a mat4 into another mat4 * * Returns: * dest is specified, a new mat4 otherwise **/ mat4.toRotationMat = function(mat, dest) { if(!dest) { dest = mat4.create(); } dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[8] = mat[8]; dest[9] = mat[9]; dest[10] = mat[10]; dest[11] = mat[11]; dest[12] = 0; dest[13] = 0; dest[14] = 0; dest[15] = 1; return dest; }; /** * mat4.toMat3(mat[, dest]) -> mat3 * - mat (mat4) : mat4 containing values to copy * - dest (mat3) : optional mat3 receiving copied values. If not specified, a new mat3 is created. * * Copies the upper 3x3 elements of a mat4 into a mat3 * * Returns: * dest is specified, a new mat3 otherwise **/ mat4.toMat3 = function(mat, dest) { if(!dest) { dest = mat3.create(); } dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[4]; dest[4] = mat[5]; dest[5] = mat[6]; dest[6] = mat[8]; dest[7] = mat[9]; dest[8] = mat[10]; return dest; }; /** * mat4.toInverseMat3(mat[, dest]) -> mat3 * - mat (mat4) : mat4 containing values to invert and copy * - dest (mat3) : optional mat3 receiving values * * Calculates the inverse of the upper 3x3 elements of a mat4 and copies the result into a mat3 * The resulting matrix is useful for calculating transformed normals * * Returns: * dest is specified, a new mat3 otherwise **/ mat4.toInverseMat3 = function(mat, dest) { // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2]; var a10 = mat[4], a11 = mat[5], a12 = mat[6]; var a20 = mat[8], a21 = mat[9], a22 = mat[10]; var b01 = a22*a11-a12*a21; var b11 = -a22*a10+a12*a20; var b21 = a21*a10-a11*a20; var d = a00*b01 + a01*b11 + a02*b21; if (!d) { return null; } var id = 1/d; if(!dest) { dest = mat3.create(); } dest[0] = b01*id; dest[1] = (-a22*a01 + a02*a21)*id; dest[2] = (a12*a01 - a02*a11)*id; dest[3] = b11*id; dest[4] = (a22*a00 - a02*a20)*id; dest[5] = (-a12*a00 + a02*a10)*id; dest[6] = b21*id; dest[7] = (-a21*a00 + a01*a20)*id; dest[8] = (a11*a00 - a01*a10)*id; return dest; }; /** * mat4.multiply(mat, mat2[, dest]) -> mat4 * - mat (mat4) : first operand * - mat2 (mat4) : second operand * - dest (mat4) : optional mat4 receiving operation result. If not specified, result is written to +mat+. * * Performs a matrix multiplication * * Returns: * dest if specified, mat otherwise **/ mat4.multiply = function(mat, mat2, dest) { if(!dest) { dest = mat } // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3]; var a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; var a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; var a30 = mat[12], a31 = mat[13], a32 = mat[14], a33 = mat[15]; var b00 = mat2[0], b01 = mat2[1], b02 = mat2[2], b03 = mat2[3]; var b10 = mat2[4], b11 = mat2[5], b12 = mat2[6], b13 = mat2[7]; var b20 = mat2[8], b21 = mat2[9], b22 = mat2[10], b23 = mat2[11]; var b30 = mat2[12], b31 = mat2[13], b32 = mat2[14], b33 = mat2[15]; dest[0] = b00*a00 + b01*a10 + b02*a20 + b03*a30; dest[1] = b00*a01 + b01*a11 + b02*a21 + b03*a31; dest[2] = b00*a02 + b01*a12 + b02*a22 + b03*a32; dest[3] = b00*a03 + b01*a13 + b02*a23 + b03*a33; dest[4] = b10*a00 + b11*a10 + b12*a20 + b13*a30; dest[5] = b10*a01 + b11*a11 + b12*a21 + b13*a31; dest[6] = b10*a02 + b11*a12 + b12*a22 + b13*a32; dest[7] = b10*a03 + b11*a13 + b12*a23 + b13*a33; dest[8] = b20*a00 + b21*a10 + b22*a20 + b23*a30; dest[9] = b20*a01 + b21*a11 + b22*a21 + b23*a31; dest[10] = b20*a02 + b21*a12 + b22*a22 + b23*a32; dest[11] = b20*a03 + b21*a13 + b22*a23 + b23*a33; dest[12] = b30*a00 + b31*a10 + b32*a20 + b33*a30; dest[13] = b30*a01 + b31*a11 + b32*a21 + b33*a31; dest[14] = b30*a02 + b31*a12 + b32*a22 + b33*a32; dest[15] = b30*a03 + b31*a13 + b32*a23 + b33*a33; return dest; }; /** * mat4.multiplyVec3(mat, vec[, dest]) -> vec3 * - mat (mat4) : mat4 to transform the vector with * - vec (vec3) : vec3 to transform * - dest (vec3) : optional vec3 receiving operation result. If not specified, result is written to +vec+. * * Transforms a vec3 with the given matrix * 4th vector component is implicitly '1' * * Returns: * dest if specified, vec3 otherwise **/ mat4.multiplyVec3 = function(mat, vec, dest) { if(!dest) { dest = vec } var x = vec[0], y = vec[1], z = vec[2]; dest[0] = mat[0]*x + mat[4]*y + mat[8]*z + mat[12]; dest[1] = mat[1]*x + mat[5]*y + mat[9]*z + mat[13]; dest[2] = mat[2]*x + mat[6]*y + mat[10]*z + mat[14]; return dest; }; /** * mat4.multiplyVec4(mat, vec[, dest]) -> vec4 * - mat (mat4) : mat4 to transform the vector with * - vec (vec4) : vec4 to transform * - dest (vec4) : optional vec4 receiving operation result. If not specified, result is written to +vec+. * * Transforms a vec4 with the given matrix * * Returns: * dest if specified, vec otherwise **/ mat4.multiplyVec4 = function(mat, vec, dest) { if(!dest) { dest = vec } var x = vec[0], y = vec[1], z = vec[2], w = vec[3]; dest[0] = mat[0]*x + mat[4]*y + mat[8]*z + mat[12]*w; dest[1] = mat[1]*x + mat[5]*y + mat[9]*z + mat[13]*w; dest[2] = mat[2]*x + mat[6]*y + mat[10]*z + mat[14]*w; dest[3] = mat[3]*x + mat[7]*y + mat[11]*z + mat[15]*w; return dest; }; /** * mat4.translate(mat, vec[, dest]) -> mat4 * - mat (mat4) : mat4 to translate * - vec (vec3) : vec3 specifying the translation * - dest (mat4) : optional mat4 receiving operation result. If not specified, result is written to +mat+. * * Translates a matrix by the given vector * * Returns: * dest if specified, mat otherwise **/ mat4.translate = function(mat, vec, dest) { var x = vec[0], y = vec[1], z = vec[2]; if(!dest || mat == dest) { mat[12] = mat[0]*x + mat[4]*y + mat[8]*z + mat[12]; mat[13] = mat[1]*x + mat[5]*y + mat[9]*z + mat[13]; mat[14] = mat[2]*x + mat[6]*y + mat[10]*z + mat[14]; mat[15] = mat[3]*x + mat[7]*y + mat[11]*z + mat[15]; return mat; } var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3]; var a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; var a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; dest[0] = a00; dest[1] = a01; dest[2] = a02; dest[3] = a03; dest[4] = a10; dest[5] = a11; dest[6] = a12; dest[7] = a13; dest[8] = a20; dest[9] = a21; dest[10] = a22; dest[11] = a23; dest[12] = a00*x + a10*y + a20*z + mat[12]; dest[13] = a01*x + a11*y + a21*z + mat[13]; dest[14] = a02*x + a12*y + a22*z + mat[14]; dest[15] = a03*x + a13*y + a23*z + mat[15]; return dest; }; /** * mat4.scale(mat, vec[, dest]) -> mat4 * - mat (mat4) : mat4 to scale * - vec (vec3) : vec3 specifying the scale for each axis * - dest (mat4) : optional mat4 receiving operation result. If not specified, result is written to +mat+. * * Scales a matrix by the given vector * * Returns: * dest if specified, mat otherwise **/ mat4.scale = function(mat, vec, dest) { var x = vec[0], y = vec[1], z = vec[2]; if(!dest || mat == dest) { mat[0] *= x; mat[1] *= x; mat[2] *= x; mat[3] *= x; mat[4] *= y; mat[5] *= y; mat[6] *= y; mat[7] *= y; mat[8] *= z; mat[9] *= z; mat[10] *= z; mat[11] *= z; return mat; } dest[0] = mat[0]*x; dest[1] = mat[1]*x; dest[2] = mat[2]*x; dest[3] = mat[3]*x; dest[4] = mat[4]*y; dest[5] = mat[5]*y; dest[6] = mat[6]*y; dest[7] = mat[7]*y; dest[8] = mat[8]*z; dest[9] = mat[9]*z; dest[10] = mat[10]*z; dest[11] = mat[11]*z; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; return dest; }; /** * mat4.rotate(mat, angle, axis[, dest]) -> mat4 * - mat (mat4) : mat4 to rotate * - angle (Number) : angle (in radians) to rotate * - axis (vec3) : vec3 representing the axis to rotate around * - dest (mat4) : optional mat4 receiving operation result. If not specified, result is written to +mat+. * * Rotates a matrix by the given angle around the specified axis * If rotating around a primary axis (X,Y,Z) one of the specialized rotation functions should be used instead for performance * * Returns: * dest if specified, mat otherwise **/ mat4.rotate = function(mat, angle, axis, dest) { var x = axis[0], y = axis[1], z = axis[2]; var len = Math.sqrt(x*x + y*y + z*z); if (!len) { return null; } if (len != 1) { len = 1 / len; x *= len; y *= len; z *= len; } var s = Math.sin(angle); var c = Math.cos(angle); var t = 1-c; // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3]; var a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; var a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; // Construct the elements of the rotation matrix var b00 = x*x*t + c, b01 = y*x*t + z*s, b02 = z*x*t - y*s; var b10 = x*y*t - z*s, b11 = y*y*t + c, b12 = z*y*t + x*s; var b20 = x*z*t + y*s, b21 = y*z*t - x*s, b22 = z*z*t + c; if(!dest) { dest = mat } else if(mat != dest) { // If the source and destination differ, copy the unchanged last row dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } // Perform rotation-specific matrix multiplication dest[0] = a00*b00 + a10*b01 + a20*b02; dest[1] = a01*b00 + a11*b01 + a21*b02; dest[2] = a02*b00 + a12*b01 + a22*b02; dest[3] = a03*b00 + a13*b01 + a23*b02; dest[4] = a00*b10 + a10*b11 + a20*b12; dest[5] = a01*b10 + a11*b11 + a21*b12; dest[6] = a02*b10 + a12*b11 + a22*b12; dest[7] = a03*b10 + a13*b11 + a23*b12; dest[8] = a00*b20 + a10*b21 + a20*b22; dest[9] = a01*b20 + a11*b21 + a21*b22; dest[10] = a02*b20 + a12*b21 + a22*b22; dest[11] = a03*b20 + a13*b21 + a23*b22; return dest; }; /** * mat4.rotateX(mat, angle[, dest]) -> mat4 * - mat (mat4) : mat4 to rotate * - angle (Number) : angle (in radians) to rotate * - dest (mat4) : optional mat4 receiving operation result. If not specified, result is written to +mat+. * * Rotates a matrix by the given angle around the X axis * * Returns: * dest if specified, mat otherwise **/ mat4.rotateX = function(mat, angle, dest) { var s = Math.sin(angle); var c = Math.cos(angle); // Cache the matrix values (makes for huge speed increases!) var a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; var a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; if(!dest) { dest = mat } else if(mat != dest) { // If the source and destination differ, copy the unchanged rows dest[0] = mat[0]; dest[1] = mat[1]; dest[2] = mat[2]; dest[3] = mat[3]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } // Perform axis-specific matrix multiplication dest[4] = a10*c + a20*s; dest[5] = a11*c + a21*s; dest[6] = a12*c + a22*s; dest[7] = a13*c + a23*s; dest[8] = a10*-s + a20*c; dest[9] = a11*-s + a21*c; dest[10] = a12*-s + a22*c; dest[11] = a13*-s + a23*c; return dest; }; /** * mat4.rotateY(mat, angle[, dest]) -> mat4 * - mat (mat4) : mat4 to rotate * - angle (Number) : angle (in radians) to rotate * - dest (mat4) : optional mat4 receiving operation result. If not specified, result is written to +mat+. * * Rotates a matrix by the given angle around the Y axis * * Returns: * dest if specified, mat otherwise **/ mat4.rotateY = function(mat, angle, dest) { var s = Math.sin(angle); var c = Math.cos(angle); // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3]; var a20 = mat[8], a21 = mat[9], a22 = mat[10], a23 = mat[11]; if(!dest) { dest = mat } else if(mat != dest) { // If the source and destination differ, copy the unchanged rows dest[4] = mat[4]; dest[5] = mat[5]; dest[6] = mat[6]; dest[7] = mat[7]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } // Perform axis-specific matrix multiplication dest[0] = a00*c + a20*-s; dest[1] = a01*c + a21*-s; dest[2] = a02*c + a22*-s; dest[3] = a03*c + a23*-s; dest[8] = a00*s + a20*c; dest[9] = a01*s + a21*c; dest[10] = a02*s + a22*c; dest[11] = a03*s + a23*c; return dest; }; /** * mat4.rotateZ(mat, angle[, dest]) -> mat4 * - mat (mat4) : mat4 to rotate * - angle (Number) : angle (in radians) to rotate * - dest (mat4) : optional mat4 receiving operation result. If not specified, result is written to +mat+. * * Rotates a matrix by the given angle around the Z axis * * Returns: * dest if specified, mat otherwise **/ mat4.rotateZ = function(mat, angle, dest) { var s = Math.sin(angle); var c = Math.cos(angle); // Cache the matrix values (makes for huge speed increases!) var a00 = mat[0], a01 = mat[1], a02 = mat[2], a03 = mat[3]; var a10 = mat[4], a11 = mat[5], a12 = mat[6], a13 = mat[7]; if(!dest) { dest = mat } else if(mat != dest) { // If the source and destination differ, copy the unchanged last row dest[8] = mat[8]; dest[9] = mat[9]; dest[10] = mat[10]; dest[11] = mat[11]; dest[12] = mat[12]; dest[13] = mat[13]; dest[14] = mat[14]; dest[15] = mat[15]; } // Perform axis-specific matrix multiplication dest[0] = a00*c + a10*s; dest[1] = a01*c + a11*s; dest[2] = a02*c + a12*s; dest[3] = a03*c + a13*s; dest[4] = a00*-s + a10*c; dest[5] = a01*-s + a11*c; dest[6] = a02*-s + a12*c; dest[7] = a03*-s + a13*c; return dest; }; /** * mat4.frustum(left, right, bottom, top, near, far[, dest]) -> mat4 * - left (Number) : scalar, left bounds of the frustum * - right (Number) : scalar, right bounds of the frustum * - bottom (Number) : scalar, bottom bounds of the frustum * - top (Number) : scalar, top bounds of the frustum * - near (Number) : scalar, near bounds of the frustum * - far (Number) : scalar, far bounds of the frustum * - dest (mat4) : optional mat4 frustum matrix will be written into. If not specified, a new mat4 is created. * * Generates a frustum matrix with the given bounds * * Returns: * dest if specified, a new mat4 otherwise **/ mat4.frustum = function(left, right, bottom, top, near, far, dest) { if(!dest) { dest = mat4.create(); } var rl = (right - left); var tb = (top - bottom); var fn = (far - near); dest[0] = (near*2) / rl; dest[1] = 0; dest[2] = 0; dest[3] = 0; dest[4] = 0; dest[5] = (near*2) / tb; dest[6] = 0; dest[7] = 0; dest[8] = (right + left) / rl; dest[9] = (top + bottom) / tb; dest[10] = -(far + near) / fn; dest[11] = -1; dest[12] = 0; dest[13] = 0; dest[14] = -(far*near*2) / fn; dest[15] = 0; return dest; }; /** * mat4.perspective(fovy, aspect, near, far[, dest]) -> mat4 * - fovy (Number) : scalar, vertical field of view * - aspect (Number) : scalar, aspect ratio. Typically viewport width/height * - near (Number) : scalar, near bounds of the frustum * - far (Number) : scalar, far bounds of the frustum * - dest (mat4) : optional mat4 the frustum matrix will be written into. If not specified, a new mat4 is created. * * Generates a perspective projection matrix with the given bounds * * Returns: * dest if specified, a new mat4 otherwise **/ mat4.perspective = function(fovy, aspect, near, far, dest) { var top = near*Math.tan(fovy*Math.PI / 360.0); var right = top*aspect; return mat4.frustum(-right, right, -top, top, near, far, dest); }; /** * mat4.ortho(left, right, bottom, top, near, far[, dest]) -> mat4 * - left (Number) : scalar, left bounds of the frustum * - right (Number) : scalar, right bounds of the frustum * - bottom (Number) : scalar, bottom bounds of the frustum * - top (Number) : scalar, top bounds of the frustum * - near (Number) : scalar, near bounds of the frustum * - far (Number) : scalar, far bounds of the frustum * - dest (mat4) : optional mat4 the frustum matrix will be written into. If not specified, a new mat4 is created. * * Generates a orthogonal projection matrix with the given bounds * * Returns: * dest if specified, a new mat4 otherwise **/ mat4.ortho = function(left, right, bottom, top, near, far, dest) { if(!dest) { dest = mat4.create(); } var rl = (right - left); var tb = (top - bottom); var fn = (far - near); dest[0] = 2 / rl; dest[1] = 0; dest[2] = 0; dest[3] = 0; dest[4] = 0; dest[5] = 2 / tb; dest[6] = 0; dest[7] = 0; dest[8] = 0; dest[9] = 0; dest[10] = -2 / fn; dest[11] = 0; dest[12] = -(left + right) / rl; dest[13] = -(top + bottom) / tb; dest[14] = -(far + near) / fn; dest[15] = 1; return dest; }; /** * mat4.lookAt(eye, center, up[, dest]) -> mat4 * - eye (vec3) : position of the viewer * - center (vec3) : the point the viewer is looking at * - up (vec3) : vec3 pointing "up" * - dest (mat4) : optional mat4 the frustum matrix will be written into. If not specified, a new mat4 is created. * * Generates a look-at matrix with the given eye position, focal point, and up axis * * Returns: * dest if specified, a new mat4 otherwise **/ mat4.lookAt = function(eye, center, up, dest) { if(!dest) { dest = mat4.create(); } var eyex = eye[0], eyey = eye[1], eyez = eye[2], upx = up[0], upy = up[1], upz = up[2], centerx = center[0], centery = center[1], centerz = center[2]; if (eyex == centerx && eyey == centery && eyez == centerz) { return mat4.identity(dest); } var z0,z1,z2,x0,x1,x2,y0,y1,y2,len; //vec3.direction(eye, center, z); z0 = eyex - center[0]; z1 = eyey - center[1]; z2 = eyez - center[2]; // normalize (no check needed for 0 because of early return) len = 1/Math.sqrt(z0*z0 + z1*z1 + z2*z2); z0 *= len; z1 *= len; z2 *= len; //vec3.normalize(vec3.cross(up, z, x)); x0 = upy*z2 - upz*z1; x1 = upz*z0 - upx*z2; x2 = upx*z1 - upy*z0; len = Math.sqrt(x0*x0 + x1*x1 + x2*x2); if (!len) { x0 = 0; x1 = 0; x2 = 0; } else { len = 1/len; x0 *= len; x1 *= len; x2 *= len; }; //vec3.normalize(vec3.cross(z, x, y)); y0 = z1*x2 - z2*x1; y1 = z2*x0 - z0*x2; y2 = z0*x1 - z1*x0; len = Math.sqrt(y0*y0 + y1*y1 + y2*y2); if (!len) { y0 = 0; y1 = 0; y2 = 0; } else { len = 1/len; y0 *= len; y1 *= len; y2 *= len; } dest[0] = x0; dest[1] = y0; dest[2] = z0; dest[3] = 0; dest[4] = x1; dest[5] = y1; dest[6] = z1; dest[7] = 0; dest[8] = x2; dest[9] = y2; dest[10] = z2; dest[11] = 0; dest[12] = -(x0*eyex + x1*eyey + x2*eyez); dest[13] = -(y0*eyex + y1*eyey + y2*eyez); dest[14] = -(z0*eyex + z1*eyey + z2*eyez); dest[15] = 1; return dest; }; /** * mat4.str(mat) -> String * - mat (mat4) : mat4 to represent as a string * * Returns a string representation of a mat4 * * Returns: * string representation of mat **/ mat4.str = function(mat) { return '[' + mat[0] + ', ' + mat[1] + ', ' + mat[2] + ', ' + mat[3] + ', '+ mat[4] + ', ' + mat[5] + ', ' + mat[6] + ', ' + mat[7] + ', '+ mat[8] + ', ' + mat[9] + ', ' + mat[10] + ', ' + mat[11] + ', '+ mat[12] + ', ' + mat[13] + ', ' + mat[14] + ', ' + mat[15] + ']'; }; /** * quat4 * Quaternions **/ quat4 = {}; /** * quat4.create([quat]) -> quat4 * - quat (quat4) : optional quat4 containing values to initialize with * * Creates a new instance of a quat4 using the default array type * Any javascript array containing at least 4 numeric elements can serve as a quat4 * * Returns: * New quat4 **/ quat4.create = function(quat) { var dest = new glMatrixArrayType(4); if(quat) { dest[0] = quat[0]; dest[1] = quat[1]; dest[2] = quat[2]; dest[3] = quat[3]; } return dest; }; /** * quat4.set(quat, dest) -> quat4 * - quat (quat4) : quat4 containing values to copy * - dest (quat4) : quat4 receiving copied values * * Copies the values of one quat4 to another * * Returns: * dest **/ quat4.set = function(quat, dest) { dest[0] = quat[0]; dest[1] = quat[1]; dest[2] = quat[2]; dest[3] = quat[3]; return dest; }; /** * quat4.calculateW(quat[, dest]) -> quat4 * - quat (quat4) : quat4 to calculate W component of * - dest (quat4) : optional quat4 receiving calculated values. If not specified, result is written to quat. * * Calculates the W component of a quat4 from the X, Y, and Z components. * Assumes that quaternion is 1 unit in length. * Any existing W component will be ignored. * * Returns: * dest if specified, quat otherwise **/ quat4.calculateW = function(quat, dest) { var x = quat[0], y = quat[1], z = quat[2]; if(!dest || quat == dest) { quat[3] = -Math.sqrt(Math.abs(1.0 - x*x - y*y - z*z)); return quat; } dest[0] = x; dest[1] = y; dest[2] = z; dest[3] = -Math.sqrt(Math.abs(1.0 - x*x - y*y - z*z)); return dest; } /** * quat4.inverse(quat[, dest]) -> quat4 * - quat (quat4) : quat4 to calculate inverse of * - dest (quat4) : optional quat4 receiving calculated values. If not specified, result is written to quat. * * Calculates the inverse of a quat4 * * Returns: * dest if specified, quat otherwise **/ quat4.inverse = function(quat, dest) { if(!dest || quat == dest) { quat[0] *= 1; quat[1] *= 1; quat[2] *= 1; return quat; } dest[0] = -quat[0]; dest[1] = -quat[1]; dest[2] = -quat[2]; dest[3] = quat[3]; return dest; } /** * quat4.length(quat) -> quat4 * - quat (quat4) : quat4 to calculate length of * * Calculates the length of a quat4 * * Returns: * Length of quat **/ quat4.length = function(quat) { var x = quat[0], y = quat[1], z = quat[2], w = quat[3]; return Math.sqrt(x*x + y*y + z*z + w*w); } /** * quat4.normalize(quat[, dest]) -> quat4 * - quat (quat4) : quat4 to normalize * - dest (quat4) : optional quat4 receiving calculated values. If not specified, result is written to quat. * * Generates a unit quaternion of the same direction as the provided quat4 * If quaternion length is 0, returns [0, 0, 0, 0] * * Returns: * dest if specified, quat otherwise **/ quat4.normalize = function(quat, dest) { if(!dest) { dest = quat; } var x = quat[0], y = quat[1], z = quat[2], w = quat[3]; var len = Math.sqrt(x*x + y*y + z*z + w*w); if(len == 0) { dest[0] = 0; dest[1] = 0; dest[2] = 0; dest[3] = 0; return dest; } len = 1/len; dest[0] = x * len; dest[1] = y * len; dest[2] = z * len; dest[3] = w * len; return dest; } /** * quat4.multiply(quat, quat2[, dest]) -> quat4 * - quat (quat4) : first operand * - quat2 (quat4) : second operand * - dest (quat4) : optional quat4 receiving calculated values. If not specified, result is written to quat. * * Performs a quaternion multiplication * * Returns: * dest if specified, quat otherwise **/ quat4.multiply = function(quat, quat2, dest) { if(!dest) { dest = quat; } var qax = quat[0], qay = quat[1], qaz = quat[2], qaw = quat[3]; var qbx = quat2[0], qby = quat2[1], qbz = quat2[2], qbw = quat2[3]; dest[0] = qax*qbw + qaw*qbx + qay*qbz - qaz*qby; dest[1] = qay*qbw + qaw*qby + qaz*qbx - qax*qbz; dest[2] = qaz*qbw + qaw*qbz + qax*qby - qay*qbx; dest[3] = qaw*qbw - qax*qbx - qay*qby - qaz*qbz; return dest; } /** * quat4.multiplyVec3(quat, vec[, dest]) -> vec3 * - quat (quat4) : quat4 to transform the vector with * - vec (vec3) : vec3 to transform * - dest (vec3) : optional vec3 receiving calculated values. If not specified, result is written to +vec+. * * Transforms a vec3 with the given quaternion * * Returns: * dest if specified, vec otherwise **/ quat4.multiplyVec3 = function(quat, vec, dest) { if(!dest) { dest = vec; } var x = vec[0], y = vec[1], z = vec[2]; var qx = quat[0], qy = quat[1], qz = quat[2], qw = quat[3]; // calculate quat * vec var ix = qw*x + qy*z - qz*y; var iy = qw*y + qz*x - qx*z; var iz = qw*z + qx*y - qy*x; var iw = -qx*x - qy*y - qz*z; // calculate result * inverse quat dest[0] = ix*qw + iw*-qx + iy*-qz - iz*-qy; dest[1] = iy*qw + iw*-qy + iz*-qx - ix*-qz; dest[2] = iz*qw + iw*-qz + ix*-qy - iy*-qx; return dest; } /** * quat4.toMat3(quat[, dest]) -> mat3 * - quat (quat4) : quat4 to create matrix from * - dest (mat3) : optional mat3 receiving operation result. If not specified, a new mat3 is created. * * Calculates a 3x3 matrix from the given quat4 * * Returns: * dest if specified, a new mat3 otherwise **/ quat4.toMat3 = function(quat, dest) { if(!dest) { dest = mat3.create(); } var x = quat[0], y = quat[1], z = quat[2], w = quat[3]; var x2 = x + x; var y2 = y + y; var z2 = z + z; var xx = x*x2; var xy = x*y2; var xz = x*z2; var yy = y*y2; var yz = y*z2; var zz = z*z2; var wx = w*x2; var wy = w*y2; var wz = w*z2; dest[0] = 1 - (yy + zz); dest[1] = xy - wz; dest[2] = xz + wy; dest[3] = xy + wz; dest[4] = 1 - (xx + zz); dest[5] = yz - wx; dest[6] = xz - wy; dest[7] = yz + wx; dest[8] = 1 - (xx + yy); return dest; } /** * quat4.toMat4(quat[, dest]) -> mat4 * - quat (quat4) : quat4 to create matrix from * - dest (mat4) : optional mat4 receiving calculated values. If not specified, a new mat4 is created. * * Calculates a 4x4 matrix from the given quat4 * * Returns: * dest if specified, a new mat4 otherwise **/ quat4.toMat4 = function(quat, dest) { if(!dest) { dest = mat4.create(); } var x = quat[0], y = quat[1], z = quat[2], w = quat[3]; var x2 = x + x; var y2 = y + y; var z2 = z + z; var xx = x*x2; var xy = x*y2; var xz = x*z2; var yy = y*y2; var yz = y*z2; var zz = z*z2; var wx = w*x2; var wy = w*y2; var wz = w*z2; dest[0] = 1 - (yy + zz); dest[1] = xy - wz; dest[2] = xz + wy; dest[3] = 0; dest[4] = xy + wz; dest[5] = 1 - (xx + zz); dest[6] = yz - wx; dest[7] = 0; dest[8] = xz - wy; dest[9] = yz + wx; dest[10] = 1 - (xx + yy); dest[11] = 0; dest[12] = 0; dest[13] = 0; dest[14] = 0; dest[15] = 1; return dest; } /** * quat4.slerp(quat, quat2, lerp[, dest]) -> quat4 * - quat (quat4) : first quarternion * - quat2 (quat4) : second quaternion * - lerp (Number) : interpolation amount between the two inputs * - dest (quat4) : optional quat4 receiving calculated values. If not specified, result is written to +quat+. * * Performs a spherical linear interpolation between two quat4 * * Returns: * dest if specified, quat otherwise **/ quat4.slerp = function(quat, quat2, lerp, dest) { if(!dest) { dest = quat; } var eps_lerp = lerp; var dot = quat[0]*quat2[0] + quat[1]*quat2[1] + quat[2]*quat2[2] + quat[3]*quat2[3]; if (dot < 0.0) { eps_lerp = -1.0 * lerp; } dest[0] = 1.0 - lerp * quat[0] + eps_lerp * quat2[0]; dest[1] = 1.0 - lerp * quat[1] + eps_lerp * quat2[1]; dest[2] = 1.0 - lerp * quat[2] + eps_lerp * quat2[2]; dest[3] = 1.0 - lerp * quat[3] + eps_lerp * quat2[3]; return dest; } /** * quat4.str(quat) -> String * - quat (quat4) : quat4 to represent as a string * * Returns a string representation of a quaternion * * Returns: * string representation of quat **/ quat4.str = function(quat) { return '[' + quat[0] + ', ' + quat[1] + ', ' + quat[2] + ', ' + quat[3] + ']'; }