/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Patrick Pekczynski * * Contributing authors: * Christian Schulte * Guido Tack * * Copyright: * Patrick Pekczynski, 2004 * Christian Schulte, 2009 * Guido Tack, 2009 * * Last modified: * $Date: 2010-05-11 18:57:01 +1000 (Tue, 11 May 2010) $ by $Author: tack $ * $Revision: 10935 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ namespace Gecode { namespace Int { namespace GCC { /* * Analogously to "gcc/bnd.hpp" we split the algorithm * in two parts: * 1) the UBC (Upper Bound Constraint) stating that there are * at most k[i].max() occurences of the value v_i * 2) the LBC (Lower Bound Constraint) stating that there are * at least k[i].min() occurences of the value v_i * * The algorithm proceeds in 5 STEPS: * * STEP 1: * Build the bipartite value-graph G=(,E), * with X = all variable nodes (each variable forms a node) * D = all value nodes (union over all domains of the variables) * and (x_i,v) is an edge in G iff value v is in the domain D_i of x_i * * STEP 2: Compute a matching in the value graph. * STEP 3: Compute all even alternating paths from unmatched nodes * STEP 4: Compute strongly connected components in the merged graph * STEP 5: Update the Domains according to the computed edges * */ template inline Dom::Dom(Home home, ViewArray& x0, ViewArray& k0, bool cf) : Propagator(home), x(x0), y(home, x0), k(k0), vvg(NULL), card_fixed(cf){ // y is used for bounds propagation since prop_bnd needs all variables // values within the domain bounds x.subscribe(home, *this, PC_INT_DOM); k.subscribe(home, *this, PC_INT_DOM); } template forceinline Dom::Dom(Space& home, bool share, Dom& p) : Propagator(home, share, p), vvg(NULL), card_fixed(p.card_fixed) { x.update(home, share, p.x); y.update(home, share, p.y); k.update(home, share, p.k); } template forceinline size_t Dom::dispose(Space& home) { x.cancel(home,*this, PC_INT_DOM); k.cancel(home,*this, PC_INT_DOM); (void) Propagator::dispose(home); return sizeof(*this); } template Actor* Dom::copy(Space& home, bool share) { return new (home) Dom(home, share, *this); } template PropCost Dom::cost(const Space&, const ModEventDelta&) const { return PropCost::cubic(PropCost::LO, x.size()); } template ExecStatus Dom::propagate(Space& home, const ModEventDelta&) { Region r(home); int* count = r.alloc(k.size()); for (int i = k.size(); i--; ) count[i] = 0; // total number of assigned views int noa = 0; for (int i = y.size(); i--; ) if (y[i].assigned()) { noa++; int idx; if (!lookupValue(k,y[i].val(),idx)) return ES_FAILED; count[idx]++; if (Card::propagate && (k[idx].max() == 0)) return ES_FAILED; } if (noa == y.size()) { // All views are assigned for (int i = k.size(); i--; ) { if ((k[i].min() > count[i]) || (count[i] > k[i].max())) return ES_FAILED; // the solution contains ci occurences of value k[i].card(); if (Card::propagate) GECODE_ME_CHECK(k[i].eq(home, count[i])); } return home.ES_SUBSUMED(*this); } // before propagation performs inferences on cardinality variables: if (Card::propagate) { if (noa > 0) for (int i = k.size(); i--; ) if (!k[i].assigned()) { GECODE_ME_CHECK(k[i].lq(home, y.size() - (noa - count[i]))); GECODE_ME_CHECK(k[i].gq(home, count[i])); } GECODE_ES_CHECK(prop_card(home,y,k)); if (!card_consistent(y,k)) return ES_FAILED; } if (x.size() == 0) { for (int j = k.size(); j--; ) if ((k[j].min() > k[j].counter()) || (k[j].max() < k[j].counter())) return ES_FAILED; return home.ES_SUBSUMED(*this); } else if ((x.size() == 1) && (x[0].assigned())) { int idx; if (!lookupValue(k,x[0].val(),idx)) return ES_FAILED; GECODE_ME_CHECK(k[idx].inc()); for (int j = k.size(); j--; ) if ((k[j].min() > k[j].counter()) || (k[j].max() < k[j].counter())) return ES_FAILED; return home.ES_SUBSUMED(*this); } if (vvg == NULL) { int smin = 0; int smax = 0; for (int i=k.size(); i--; ) if (k[i].counter() > k[i].max() ) { return ES_FAILED; } else { smax += (k[i].max() - k[i].counter()); if (k[i].counter() < k[i].min()) smin += (k[i].min() - k[i].counter()); } if ((x.size() < smin) || (smax < x.size())) return ES_FAILED; vvg = new (home) VarValGraph(home, x, k, smin, smax); GECODE_ES_CHECK(vvg->min_require(home,x,k)); GECODE_ES_CHECK(vvg->template maximum_matching(home)); if (!card_fixed) GECODE_ES_CHECK(vvg->template maximum_matching(home)); } else { GECODE_ES_CHECK(vvg->sync(home,x,k)); } vvg->template free_alternating_paths(home); vvg->template strongly_connected_components(home); GECODE_ES_CHECK(vvg->template narrow(home,x,k)); if (!card_fixed) { if (Card::propagate) GECODE_ES_CHECK(vvg->sync(home,x,k)); vvg->template free_alternating_paths(home); vvg->template strongly_connected_components(home); GECODE_ES_CHECK(vvg->template narrow(home,x,k)); } { bool card_assigned = true; if (Card::propagate) { GECODE_ES_CHECK(prop_card(home, y, k)); card_assigned = k.assigned(); } if (card_assigned) { if (x.size() == 0) { for (int j=k.size(); j--; ) if ((k[j].min() > k[j].counter()) || (k[j].max() < k[j].counter())) return ES_FAILED; return home.ES_SUBSUMED(*this); } else if ((x.size() == 1) && x[0].assigned()) { int idx; if (!lookupValue(k,x[0].val(),idx)) return ES_FAILED; GECODE_ME_CHECK(k[idx].inc()); for (int j = k.size(); j--; ) if ((k[j].min() > k[j].counter()) || (k[j].max() < k[j].counter())) return ES_FAILED; return home.ES_SUBSUMED(*this); } } } for (int i = k.size(); i--; ) count[i] = 0; bool all_assigned = true; // total number of assigned views for (int i = y.size(); i--; ) if (y[i].assigned()) { int idx; if (!lookupValue(k,y[i].val(),idx)) return ES_FAILED; count[idx]++; if (Card::propagate && (k[idx].max() == 0)) return ES_FAILED; } else { all_assigned = false; } if (Card::propagate) GECODE_ES_CHECK(prop_card(home, y, k)); if (all_assigned) { for (int i = k.size(); i--; ) { if ((k[i].min() > count[i]) || (count[i] > k[i].max())) return ES_FAILED; // the solution contains count[i] occurences of value k[i].card(); if (Card::propagate) GECODE_ME_CHECK(k[i].eq(home,count[i])); } return home.ES_SUBSUMED(*this); } if (Card::propagate) { int ysmax = y.size(); for (int i=k.size(); i--; ) ysmax -= k[i].max(); int smax = 0; bool card_ass = true; for (int i = k.size(); i--; ) { GECODE_ME_CHECK(k[i].gq(home, ysmax + k[i].max())); smax += k[i].max(); GECODE_ME_CHECK(k[i].lq(home, y.size() + k[i].min())); if (!k[i].assigned()) card_ass = false; } if (card_ass && (smax != y.size())) return ES_FAILED; } return Card::propagate ? ES_NOFIX : ES_FIX; } template inline ExecStatus Dom::post(Home home, ViewArray& x, ViewArray& k) { GECODE_ES_CHECK((postSideConstraints(home,x,k))); if (isDistinct(home, x, k)) return Distinct::Dom::post(home,x); bool cardfix = true; for (int i = k.size(); i--; ) if (!k[i].assigned()) { cardfix = false; break; } (void) new (home) Dom(home,x,k,cardfix); return ES_OK; } }}} // STATISTICS: int-prop