[![Gem Version](https://badge.fury.io/rb/metka.svg)](https://badge.fury.io/rb/metka) [![Build Status](https://github.com/jetrockets/metka/workflows/Build/badge.svg?branch=master)](https://github.com/jetrockets/metka/actions) [![Open Source Helpers](https://www.codetriage.com/jetrockets/metka/badges/users.svg)](https://www.codetriage.com/jetrockets/metka) # Metka Rails gem to manage tags with PostgreSQL array columns. :exclamation: Requirements: * Ruby ~> 2.5 * Rails >= 5.2 (for Rails 5.1 and 5.0 use version <2.1.0) ## Installation Add this line to your application's Gemfile: ```ruby gem 'metka' ``` And then execute: ```bash bundle ``` Or install it yourself as: ```bash gem install metka ``` ## Tag objects ```bash rails g migration CreateSongs ``` ```ruby class CreateSongs < ActiveRecord::Migration[5.0] def change create_table :songs do |t| t.string :title t.string :tags, array: true, default: [], index: { using: :gin } t.string :genres, array: true, default: [], index: { using: :gin } t.timestamps end end end ``` ```ruby class Song < ActiveRecord::Base include Metka::Model(columns: %w[genres tags]) end @song = Song.new(title: 'Migrate tags in Rails to PostgreSQL') @song.tag_list = 'top, chill' @song.genre_list = 'rock, jazz, pop' @song.save ``` ## Find tagged objects ### .with_all_#{column_name} ```ruby Song.with_all_tags('top') #=> [# [] Song.with_all_tags('') #=> [] Song.with_all_genres('rock') #=> [# [# [# [] Song.with_any_genres('rock, rap') #=> [# [] Song.without_all_tags('top, 1990') #=> [# [] Song.without_all_genres('rock, pop') #=> [# [] ``` ### .without_any_#{column_name} ```ruby Song.without_any_tags('top, 1990') #=> [] Song.without_any_tags('1990, 1980') #=> [# [] Song.without_any_genres('') #=> [] ``` ### .tagged_with ```ruby Song.tagged_with('top') #=> [# [] Song.tagged_with('') #=> [] Song.tagged_with('rock') #=> [# [] Song.tagged_with('chill', any: true) #=> [# [# [] Song.tagged_with('rock, rap', any: true, on: ['genres']) #=> [# [] Song.tagged_with('top, 1990', exclude: true) #=> [# [] Song.tagged_with('top, 1990', any: true, exclude: true) #=> [] Song.tagged_with('1990, 1980', any: true, exclude: true) #=> [# [] ``` ## Custom delimiter By default, a comma is used as a delimiter to create tags from a string. You can make your own custom separator: ```ruby Metka.config.delimiter = '|' parsed_data = Metka::GenericParser.instance.call('cool, data|I have') parsed_data.to_a #=>['cool, data', 'I have'] ``` ## Tags with quote ```ruby parsed_data = Metka::GenericParser.instance.call("'cool, data', code") parsed_data.to_a #=> ['cool, data', 'code'] ``` ## Custom parser By default we use [generic_parser](lib/metka/generic_parser.rb "generic_parser") If you want to use your custom parser you can do: ```ruby class Song < ActiveRecord::Base include Metka::Model(columns: %w[genres tags], parser: Your::Custom::Parser.instance) end ``` Custom parser must be a singleton class that has a `.call` method that accepts the tag string ## Tag Cloud Strategies There are several strategies to get tag statistics ### ActiveRecord Strategy (Default) Data about taggings is accessible via class methods of your model with `Metka::Model` attached. You can calculate a cloud for a single tagged column or multiple columns, the latter case would return to you a sum of taggings from multiple tagged columns, that are provided as arguments, for each tag present. ActiveRecord Strategy is an easiest way to implement, since it wouldn't require any additional code, but it's the slowest one on SELECT. ```ruby class Book < ActiveRecord::Base include Metka::Model(column: 'authors') include Metka::Model(column: 'co_authors') end tag_cloud = Book.author_cloud #=> [["L.N. Tolstoy", 3], ["F.M. Dostoevsky", 6]] genre_cloud = Book.co_author_cloud #=> [["A.P. Chekhov", 5], ["N.V. Gogol", 8], ["L.N. Tolstoy", 2]] summary_cloud = Book.metka_cloud('authors', 'co_authors') #=> [["L.N. Tolstoy", 5], ["F.M. Dostoevsky", 6], ["A.P. Chekhov", 5], ["N.V. Gogol", 8]] ``` ### View Strategy Data about taggings will be aggregated in SQL View. Performance-wise that strategy has no benefits over ActiveRecord Strategy, but if you need to store tags aggregations in a distinct model, that's an easiest way to achieve it. ```bash rails g metka:strategies:view --source-table-name=NAME_OF_TABLE_WITH_TAGS [--source-columns=NAME_OF_COLUMN_1 NAME_OF_COLUMN_2] [--view-name=NAME_OF_RESULTING_VIEW] ``` The code above will generate a migration that creates view with specified `NAME_OF_RESULTING_VIEW`, that would aggregate tags data from specified array of tagged columns [`NAME_OF_COLUMN_1`, `NAME_OF_COLUMN_2`, ...], that are present within specified table `NAME_OF_TABLE_WITH_TAGS`. If `source-columns` option is not provided, then `tags` column would be used as defaults. If array of multiple values would be provided to the option, then the aggregation would be made with the tags from multiple tagged columns, so if a single tag would be found within multiple tagged columns, the resulting aggregation inside the view would have a single row for that tag with a sum of it's occurrences across all stated tagged columns. `view-name` option is also optional, it would just force the resulting view's name to the one of your choice. If it's not provided, then view name would be generated automatically, you could check it within generated migration. Lets take a look at real example. We have a `notes` table with `tags` column. | Column | Type | Default | |--------|---------------------|-----------------------------------| | id | integer | nextval('notes_id_seq'::regclass) | | body | text | | | tags | character varying[] | '{}'::character varying[] | Now lets generate a migration. ```bash rails g metka:strategies:view --source-table-name=notes ``` The result would be: ```ruby # frozen_string_literal: true class CreateTaggedNotesView < ActiveRecord::Migration[5.0] def up execute <<-SQL CREATE OR REPLACE VIEW tagged_notes AS SELECT tag_name, COUNT ( * ) AS taggings_count FROM ( SELECT UNNEST ( tags ) AS tag_name FROM view_posts ) subquery GROUP BY tag_name; SQL end def down execute <<-SQL DROP VIEW tagged_notes; SQL end end ``` Now lets take a look at `tagged_notes` view. | tag_name | taggings_count | |----------|----------------| | Ruby | 124056 | | React | 30632 | | Rails | 28696 | | Crystal | 6566 | | Elixir | 3475 | Now you can create `TaggedNote` model and work with the view like you usually do with Rails models. ### Materialized View Strategy Data about taggings will be aggregated in SQL Materialized View, that would be refreshed with the trigger on each change of the tagged column's data. Except for the another type of view being used, that strategy behaves the same way, as a View Strategy above. ```bash rails g metka:strategies:materialized_view --source-table-name=NAME_OF_TABLE_WITH_TAGS --source-columns=NAME_OF_COLUMN_1 NAME_OF_COLUMN_2 --view-name=NAME_OF_RESULTING_VIEW ``` All of the options for that strategy's generation command are the same as for the View Strategy. The migration template can be seen [here](spec/dummy/db/migrate/06_create_tagged_materialized_view_posts_materialized_view.rb "here") With the same `notes` table with `tags` column the resulting view would have the same two columns | tag_name | taggings_count | |----------|----------------| | Ruby | 124056 | | React | 30632 | | Rails | 28696 | | Crystal | 6566 | | Elixir | 3475 | And you can also create `TaggedNote` model to work with the view as with a Rails model. ### Table Strategy with Triggers TBD ## Inspired by 1. [ActsAsTaggableOn](https://github.com/mbleigh/acts-as-taggable-on) 2. [ActsAsTaggableArrayOn](https://github.com/tmiyamon/acts-as-taggable-array-on) 3. [TagColumns](https://github.com/hopsoft/tag_columns) ## Benchmark Comparison There are some results of benchmarking a performance of write, read and find operations for different gems, that provide solution for tagging. Keep in mind, that those results can't be used as a proof, that some solution is better than the others, since each of the benchmarked gems has their unique features. You could run the benchmarks yourself or check, what exact operations has been used for benchmarking, with [MetkaBench application](https://github.com/jetrockets/metka_bench). ```bash $ rake bench:all Deleted all MetkaSong Deleted all ActsAsTaggableOn::Tagging Deleted all ActsAsTaggableOn::Tag Deleted all ActsAsTaggableSong Deleted all ActsAsTaggableArraySong Deleted all TagColumnsSong Finished to clean ################################################################### bench:write Time measurements: Rehearsal ---------------------------------------------------------- Metka: 2.192410 0.161092 2.353502 ( 2.754766) ActsAsTaggableOn: 13.769918 0.554951 14.324869 ( 16.990127) ActsAsTaggableOnArray: 2.150441 0.154127 2.304568 ( 2.700022) TagColumns: 2.202647 0.156162 2.358809 ( 2.753400) ------------------------------------------------ total: 21.341748sec user system total real Metka: 2.137315 0.154046 2.291361 ( 2.643363) ActsAsTaggableOn: 11.302848 0.448674 11.751522 ( 14.019458) ActsAsTaggableOnArray: 2.143134 0.128655 2.271789 ( 2.670797) TagColumns: 2.133780 0.125749 2.259529 ( 2.653404) Memory measurements: Calculating ------------------------------------- Metka: 179.064M memsize ( 0.000 retained) 1.689M objects ( 0.000 retained) 50.000 strings ( 0.000 retained) ActsAsTaggableOn: 843.949M memsize ( 0.000 retained) 8.550M objects ( 0.000 retained) 50.000 strings ( 0.000 retained) ActsAsTaggableOnArray: 178.807M memsize ( 0.000 retained) 1.684M objects ( 0.000 retained) 50.000 strings ( 0.000 retained) TagColumns: 180.009M memsize ( 0.000 retained) 1.699M objects ( 0.000 retained) 50.000 strings ( 0.000 retained) ################################################################### bench:read Time measurements: Rehearsal ---------------------------------------------------------- Metka: 0.479695 0.044399 0.524094 ( 0.590616) ActsAsTaggableOn: 2.436328 0.140581 2.576909 ( 3.096142) ActsAsTaggableOnArray: 0.515198 0.042127 0.557325 ( 0.623205) TagColumns: 0.518363 0.042661 0.561024 ( 0.626968) ------------------------------------------------- total: 4.219352sec user system total real Metka: 0.446751 0.041886 0.488637 ( 0.554018) ActsAsTaggableOn: 2.395166 0.164500 2.559666 ( 3.069655) ActsAsTaggableOnArray: 0.439608 0.041682 0.481290 ( 0.544679) TagColumns: 0.435404 0.041623 0.477027 ( 0.540359) Memory measurements: Calculating ------------------------------------- Metka: 42.291M memsize ( 0.000 retained) 388.694k objects ( 0.000 retained) 50.000 strings ( 0.000 retained) ActsAsTaggableOn: 178.664M memsize ( 0.000 retained) 1.812M objects ( 0.000 retained) 50.000 strings ( 0.000 retained) ActsAsTaggableOnArray: 42.173M memsize ( 0.000 retained) 383.003k objects ( 0.000 retained) 50.000 strings ( 0.000 retained) TagColumns: 41.948M memsize ( 0.000 retained) 383.003k objects ( 0.000 retained) 50.000 strings ( 0.000 retained) ################################################################### bench:find_by_tag Time measurements: Rehearsal ---------------------------------------------------------- Metka: 0.029961 0.000059 0.030020 ( 0.030052) ActsAsTaggableOn: 0.067095 0.000068 0.067163 ( 0.067205) ActsAsTaggableOnArray: 0.043156 0.000133 0.043289 ( 0.043440) TagColumns: 0.056475 0.000143 0.056618 ( 0.056697) ------------------------------------------------- total: 0.197090sec user system total real Metka: 0.028291 0.000019 0.028310 ( 0.028321) ActsAsTaggableOn: 0.065925 0.000036 0.065961 ( 0.065989) ActsAsTaggableOnArray: 0.043214 0.000079 0.043293 ( 0.043361) TagColumns: 0.056390 0.000160 0.056550 ( 0.056666) Memory measurements: Calculating ------------------------------------- Metka: 4.752M memsize ( 0.000 retained) 43.000k objects ( 0.000 retained) 1.000 strings ( 0.000 retained) ActsAsTaggableOn: 8.967M memsize ( 0.000 retained) 81.002k objects ( 0.000 retained) 9.000 strings ( 0.000 retained) ActsAsTaggableOnArray: 5.211M memsize ( 0.000 retained) 57.003k objects ( 0.000 retained) 6.000 strings ( 0.000 retained) TagColumns: 6.696M memsize ( 0.000 retained) 94.003k objects ( 0.000 retained) 8.000 strings ( 0.000 retained) Finished all benchmarks ``` ## Development After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment. To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org). ## Contributing Bug reports and pull requests are welcome on GitHub at [https://github.com/jetrockets/metka](https://github.com/jetrockets/metka). This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct. ## Credits ![JetRockets](https://media.jetrockets.pro/jetrockets-white.png) Metka is maintained by [JetRockets](http://www.jetrockets.ru). ## License The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT). ## Code of Conduct Everyone interacting in the Metka project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/[USERNAME]/metka/blob/master/CODE_OF_CONDUCT.md).