;;; Continuation-passing style (CPS) intermediate language (IL) ;; Copyright (C) 2013, 2014, 2015 Free Software Foundation, Inc. ;;;; This library is free software; you can redistribute it and/or ;;;; modify it under the terms of the GNU Lesser General Public ;;;; License as published by the Free Software Foundation; either ;;;; version 3 of the License, or (at your option) any later version. ;;;; ;;;; This library is distributed in the hope that it will be useful, ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;;;; Lesser General Public License for more details. ;;;; ;;;; You should have received a copy of the GNU Lesser General Public ;;;; License along with this library; if not, write to the Free Software ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ;;; Commentary: ;;; ;;; Helper facilities for working with CPS. ;;; ;;; Code: (define-module (language cps utils) #:use-module (ice-9 match) #:use-module (srfi srfi-1) #:use-module (srfi srfi-11) #:use-module (language cps) #:use-module (language cps intset) #:use-module (language cps intmap) #:export (;; Fresh names. label-counter var-counter fresh-label fresh-var with-fresh-name-state compute-max-label-and-var let-fresh ;; Various utilities. fold1 fold2 trivial-intset intmap-map intmap-keys invert-bijection invert-partition intset->intmap worklist-fold fixpoint ;; Flow analysis. compute-constant-values compute-function-body compute-reachable-functions compute-successors invert-graph compute-predecessors compute-reverse-post-order compute-strongly-connected-components compute-sorted-strongly-connected-components compute-idoms compute-dom-edges solve-flow-equations )) (define label-counter (make-parameter #f)) (define var-counter (make-parameter #f)) (define (fresh-label) (let ((count (or (label-counter) (error "fresh-label outside with-fresh-name-state")))) (label-counter (1+ count)) count)) (define (fresh-var) (let ((count (or (var-counter) (error "fresh-var outside with-fresh-name-state")))) (var-counter (1+ count)) count)) (define-syntax-rule (let-fresh (label ...) (var ...) body ...) (let* ((label (fresh-label)) ... (var (fresh-var)) ...) body ...)) (define-syntax-rule (with-fresh-name-state fun body ...) (call-with-values (lambda () (compute-max-label-and-var fun)) (lambda (max-label max-var) (parameterize ((label-counter (1+ max-label)) (var-counter (1+ max-var))) body ...)))) (define (compute-max-label-and-var conts) (values (or (intmap-prev conts) -1) (intmap-fold (lambda (k cont max-var) (match cont (($ $kargs names syms body) (apply max max-var syms)) (($ $kfun src meta self) (max max-var self)) (_ max-var))) conts -1))) (define-inlinable (fold1 f l s0) (let lp ((l l) (s0 s0)) (match l (() s0) ((elt . l) (lp l (f elt s0)))))) (define-inlinable (fold2 f l s0 s1) (let lp ((l l) (s0 s0) (s1 s1)) (match l (() (values s0 s1)) ((elt . l) (call-with-values (lambda () (f elt s0 s1)) (lambda (s0 s1) (lp l s0 s1))))))) (define (trivial-intset set) "Returns the sole member of @var{set}, if @var{set} has exactly one member, or @code{#f} otherwise." (let ((first (intset-next set))) (and first (not (intset-next set (1+ first))) first))) (define (intmap-map proc map) (persistent-intmap (intmap-fold (lambda (k v out) (intmap-add! out k (proc k v))) map empty-intmap))) (define (intmap-keys map) "Return an intset of the keys in @var{map}." (persistent-intset (intmap-fold (lambda (k v keys) (intset-add! keys k)) map empty-intset))) (define (invert-bijection map) "Assuming the values of @var{map} are integers and are unique, compute a map in which each value maps to its key. If the values are not unique, an error will be signalled." (intmap-fold (lambda (k v out) (intmap-add out v k)) map empty-intmap)) (define (invert-partition map) "Assuming the values of @var{map} are disjoint intsets, compute a map in which each member of each set maps to its key. If the values are not disjoint, an error will be signalled." (intmap-fold (lambda (k v* out) (intset-fold (lambda (v out) (intmap-add out v k)) v* out)) map empty-intmap)) (define (intset->intmap f set) (persistent-intmap (intset-fold (lambda (label preds) (intmap-add! preds label (f label))) set empty-intmap))) (define worklist-fold (case-lambda ((f in out) (let lp ((in in) (out out)) (if (eq? in empty-intset) out (call-with-values (lambda () (f in out)) lp)))) ((f in out0 out1) (let lp ((in in) (out0 out0) (out1 out1)) (if (eq? in empty-intset) (values out0 out1) (call-with-values (lambda () (f in out0 out1)) lp)))))) (define fixpoint (case-lambda ((f x) (let lp ((x x)) (let ((x* (f x))) (if (eq? x x*) x* (lp x*))))) ((f x0 x1) (let lp ((x0 x0) (x1 x1)) (call-with-values (lambda () (f x0 x1)) (lambda (x0* x1*) (if (and (eq? x0 x0*) (eq? x1 x1*)) (values x0* x1*) (lp x0* x1*)))))))) (define (compute-defining-expressions conts) (define (meet-defining-expressions old new) ;; If there are multiple definitions and they are different, punt ;; and record #f. (if (equal? old new) old #f)) (persistent-intmap (intmap-fold (lambda (label cont defs) (match cont (($ $kargs _ _ ($ $continue k src exp)) (match (intmap-ref conts k) (($ $kargs (_) (var)) (intmap-add! defs var exp meet-defining-expressions)) (_ defs))) (_ defs))) conts empty-intmap))) (define (compute-constant-values conts) (let ((defs (compute-defining-expressions conts))) (persistent-intmap (intmap-fold (lambda (var exp out) (match exp (($ $primcall (or 'load-f64 'load-u64 'load-s64) (val)) (intmap-add! out var (intmap-ref out val))) ;; Punch through type conversions to allow uadd to specialize ;; to uadd/immediate. (($ $primcall 'scm->f64 (val)) (let ((f64 (intmap-ref out val (lambda (_) #f)))) (if (and f64 (number? f64) (inexact? f64) (real? f64)) (intmap-add! out var f64) out))) (($ $primcall (or 'scm->u64 'scm->u64/truncate) (val)) (let ((u64 (intmap-ref out val (lambda (_) #f)))) (if (and u64 (number? u64) (exact-integer? u64) (<= 0 u64 #xffffFFFFffffFFFF)) (intmap-add! out var u64) out))) (($ $primcall 'scm->s64 (val)) (let ((s64 (intmap-ref out val (lambda (_) #f)))) (if (and s64 (number? s64) (exact-integer? s64) (<= (- #x8000000000000000) s64 #x7fffFFFFffffFFFF)) (intmap-add! out var s64) out))) (_ out))) defs (intmap-fold (lambda (var exp out) (match exp (($ $const val) (intmap-add! out var val)) (_ out))) defs empty-intmap))))) (define (compute-function-body conts kfun) (persistent-intset (let visit-cont ((label kfun) (labels empty-intset)) (cond ((intset-ref labels label) labels) (else (let ((labels (intset-add! labels label))) (match (intmap-ref conts label) (($ $kreceive arity k) (visit-cont k labels)) (($ $kfun src meta self ktail kclause) (let ((labels (visit-cont ktail labels))) (if kclause (visit-cont kclause labels) labels))) (($ $ktail) labels) (($ $kclause arity kbody kalt) (if kalt (visit-cont kalt (visit-cont kbody labels)) (visit-cont kbody labels))) (($ $kargs names syms ($ $continue k src exp)) (visit-cont k (match exp (($ $branch k) (visit-cont k labels)) (($ $prompt escape? tag k) (visit-cont k labels)) (_ labels))))))))))) (define* (compute-reachable-functions conts #:optional (kfun 0)) "Compute a mapping LABEL->LABEL..., where each key is a reachable $kfun and each associated value is the body of the function, as an intset." (define (intset-cons i set) (intset-add set i)) (define (visit-fun kfun body to-visit) (intset-fold (lambda (label to-visit) (define (return kfun*) (fold intset-cons to-visit kfun*)) (define (return1 kfun) (intset-add to-visit kfun)) (define (return0) to-visit) (match (intmap-ref conts label) (($ $kargs _ _ ($ $continue _ _ exp)) (match exp (($ $fun label) (return1 label)) (($ $rec _ _ (($ $fun labels) ...)) (return labels)) (($ $closure label nfree) (return1 label)) (($ $callk label) (return1 label)) (_ (return0)))) (_ (return0)))) body to-visit)) (let lp ((to-visit (intset kfun)) (visited empty-intmap)) (let ((to-visit (intset-subtract to-visit (intmap-keys visited)))) (if (eq? to-visit empty-intset) visited (call-with-values (lambda () (intset-fold (lambda (kfun to-visit visited) (let ((body (compute-function-body conts kfun))) (values (visit-fun kfun body to-visit) (intmap-add visited kfun body)))) to-visit empty-intset visited)) lp))))) (define* (compute-successors conts #:optional (kfun (intmap-next conts))) (define (visit label succs) (let visit ((label kfun) (succs empty-intmap)) (define (propagate0) (intmap-add! succs label empty-intset)) (define (propagate1 succ) (visit succ (intmap-add! succs label (intset succ)))) (define (propagate2 succ0 succ1) (let ((succs (intmap-add! succs label (intset succ0 succ1)))) (visit succ1 (visit succ0 succs)))) (if (intmap-ref succs label (lambda (_) #f)) succs (match (intmap-ref conts label) (($ $kargs names vars ($ $continue k src exp)) (match exp (($ $branch kt) (propagate2 k kt)) (($ $prompt escape? tag handler) (propagate2 k handler)) (_ (propagate1 k)))) (($ $kreceive arity k) (propagate1 k)) (($ $kfun src meta self tail clause) (if clause (propagate2 clause tail) (propagate1 tail))) (($ $kclause arity kbody kalt) (if kalt (propagate2 kbody kalt) (propagate1 kbody))) (($ $ktail) (propagate0)))))) (persistent-intmap (visit kfun empty-intmap))) (define* (compute-predecessors conts kfun #:key (labels (compute-function-body conts kfun))) (define (meet cdr car) (cons car cdr)) (define (add-preds label preds) (define (add-pred k preds) (intmap-add! preds k label meet)) (match (intmap-ref conts label) (($ $kreceive arity k) (add-pred k preds)) (($ $kfun src meta self ktail kclause) (add-pred ktail (if kclause (add-pred kclause preds) preds))) (($ $ktail) preds) (($ $kclause arity kbody kalt) (add-pred kbody (if kalt (add-pred kalt preds) preds))) (($ $kargs names syms ($ $continue k src exp)) (add-pred k (match exp (($ $branch k) (add-pred k preds)) (($ $prompt _ _ k) (add-pred k preds)) (_ preds)))))) (persistent-intmap (intset-fold add-preds labels (intset->intmap (lambda (label) '()) labels)))) (define (compute-reverse-post-order succs start) "Compute a reverse post-order numbering for a depth-first walk over nodes reachable from the start node." (let visit ((label start) (order '()) (visited empty-intset)) (call-with-values (lambda () (intset-fold (lambda (succ order visited) (if (intset-ref visited succ) (values order visited) (visit succ order visited))) (intmap-ref succs label) order (intset-add! visited label))) (lambda (order visited) ;; After visiting successors, add label to the reverse post-order. (values (cons label order) visited))))) (define (invert-graph succs) "Given a graph PRED->SUCC..., where PRED is a label and SUCC... is an intset of successors, return a graph SUCC->PRED...." (intmap-fold (lambda (pred succs preds) (intset-fold (lambda (succ preds) (intmap-add preds succ pred intset-add)) succs preds)) succs (intmap-map (lambda (label _) empty-intset) succs))) (define (compute-strongly-connected-components succs start) "Given a LABEL->SUCCESSOR... graph, compute a SCC->LABEL... map partitioning the labels into strongly connected components (SCCs)." (let ((preds (invert-graph succs))) (define (visit-scc scc sccs-by-label) (let visit ((label scc) (sccs-by-label sccs-by-label)) (if (intmap-ref sccs-by-label label (lambda (_) #f)) sccs-by-label (intset-fold visit (intmap-ref preds label) (intmap-add sccs-by-label label scc))))) (intmap-fold (lambda (label scc sccs) (let ((labels (intset-add empty-intset label))) (intmap-add sccs scc labels intset-union))) (fold visit-scc empty-intmap (compute-reverse-post-order succs start)) empty-intmap))) (define (compute-sorted-strongly-connected-components edges) "Given a LABEL->SUCCESSOR... graph, return a list of strongly connected components in sorted order." (define nodes (intmap-keys edges)) ;; Add a "start" node that links to all nodes in the graph, and then ;; remove it from the result. (define start (if (eq? nodes empty-intset) 0 (1+ (intset-prev nodes)))) (define components (intmap-remove (compute-strongly-connected-components (intmap-add edges start nodes) start) start)) (define node-components (intmap-fold (lambda (id nodes out) (intset-fold (lambda (node out) (intmap-add out node id)) nodes out)) components empty-intmap)) (define (node-component node) (intmap-ref node-components node)) (define (component-successors id nodes) (intset-remove (intset-fold (lambda (node out) (intset-fold (lambda (successor out) (intset-add out (node-component successor))) (intmap-ref edges node) out)) nodes empty-intset) id)) (define component-edges (intmap-map component-successors components)) (define preds (invert-graph component-edges)) (define roots (intmap-fold (lambda (id succs out) (if (eq? empty-intset succs) (intset-add out id) out)) component-edges empty-intset)) ;; As above, add a "start" node that links to the roots, and remove it ;; from the result. (match (compute-reverse-post-order (intmap-add preds start roots) start) (((? (lambda (id) (eqv? id start))) . ids) (map (lambda (id) (intmap-ref components id)) ids)))) ;; Precondition: For each function in CONTS, the continuation names are ;; topologically sorted. (define (compute-idoms conts kfun) ;; This is the iterative O(n^2) fixpoint algorithm, originally from ;; Allen and Cocke ("Graph-theoretic constructs for program flow ;; analysis", 1972). See the discussion in Cooper, Harvey, and ;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001. (let ((preds-map (compute-predecessors conts kfun))) (define (compute-idom idoms preds) (define (idom-ref label) (intmap-ref idoms label (lambda (_) #f))) (match preds (() -1) ((pred) pred) ; Shortcut. ((pred . preds) (define (common-idom d0 d1) ;; We exploit the fact that a reverse post-order is a ;; topological sort, and so the idom of a node is always ;; numerically less than the node itself. (let lp ((d0 d0) (d1 d1)) (cond ;; d0 or d1 can be false on the first iteration. ((not d0) d1) ((not d1) d0) ((= d0 d1) d0) ((< d0 d1) (lp d0 (idom-ref d1))) (else (lp (idom-ref d0) d1))))) (fold1 common-idom preds pred)))) (define (adjoin-idom label preds idoms) (let ((idom (compute-idom idoms preds))) ;; Don't use intmap-add! here. (intmap-add idoms label idom (lambda (old new) new)))) (fixpoint (lambda (idoms) (intmap-fold adjoin-idom preds-map idoms)) empty-intmap))) ;; Compute a vector containing, for each node, a list of the nodes that ;; it immediately dominates. These are the "D" edges in the DJ tree. (define (compute-dom-edges idoms) (define (snoc cdr car) (cons car cdr)) (persistent-intmap (intmap-fold (lambda (label idom doms) (let ((doms (intmap-add! doms label '()))) (cond ((< idom 0) doms) ;; No edge to entry. (else (intmap-add! doms idom label snoc))))) idoms empty-intmap))) (define (intset-pop set) (match (intset-next set) (#f (values set #f)) (i (values (intset-remove set i) i)))) (define* (solve-flow-equations succs in out kill gen subtract add meet #:optional (worklist (intmap-keys succs))) "Find a fixed point for flow equations for SUCCS, where INIT is the initial state at each node in SUCCS. KILL and GEN are intmaps indicating the state that is killed or defined at every node, and SUBTRACT, ADD, and MEET operates on that state." (define (visit label in out) (let* ((in-1 (intmap-ref in label)) (kill-1 (intmap-ref kill label)) (gen-1 (intmap-ref gen label)) (out-1 (intmap-ref out label)) (out-1* (add (subtract in-1 kill-1) gen-1))) (if (eq? out-1 out-1*) (values empty-intset in out) (let ((out (intmap-replace! out label out-1*))) (call-with-values (lambda () (intset-fold (lambda (succ in changed) (let* ((in-1 (intmap-ref in succ)) (in-1* (meet in-1 out-1*))) (if (eq? in-1 in-1*) (values in changed) (values (intmap-replace! in succ in-1*) (intset-add changed succ))))) (intmap-ref succs label) in empty-intset)) (lambda (in changed) (values changed in out))))))) (let run ((worklist worklist) (in in) (out out)) (call-with-values (lambda () (intset-pop worklist)) (lambda (worklist popped) (if popped (call-with-values (lambda () (visit popped in out)) (lambda (changed in out) (run (intset-union worklist changed) in out))) (values (persistent-intmap in) (persistent-intmap out)))))))