//! Implementation of a vanilla ABI, shared between several machines. The //! implementation here assumes that arguments will be passed in registers //! first, then additional args on the stack; that the stack grows downward, //! contains a standard frame (return address and frame pointer), and the //! compiler is otherwise free to allocate space below that with its choice of //! layout; and that the machine has some notion of caller- and callee-save //! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this //! mold and thus both of these backends use this shared implementation. //! //! See the documentation in specific machine backends for the "instantiation" //! of this generic ABI, i.e., which registers are caller/callee-save, arguments //! and return values, and any other special requirements. //! //! For now the implementation here assumes a 64-bit machine, but we intend to //! make this 32/64-bit-generic shortly. //! //! # Vanilla ABI //! //! First, arguments and return values are passed in registers up to a certain //! fixed count, after which they overflow onto the stack. Multiple return //! values either fit in registers, or are returned in a separate return-value //! area on the stack, given by a hidden extra parameter. //! //! Note that the exact stack layout is up to us. We settled on the //! below design based on several requirements. In particular, we need //! to be able to generate instructions (or instruction sequences) to //! access arguments, stack slots, and spill slots before we know how //! many spill slots or clobber-saves there will be, because of our //! pass structure. We also prefer positive offsets to negative //! offsets because of an asymmetry in some machines' addressing modes //! (e.g., on AArch64, positive offsets have a larger possible range //! without a long-form sequence to synthesize an arbitrary //! offset). We also need clobber-save registers to be "near" the //! frame pointer: Windows unwind information requires it to be within //! 240 bytes of RBP. Finally, it is not allowed to access memory //! below the current SP value. //! //! We assume that a prologue first pushes the frame pointer (and //! return address above that, if the machine does not do that in //! hardware). We set FP to point to this two-word frame record. We //! store all other frame slots below this two-word frame record, as //! well as enough space for arguments to the largest possible //! function call. The stack pointer then remains at this position //! for the duration of the function, allowing us to address all //! frame storage at positive offsets from SP. //! //! Note that if we ever support dynamic stack-space allocation (for //! `alloca`), we will need a way to reference spill slots and stack //! slots relative to a dynamic SP, because we will no longer be able //! to know a static offset from SP to the slots at any particular //! program point. Probably the best solution at that point will be to //! revert to using the frame pointer as the reference for all slots, //! to allow generating spill/reload and stackslot accesses before we //! know how large the clobber-saves will be. //! //! # Stack Layout //! //! The stack looks like: //! //! ```plain //! (high address) //! | ... | //! | caller frames | //! | ... | //! +===========================+ //! | ... | //! | stack args | //! Canonical Frame Address --> | (accessed via FP) | //! +---------------------------+ //! SP at function entry -----> | return address | //! +---------------------------+ //! FP after prologue --------> | FP (pushed by prologue) | //! +---------------------------+ ----- //! | ... | | //! | clobbered callee-saves | | //! unwind-frame base --------> | (pushed by prologue) | | //! +---------------------------+ ----- | //! | ... | | | //! | spill slots | | | //! | (accessed via SP) | fixed active //! | ... | frame size //! | stack slots | storage | //! | (accessed via SP) | size | //! | (alloc'd by prologue) | | | //! +---------------------------+ ----- | //! | [alignment as needed] | | //! | ... | | //! | args for largest call | | //! SP -----------------------> | (alloc'd by prologue) | | //! +===========================+ ----- //! //! (low address) //! ``` //! //! # Multi-value Returns //! //! We support multi-value returns by using multiple return-value //! registers. In some cases this is an extension of the base system //! ABI. See each platform's `abi.rs` implementation for details. use crate::entity::SecondaryMap; use crate::ir::types::*; use crate::ir::{ArgumentExtension, ArgumentPurpose, Signature}; use crate::isa::TargetIsa; use crate::settings::ProbestackStrategy; use crate::CodegenError; use crate::{ir, isa}; use crate::{machinst::*, trace}; use regalloc2::{MachineEnv, PReg, PRegSet}; use rustc_hash::FxHashMap; use smallvec::smallvec; use std::collections::HashMap; use std::marker::PhantomData; use std::mem; /// A small vector of instructions (with some reasonable size); appropriate for /// a small fixed sequence implementing one operation. pub type SmallInstVec = SmallVec<[I; 4]>; /// A type used by backends to track argument-binding info in the "args" /// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs. #[derive(Clone, Debug)] pub struct ArgPair { /// The vreg that is defined by this args pseudoinst. pub vreg: Writable, /// The preg that the arg arrives in; this constrains the vreg's /// placement at the pseudoinst. pub preg: Reg, } /// A type used by backends to track return register binding info in the "ret" /// pseudoinst. The pseudoinst holds a vec of `RetPair` structs. #[derive(Clone, Debug)] pub struct RetPair { /// The vreg that is returned by this pseudionst. pub vreg: Reg, /// The preg that the arg is returned through; this constrains the vreg's /// placement at the pseudoinst. pub preg: Reg, } /// A location for (part of) an argument or return value. These "storage slots" /// are specified for each register-sized part of an argument. #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum ABIArgSlot { /// In a real register. Reg { /// Register that holds this arg. reg: RealReg, /// Value type of this arg. ty: ir::Type, /// Should this arg be zero- or sign-extended? extension: ir::ArgumentExtension, }, /// Arguments only: on stack, at given offset from SP at entry. Stack { /// Offset of this arg relative to the base of stack args. offset: i64, /// Value type of this arg. ty: ir::Type, /// Should this arg be zero- or sign-extended? extension: ir::ArgumentExtension, }, } impl ABIArgSlot { /// The type of the value that will be stored in this slot. pub fn get_type(&self) -> ir::Type { match self { ABIArgSlot::Reg { ty, .. } => *ty, ABIArgSlot::Stack { ty, .. } => *ty, } } } /// A vector of `ABIArgSlot`s. Inline capacity for one element because basically /// 100% of values use one slot. Only `i128`s need multiple slots, and they are /// super rare (and never happen with Wasm). pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>; /// An ABIArg is composed of one or more parts. This allows for a CLIF-level /// Value to be passed with its parts in more than one location at the ABI /// level. For example, a 128-bit integer may be passed in two 64-bit registers, /// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The /// number of "parts" should correspond to the number of registers used to store /// this type according to the machine backend. /// /// As an invariant, the `purpose` for every part must match. As a further /// invariant, a `StructArg` part cannot appear with any other part. #[derive(Clone, Debug)] pub enum ABIArg { /// Storage slots (registers or stack locations) for each part of the /// argument value. The number of slots must equal the number of register /// parts used to store a value of this type. Slots { /// Slots, one per register part. slots: ABIArgSlotVec, /// Purpose of this arg. purpose: ir::ArgumentPurpose, }, /// Structure argument. We reserve stack space for it, but the CLIF-level /// semantics are a little weird: the value passed to the call instruction, /// and received in the corresponding block param, is a *pointer*. On the /// caller side, we memcpy the data from the passed-in pointer to the stack /// area; on the callee side, we compute a pointer to this stack area and /// provide that as the argument's value. StructArg { /// Offset of this arg relative to base of stack args. offset: i64, /// Size of this arg on the stack. size: u64, /// Purpose of this arg. purpose: ir::ArgumentPurpose, }, /// Implicit argument. Similar to a StructArg, except that we have the /// target type, not a pointer type, at the CLIF-level. This argument is /// still being passed via reference implicitly. ImplicitPtrArg { /// Register or stack slot holding a pointer to the buffer. pointer: ABIArgSlot, /// Offset of the argument buffer. offset: i64, /// Type of the implicit argument. ty: Type, /// Purpose of this arg. purpose: ir::ArgumentPurpose, }, } impl ABIArg { /// Create an ABIArg from one register. pub fn reg( reg: RealReg, ty: ir::Type, extension: ir::ArgumentExtension, purpose: ir::ArgumentPurpose, ) -> ABIArg { ABIArg::Slots { slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }], purpose, } } /// Create an ABIArg from one stack slot. pub fn stack( offset: i64, ty: ir::Type, extension: ir::ArgumentExtension, purpose: ir::ArgumentPurpose, ) -> ABIArg { ABIArg::Slots { slots: smallvec![ABIArgSlot::Stack { offset, ty, extension, }], purpose, } } } /// Are we computing information about arguments or return values? Much of the /// handling is factored out into common routines; this enum allows us to /// distinguish which case we're handling. #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum ArgsOrRets { /// Arguments. Args, /// Return values. Rets, } /// Abstract location for a machine-specific ABI impl to translate into the /// appropriate addressing mode. #[derive(Clone, Copy, Debug)] pub enum StackAMode { /// Offset into the current frame's argument area. IncomingArg(i64, u32), /// Offset within the stack slots in the current frame. Slot(i64), /// Offset into the callee frame's argument area. OutgoingArg(i64), } /// Trait implemented by machine-specific backend to represent ISA flags. pub trait IsaFlags: Clone { /// Get a flag indicating whether forward-edge CFI is enabled. fn is_forward_edge_cfi_enabled(&self) -> bool { false } } /// Used as an out-parameter to accumulate a sequence of `ABIArg`s in /// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all /// `ABIArg`s in `SigSet` and exposes just the args for the current /// `compute_arg_locs` call. pub struct ArgsAccumulator<'a> { sig_set_abi_args: &'a mut Vec, start: usize, non_formal_flag: bool, } impl<'a> ArgsAccumulator<'a> { fn new(sig_set_abi_args: &'a mut Vec) -> Self { let start = sig_set_abi_args.len(); ArgsAccumulator { sig_set_abi_args, start, non_formal_flag: false, } } #[inline] pub fn push(&mut self, arg: ABIArg) { debug_assert!(!self.non_formal_flag); self.sig_set_abi_args.push(arg) } #[inline] pub fn push_non_formal(&mut self, arg: ABIArg) { self.non_formal_flag = true; self.sig_set_abi_args.push(arg) } #[inline] pub fn args(&self) -> &[ABIArg] { &self.sig_set_abi_args[self.start..] } #[inline] pub fn args_mut(&mut self) -> &mut [ABIArg] { &mut self.sig_set_abi_args[self.start..] } } /// Trait implemented by machine-specific backend to provide information about /// register assignments and to allow generating the specific instructions for /// stack loads/saves, prologues/epilogues, etc. pub trait ABIMachineSpec { /// The instruction type. type I: VCodeInst; /// The ISA flags type. type F: IsaFlags; /// This is the limit for the size of argument and return-value areas on the /// stack. We place a reasonable limit here to avoid integer overflow issues /// with 32-bit arithmetic. const STACK_ARG_RET_SIZE_LIMIT: u32; /// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture. fn word_bits() -> u32; /// Returns the number of bytes in a word. fn word_bytes() -> u32 { return Self::word_bits() / 8; } /// Returns word-size integer type. fn word_type() -> Type { match Self::word_bits() { 32 => I32, 64 => I64, _ => unreachable!(), } } /// Returns word register class. fn word_reg_class() -> RegClass { RegClass::Int } /// Returns required stack alignment in bytes. fn stack_align(call_conv: isa::CallConv) -> u32; /// Process a list of parameters or return values and allocate them to registers /// and stack slots. /// /// The argument locations should be pushed onto the given `ArgsAccumulator` /// in order. Any extra arguments added (such as return area pointers) /// should come at the end of the list so that the first N lowered /// parameters align with the N clif parameters. /// /// Returns the stack-space used (rounded up to as alignment requires), and /// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg /// that was added. fn compute_arg_locs( call_conv: isa::CallConv, flags: &settings::Flags, params: &[ir::AbiParam], args_or_rets: ArgsOrRets, add_ret_area_ptr: bool, args: ArgsAccumulator, ) -> CodegenResult<(u32, Option)>; /// Generate a load from the stack. fn gen_load_stack(mem: StackAMode, into_reg: Writable, ty: Type) -> Self::I; /// Generate a store to the stack. fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I; /// Generate a move. fn gen_move(to_reg: Writable, from_reg: Reg, ty: Type) -> Self::I; /// Generate an integer-extend operation. fn gen_extend( to_reg: Writable, from_reg: Reg, is_signed: bool, from_bits: u8, to_bits: u8, ) -> Self::I; /// Generate an "args" pseudo-instruction to capture input args in /// registers. fn gen_args(args: Vec) -> Self::I; /// Generate a "rets" pseudo-instruction that moves vregs to return /// registers. fn gen_rets(rets: Vec) -> Self::I; /// Generate an add-with-immediate. Note that even if this uses a scratch /// register, it must satisfy two requirements: /// /// - The add-imm sequence must only clobber caller-save registers that are /// not used for arguments, because it will be placed in the prologue /// before the clobbered callee-save registers are saved. /// /// - The add-imm sequence must work correctly when `from_reg` and/or /// `into_reg` are the register returned by `get_stacklimit_reg()`. fn gen_add_imm( call_conv: isa::CallConv, into_reg: Writable, from_reg: Reg, imm: u32, ) -> SmallInstVec; /// Generate a sequence that traps with a `TrapCode::StackOverflow` code if /// the stack pointer is less than the given limit register (assuming the /// stack grows downward). fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec; /// Generate an instruction to compute an address of a stack slot (FP- or /// SP-based offset). fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable) -> Self::I; /// Get a fixed register to use to compute a stack limit. This is needed for /// certain sequences generated after the register allocator has already /// run. This must satisfy two requirements: /// /// - It must be a caller-save register that is not used for arguments, /// because it will be clobbered in the prologue before the clobbered /// callee-save registers are saved. /// /// - It must be safe to pass as an argument and/or destination to /// `gen_add_imm()`. This is relevant when an addition with a large /// immediate needs its own temporary; it cannot use the same fixed /// temporary as this one. fn get_stacklimit_reg(call_conv: isa::CallConv) -> Reg; /// Generate a load to the given [base+offset] address. fn gen_load_base_offset(into_reg: Writable, base: Reg, offset: i32, ty: Type) -> Self::I; /// Generate a store from the given [base+offset] address. fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I; /// Adjust the stack pointer up or down. fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec; /// Compute a FrameLayout structure containing a sorted list of all clobbered /// registers that are callee-saved according to the ABI, as well as the sizes /// of all parts of the stack frame. The result is used to emit the prologue /// and epilogue routines. fn compute_frame_layout( call_conv: isa::CallConv, flags: &settings::Flags, sig: &Signature, regs: &[Writable], is_leaf: bool, incoming_args_size: u32, tail_args_size: u32, fixed_frame_storage_size: u32, outgoing_args_size: u32, ) -> FrameLayout; /// Generate the usual frame-setup sequence for this architecture: e.g., /// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on /// AArch64. fn gen_prologue_frame_setup( call_conv: isa::CallConv, flags: &settings::Flags, isa_flags: &Self::F, frame_layout: &FrameLayout, ) -> SmallInstVec; /// Generate the usual frame-restore sequence for this architecture. fn gen_epilogue_frame_restore( call_conv: isa::CallConv, flags: &settings::Flags, isa_flags: &Self::F, frame_layout: &FrameLayout, ) -> SmallInstVec; /// Generate a return instruction. fn gen_return( call_conv: isa::CallConv, isa_flags: &Self::F, frame_layout: &FrameLayout, ) -> SmallInstVec; /// Generate a probestack call. fn gen_probestack(insts: &mut SmallInstVec, frame_size: u32); /// Generate a inline stack probe. fn gen_inline_probestack( insts: &mut SmallInstVec, call_conv: isa::CallConv, frame_size: u32, guard_size: u32, ); /// Generate a clobber-save sequence. The implementation here should return /// a sequence of instructions that "push" or otherwise save to the stack all /// registers written/modified by the function body that are callee-saved. /// The sequence of instructions should adjust the stack pointer downward, /// and should align as necessary according to ABI requirements. fn gen_clobber_save( call_conv: isa::CallConv, flags: &settings::Flags, frame_layout: &FrameLayout, ) -> SmallVec<[Self::I; 16]>; /// Generate a clobber-restore sequence. This sequence should perform the /// opposite of the clobber-save sequence generated above, assuming that SP /// going into the sequence is at the same point that it was left when the /// clobber-save sequence finished. fn gen_clobber_restore( call_conv: isa::CallConv, flags: &settings::Flags, frame_layout: &FrameLayout, ) -> SmallVec<[Self::I; 16]>; /// Generate a call instruction/sequence. This method is provided one /// temporary register to use to synthesize the called address, if needed. fn gen_call(dest: &CallDest, tmp: Writable, info: CallInfo<()>) -> SmallVec<[Self::I; 2]>; /// Generate a memcpy invocation. Used to set up struct /// args. Takes `src`, `dst` as read-only inputs and passes a temporary /// allocator. fn gen_memcpy Writable>( call_conv: isa::CallConv, dst: Reg, src: Reg, size: usize, alloc_tmp: F, ) -> SmallVec<[Self::I; 8]>; /// Get the number of spillslots required for the given register-class. fn get_number_of_spillslots_for_value( rc: RegClass, target_vector_bytes: u32, isa_flags: &Self::F, ) -> u32; /// Get the ABI-dependent MachineEnv for managing register allocation. fn get_machine_env(flags: &settings::Flags, call_conv: isa::CallConv) -> &MachineEnv; /// Get all caller-save registers, that is, registers that we expect /// not to be saved across a call to a callee with the given ABI. fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet; /// Get the needed extension mode, given the mode attached to the argument /// in the signature and the calling convention. The input (the attribute in /// the signature) specifies what extension type should be done *if* the ABI /// requires extension to the full register; this method's return value /// indicates whether the extension actually *will* be done. fn get_ext_mode( call_conv: isa::CallConv, specified: ir::ArgumentExtension, ) -> ir::ArgumentExtension; } /// Out-of-line data for calls, to keep the size of `Inst` down. #[derive(Clone, Debug)] pub struct CallInfo { /// Receiver of this call pub dest: T, /// Register uses of this call. pub uses: CallArgList, /// Register defs of this call. pub defs: CallRetList, /// Registers clobbered by this call, as per its calling convention. pub clobbers: PRegSet, /// The calling convention of the callee. pub callee_conv: isa::CallConv, /// The calling convention of the caller. pub caller_conv: isa::CallConv, /// The number of bytes that the callee will pop from the stack for the /// caller, if any. (Used for popping stack arguments with the `tail` /// calling convention.) pub callee_pop_size: u32, } impl CallInfo { /// Creates an empty set of info with no clobbers/uses/etc with the /// specified ABI pub fn empty(dest: T, call_conv: isa::CallConv) -> CallInfo { CallInfo { dest, uses: smallvec![], defs: smallvec![], clobbers: PRegSet::empty(), caller_conv: call_conv, callee_conv: call_conv, callee_pop_size: 0, } } /// Change the `T` payload on this info to `U`. pub fn map(self, f: impl FnOnce(T) -> U) -> CallInfo { CallInfo { dest: f(self.dest), uses: self.uses, defs: self.defs, clobbers: self.clobbers, caller_conv: self.caller_conv, callee_conv: self.callee_conv, callee_pop_size: self.callee_pop_size, } } } /// The id of an ABI signature within the `SigSet`. #[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)] pub struct Sig(u32); cranelift_entity::entity_impl!(Sig); impl Sig { fn prev(self) -> Option { self.0.checked_sub(1).map(Sig) } } /// ABI information shared between body (callee) and caller. #[derive(Clone, Debug)] pub struct SigData { /// Currently both return values and arguments are stored in a continuous space vector /// in `SigSet::abi_args`. /// /// ```plain /// +----------------------------------------------+ /// | return values | /// | ... | /// rets_end --> +----------------------------------------------+ /// | arguments | /// | ... | /// args_end --> +----------------------------------------------+ /// /// ``` /// /// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end. /// /// Argument location ending offset (regs or stack slots). Stack offsets are relative to /// SP on entry to function. /// /// This is a index into the `SigSet::abi_args`. args_end: u32, /// Return-value location ending offset. Stack offsets are relative to the return-area /// pointer. /// /// This is a index into the `SigSet::abi_args`. rets_end: u32, /// Space on stack used to store arguments. We're storing the size in u32 to /// reduce the size of the struct. sized_stack_arg_space: u32, /// Space on stack used to store return values. We're storing the size in u32 to /// reduce the size of the struct. sized_stack_ret_space: u32, /// Index in `args` of the stack-return-value-area argument. stack_ret_arg: Option, /// Calling convention used. call_conv: isa::CallConv, } impl SigData { /// Get total stack space required for arguments. pub fn sized_stack_arg_space(&self) -> i64 { self.sized_stack_arg_space.into() } /// Get total stack space required for return values. pub fn sized_stack_ret_space(&self) -> i64 { self.sized_stack_ret_space.into() } /// Get calling convention used. pub fn call_conv(&self) -> isa::CallConv { self.call_conv } /// The index of the stack-return-value-area argument, if any. pub fn stack_ret_arg(&self) -> Option { self.stack_ret_arg } } /// A (mostly) deduplicated set of ABI signatures. /// /// We say "mostly" because we do not dedupe between signatures interned via /// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in /// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing /// this final bit of deduplication would require filling out the /// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the /// hash map itself but params and returns vecs in each signature) that we want /// to avoid. /// /// In general, prefer using the `ir::SigRef`-taking methods to the /// `ir::Signature`-taking methods when you can get away with it, as they don't /// require cloning non-copy types that will trigger heap allocations. /// /// This type can be indexed by `Sig` to access its associated `SigData`. pub struct SigSet { /// Interned `ir::Signature`s that we already have an ABI signature for. ir_signature_to_abi_sig: FxHashMap, /// Interned `ir::SigRef`s that we already have an ABI signature for. ir_sig_ref_to_abi_sig: SecondaryMap>, /// A single, shared allocation for all `ABIArg`s used by all /// `SigData`s. Each `SigData` references its args/rets via indices into /// this allocation. abi_args: Vec, /// The actual ABI signatures, keyed by `Sig`. sigs: PrimaryMap, } impl SigSet { /// Construct a new `SigSet`, interning all of the signatures used by the /// given function. pub fn new(func: &ir::Function, flags: &settings::Flags) -> CodegenResult where M: ABIMachineSpec, { let arg_estimate = func.dfg.signatures.len() * 6; let mut sigs = SigSet { ir_signature_to_abi_sig: FxHashMap::default(), ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()), abi_args: Vec::with_capacity(arg_estimate), sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()), }; sigs.make_abi_sig_from_ir_signature::(func.signature.clone(), flags)?; for sig_ref in func.dfg.signatures.keys() { sigs.make_abi_sig_from_ir_sig_ref::(sig_ref, &func.dfg, flags)?; } Ok(sigs) } /// Have we already interned an ABI signature for the given `ir::Signature`? pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool { self.ir_signature_to_abi_sig.contains_key(signature) } /// Construct and intern an ABI signature for the given `ir::Signature`. pub fn make_abi_sig_from_ir_signature( &mut self, signature: ir::Signature, flags: &settings::Flags, ) -> CodegenResult where M: ABIMachineSpec, { // Because the `HashMap` entry API requires taking ownership of the // lookup key -- and we want to avoid unnecessary clones of // `ir::Signature`s, even at the cost of duplicate lookups -- we can't // have a single, get-or-create-style method for interning // `ir::Signature`s into ABI signatures. So at least (debug) assert that // we aren't creating duplicate ABI signatures for the same // `ir::Signature`. debug_assert!(!self.have_abi_sig_for_signature(&signature)); let sig_data = self.from_func_sig::(&signature, flags)?; let sig = self.sigs.push(sig_data); self.ir_signature_to_abi_sig.insert(signature, sig); Ok(sig) } fn make_abi_sig_from_ir_sig_ref( &mut self, sig_ref: ir::SigRef, dfg: &ir::DataFlowGraph, flags: &settings::Flags, ) -> CodegenResult where M: ABIMachineSpec, { if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] { return Ok(sig); } let signature = &dfg.signatures[sig_ref]; let sig_data = self.from_func_sig::(signature, flags)?; let sig = self.sigs.push(sig_data); self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig); Ok(sig) } /// Get the already-interned ABI signature id for the given `ir::SigRef`. pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig { self.ir_sig_ref_to_abi_sig[sig_ref] .expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`") } /// Get the already-interned ABI signature id for the given `ir::Signature`. pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig { self.ir_signature_to_abi_sig .get(signature) .copied() .expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`") } pub fn from_func_sig( &mut self, sig: &ir::Signature, flags: &settings::Flags, ) -> CodegenResult { // Keep in sync with ensure_struct_return_ptr_is_returned if sig.uses_special_return(ArgumentPurpose::StructReturn) { panic!("Explicit StructReturn return value not allowed: {sig:?}") } let tmp; let returns = if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) { if !sig.returns.is_empty() { panic!("No return values are allowed when using StructReturn: {sig:?}"); } tmp = [sig.params[struct_ret_index]]; &tmp } else { sig.returns.as_slice() }; // Compute args and retvals from signature. Handle retvals first, // because we may need to add a return-area arg to the args. // NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in // `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two // compute_arg_locs order. let (sized_stack_ret_space, _) = M::compute_arg_locs( sig.call_conv, flags, &returns, ArgsOrRets::Rets, /* extra ret-area ptr = */ false, ArgsAccumulator::new(&mut self.abi_args), )?; if !flags.enable_multi_ret_implicit_sret() { assert_eq!(sized_stack_ret_space, 0); } let rets_end = u32::try_from(self.abi_args.len()).unwrap(); // To avoid overflow issues, limit the return size to something reasonable. if sized_stack_ret_space > M::STACK_ARG_RET_SIZE_LIMIT { return Err(CodegenError::ImplLimitExceeded); } let need_stack_return_area = sized_stack_ret_space > 0; if need_stack_return_area { assert!(!sig.uses_special_param(ir::ArgumentPurpose::StructReturn)); } let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs( sig.call_conv, flags, &sig.params, ArgsOrRets::Args, need_stack_return_area, ArgsAccumulator::new(&mut self.abi_args), )?; let args_end = u32::try_from(self.abi_args.len()).unwrap(); // To avoid overflow issues, limit the arg size to something reasonable. if sized_stack_arg_space > M::STACK_ARG_RET_SIZE_LIMIT { return Err(CodegenError::ImplLimitExceeded); } trace!( "ABISig: sig {:?} => args end = {} rets end = {} arg stack = {} ret stack = {} stack_ret_arg = {:?}", sig, args_end, rets_end, sized_stack_arg_space, sized_stack_ret_space, need_stack_return_area, ); let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap()); Ok(SigData { args_end, rets_end, sized_stack_arg_space, sized_stack_ret_space, stack_ret_arg, call_conv: sig.call_conv, }) } /// Get this signature's ABI arguments. pub fn args(&self, sig: Sig) -> &[ABIArg] { let sig_data = &self.sigs[sig]; // Please see comments in `SigSet::from_func_sig` of how we store the offsets. let start = usize::try_from(sig_data.rets_end).unwrap(); let end = usize::try_from(sig_data.args_end).unwrap(); &self.abi_args[start..end] } /// Get information specifying how to pass the implicit pointer /// to the return-value area on the stack, if required. pub fn get_ret_arg(&self, sig: Sig) -> Option { let sig_data = &self.sigs[sig]; if let Some(i) = sig_data.stack_ret_arg { Some(self.args(sig)[usize::from(i)].clone()) } else { None } } /// Get information specifying how to pass one argument. pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg { self.args(sig)[idx].clone() } /// Get this signature's ABI returns. pub fn rets(&self, sig: Sig) -> &[ABIArg] { let sig_data = &self.sigs[sig]; // Please see comments in `SigSet::from_func_sig` of how we store the offsets. let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap(); let end = usize::try_from(sig_data.rets_end).unwrap(); &self.abi_args[start..end] } /// Get information specifying how to pass one return value. pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg { self.rets(sig)[idx].clone() } /// Get the number of arguments expected. pub fn num_args(&self, sig: Sig) -> usize { let len = self.args(sig).len(); if self.sigs[sig].stack_ret_arg.is_some() { len - 1 } else { len } } /// Get the number of return values expected. pub fn num_rets(&self, sig: Sig) -> usize { self.rets(sig).len() } } // NB: we do _not_ implement `IndexMut` because these signatures are // deduplicated and shared! impl std::ops::Index for SigSet { type Output = SigData; fn index(&self, sig: Sig) -> &Self::Output { &self.sigs[sig] } } /// Structure describing the layout of a function's stack frame. #[derive(Clone, Debug, Default)] pub struct FrameLayout { /// N.B. The areas whose sizes are given in this structure fully /// cover the current function's stack frame, from high to low /// stack addresses in the sequence below. Each size contains /// any alignment padding that may be required by the ABI. /// Size of incoming arguments on the stack. This is not technically /// part of this function's frame, but code in the function will still /// need to access it. Depending on the ABI, we may need to set up a /// frame pointer to do so; we also may need to pop this area from the /// stack upon return. pub incoming_args_size: u32, /// The size of the incoming argument area, taking into account any /// potential increase in size required for tail calls present in the /// function. In the case that no tail calls are present, this value /// will be the same as [`Self::incoming_args_size`]. pub tail_args_size: u32, /// Size of the "setup area", typically holding the return address /// and/or the saved frame pointer. This may be written either during /// the call itself (e.g. a pushed return address) or by code emitted /// from gen_prologue_frame_setup. In any case, after that code has /// completed execution, the stack pointer is expected to point to the /// bottom of this area. The same holds at the start of code emitted /// by gen_epilogue_frame_restore. pub setup_area_size: u32, /// Size of the area used to save callee-saved clobbered registers. /// This area is accessed by code emitted from gen_clobber_save and /// gen_clobber_restore. pub clobber_size: u32, /// Storage allocated for the fixed part of the stack frame. /// This contains stack slots and spill slots. pub fixed_frame_storage_size: u32, /// Stack size to be reserved for outgoing arguments, if used by /// the current ABI, or 0 otherwise. After gen_clobber_save and /// before gen_clobber_restore, the stack pointer points to the /// bottom of this area. pub outgoing_args_size: u32, /// Sorted list of callee-saved registers that are clobbered /// according to the ABI. These registers will be saved and /// restored by gen_clobber_save and gen_clobber_restore. pub clobbered_callee_saves: Vec>, } impl FrameLayout { /// Split the clobbered callee-save registers into integer-class and /// float-class groups. /// /// This method does not currently support vector-class callee-save /// registers because no current backend has them. pub fn clobbered_callee_saves_by_class(&self) -> (&[Writable], &[Writable]) { let (ints, floats) = self.clobbered_callee_saves.split_at( self.clobbered_callee_saves .partition_point(|r| r.to_reg().class() == RegClass::Int), ); debug_assert!(floats.iter().all(|r| r.to_reg().class() == RegClass::Float)); (ints, floats) } /// The size of FP to SP while the frame is active (not during prologue /// setup or epilogue tear down). pub fn active_size(&self) -> u32 { self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size } /// Get the offset from the SP to the sized stack slots area. pub fn sp_to_sized_stack_slots(&self) -> u32 { self.outgoing_args_size } } /// ABI object for a function body. pub struct Callee { /// CLIF-level signature, possibly normalized. ir_sig: ir::Signature, /// Signature: arg and retval regs. sig: Sig, /// Defined dynamic types. dynamic_type_sizes: HashMap, /// Offsets to each dynamic stackslot. dynamic_stackslots: PrimaryMap, /// Offsets to each sized stackslot. sized_stackslots: PrimaryMap, /// Total stack size of all stackslots stackslots_size: u32, /// Stack size to be reserved for outgoing arguments. outgoing_args_size: u32, /// Initially the number of bytes originating in the callers frame where stack arguments will /// live. After lowering this number may be larger than the size expected by the function being /// compiled, as tail calls potentially require more space for stack arguments. tail_args_size: u32, /// Register-argument defs, to be provided to the `args` /// pseudo-inst, and pregs to constrain them to. reg_args: Vec, /// Finalized frame layout for this function. frame_layout: Option, /// The register holding the return-area pointer, if needed. ret_area_ptr: Option, /// Calling convention this function expects. call_conv: isa::CallConv, /// The settings controlling this function's compilation. flags: settings::Flags, /// The ISA-specific flag values controlling this function's compilation. isa_flags: M::F, /// Whether or not this function is a "leaf", meaning it calls no other /// functions is_leaf: bool, /// If this function has a stack limit specified, then `Reg` is where the /// stack limit will be located after the instructions specified have been /// executed. /// /// Note that this is intended for insertion into the prologue, if /// present. Also note that because the instructions here execute in the /// prologue this happens after legalization/register allocation/etc so we /// need to be extremely careful with each instruction. The instructions are /// manually register-allocated and carefully only use caller-saved /// registers and keep nothing live after this sequence of instructions. stack_limit: Option<(Reg, SmallInstVec)>, _mach: PhantomData, } fn get_special_purpose_param_register( f: &ir::Function, sigs: &SigSet, sig: Sig, purpose: ir::ArgumentPurpose, ) -> Option { let idx = f.signature.special_param_index(purpose)?; match &sigs.args(sig)[idx] { &ABIArg::Slots { ref slots, .. } => match &slots[0] { &ABIArgSlot::Reg { reg, .. } => Some(reg.into()), _ => None, }, _ => None, } } fn checked_round_up(val: u32, mask: u32) -> Option { Some(val.checked_add(mask)? & !mask) } impl Callee { /// Create a new body ABI instance. pub fn new( f: &ir::Function, isa: &dyn TargetIsa, isa_flags: &M::F, sigs: &SigSet, ) -> CodegenResult { trace!("ABI: func signature {:?}", f.signature); let flags = isa.flags().clone(); let sig = sigs.abi_sig_for_signature(&f.signature); let call_conv = f.signature.call_conv; // Only these calling conventions are supported. debug_assert!( call_conv == isa::CallConv::SystemV || call_conv == isa::CallConv::Tail || call_conv == isa::CallConv::Fast || call_conv == isa::CallConv::Cold || call_conv == isa::CallConv::WindowsFastcall || call_conv == isa::CallConv::AppleAarch64 || call_conv == isa::CallConv::Winch, "Unsupported calling convention: {call_conv:?}" ); // Compute sized stackslot locations and total stackslot size. let mut end_offset: u32 = 0; let mut sized_stackslots = PrimaryMap::new(); for (stackslot, data) in f.sized_stack_slots.iter() { // We start our computation possibly unaligned where the previous // stackslot left off. let unaligned_start_offset = end_offset; // The start of the stackslot must be aligned. // // We always at least machine-word-align slots, but also // satisfy the user's requested alignment. debug_assert!(data.align_shift < 32); let align = std::cmp::max(M::word_bytes(), 1u32 << data.align_shift); let mask = align - 1; let start_offset = checked_round_up(unaligned_start_offset, mask) .ok_or(CodegenError::ImplLimitExceeded)?; // The end offset is the the start offset increased by the size end_offset = start_offset .checked_add(data.size) .ok_or(CodegenError::ImplLimitExceeded)?; debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len()); sized_stackslots.push(start_offset); } // Compute dynamic stackslot locations and total stackslot size. let mut dynamic_stackslots = PrimaryMap::new(); for (stackslot, data) in f.dynamic_stack_slots.iter() { debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len()); // This computation is similar to the stackslots above let unaligned_start_offset = end_offset; let mask = M::word_bytes() - 1; let start_offset = checked_round_up(unaligned_start_offset, mask) .ok_or(CodegenError::ImplLimitExceeded)?; let ty = f.get_concrete_dynamic_ty(data.dyn_ty).ok_or_else(|| { CodegenError::Unsupported(format!("invalid dynamic vector type: {}", data.dyn_ty)) })?; end_offset = start_offset .checked_add(isa.dynamic_vector_bytes(ty)) .ok_or(CodegenError::ImplLimitExceeded)?; dynamic_stackslots.push(start_offset); } // The size of the stackslots needs to be word aligned let stackslots_size = checked_round_up(end_offset, M::word_bytes() - 1) .ok_or(CodegenError::ImplLimitExceeded)?; let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len()); for (dyn_ty, _data) in f.dfg.dynamic_types.iter() { let ty = f .get_concrete_dynamic_ty(dyn_ty) .unwrap_or_else(|| panic!("invalid dynamic vector type: {dyn_ty}")); let size = isa.dynamic_vector_bytes(ty); dynamic_type_sizes.insert(ty, size); } // Figure out what instructions, if any, will be needed to check the // stack limit. This can either be specified as a special-purpose // argument or as a global value which often calculates the stack limit // from the arguments. let stack_limit = f .stack_limit .map(|gv| gen_stack_limit::(f, sigs, sig, gv)); let tail_args_size = sigs[sig].sized_stack_arg_space; Ok(Self { ir_sig: ensure_struct_return_ptr_is_returned(&f.signature), sig, dynamic_stackslots, dynamic_type_sizes, sized_stackslots, stackslots_size, outgoing_args_size: 0, tail_args_size, reg_args: vec![], frame_layout: None, ret_area_ptr: None, call_conv, flags, isa_flags: isa_flags.clone(), is_leaf: f.is_leaf(), stack_limit, _mach: PhantomData, }) } /// Inserts instructions necessary for checking the stack limit into the /// prologue. /// /// This function will generate instructions necessary for perform a stack /// check at the header of a function. The stack check is intended to trap /// if the stack pointer goes below a particular threshold, preventing stack /// overflow in wasm or other code. The `stack_limit` argument here is the /// register which holds the threshold below which we're supposed to trap. /// This function is known to allocate `stack_size` bytes and we'll push /// instructions onto `insts`. /// /// Note that the instructions generated here are special because this is /// happening so late in the pipeline (e.g. after register allocation). This /// means that we need to do manual register allocation here and also be /// careful to not clobber any callee-saved or argument registers. For now /// this routine makes do with the `spilltmp_reg` as one temporary /// register, and a second register of `tmp2` which is caller-saved. This /// should be fine for us since no spills should happen in this sequence of /// instructions, so our register won't get accidentally clobbered. /// /// No values can be live after the prologue, but in this case that's ok /// because we just need to perform a stack check before progressing with /// the rest of the function. fn insert_stack_check( &self, stack_limit: Reg, stack_size: u32, insts: &mut SmallInstVec, ) { // With no explicit stack allocated we can just emit the simple check of // the stack registers against the stack limit register, and trap if // it's out of bounds. if stack_size == 0 { insts.extend(M::gen_stack_lower_bound_trap(stack_limit)); return; } // Note that the 32k stack size here is pretty special. See the // documentation in x86/abi.rs for why this is here. The general idea is // that we're protecting against overflow in the addition that happens // below. if stack_size >= 32 * 1024 { insts.extend(M::gen_stack_lower_bound_trap(stack_limit)); } // Add the `stack_size` to `stack_limit`, placing the result in // `scratch`. // // Note though that `stack_limit`'s register may be the same as // `scratch`. If our stack size doesn't fit into an immediate this // means we need a second scratch register for loading the stack size // into a register. let scratch = Writable::from_reg(M::get_stacklimit_reg(self.call_conv)); insts.extend(M::gen_add_imm(self.call_conv, scratch, stack_limit, stack_size).into_iter()); insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg())); } } /// Generates the instructions necessary for the `gv` to be materialized into a /// register. /// /// This function will return a register that will contain the result of /// evaluating `gv`. It will also return any instructions necessary to calculate /// the value of the register. /// /// Note that global values are typically lowered to instructions via the /// standard legalization pass. Unfortunately though prologue generation happens /// so late in the pipeline that we can't use these legalization passes to /// generate the instructions for `gv`. As a result we duplicate some lowering /// of `gv` here and support only some global values. This is similar to what /// the x86 backend does for now, and hopefully this can be somewhat cleaned up /// in the future too! /// /// Also note that this function will make use of `writable_spilltmp_reg()` as a /// temporary register to store values in if necessary. Currently after we write /// to this register there's guaranteed to be no spilled values between where /// it's used, because we're not participating in register allocation anyway! fn gen_stack_limit( f: &ir::Function, sigs: &SigSet, sig: Sig, gv: ir::GlobalValue, ) -> (Reg, SmallInstVec) { let mut insts = smallvec![]; let reg = generate_gv::(f, sigs, sig, gv, &mut insts); return (reg, insts); } fn generate_gv( f: &ir::Function, sigs: &SigSet, sig: Sig, gv: ir::GlobalValue, insts: &mut SmallInstVec, ) -> Reg { match f.global_values[gv] { // Return the direct register the vmcontext is in ir::GlobalValueData::VMContext => { get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext) .expect("no vmcontext parameter found") } // Load our base value into a register, then load from that register // in to a temporary register. ir::GlobalValueData::Load { base, offset, global_type: _, flags: _, } => { let base = generate_gv::(f, sigs, sig, base, insts); let into_reg = Writable::from_reg(M::get_stacklimit_reg(f.stencil.signature.call_conv)); insts.push(M::gen_load_base_offset( into_reg, base, offset.into(), M::word_type(), )); return into_reg.to_reg(); } ref other => panic!("global value for stack limit not supported: {other}"), } } /// Returns true if the signature needs to be legalized. fn missing_struct_return(sig: &ir::Signature) -> bool { sig.uses_special_param(ArgumentPurpose::StructReturn) && !sig.uses_special_return(ArgumentPurpose::StructReturn) } fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature { // Keep in sync with Callee::new let mut sig = sig.clone(); if sig.uses_special_return(ArgumentPurpose::StructReturn) { panic!("Explicit StructReturn return value not allowed: {sig:?}") } if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) { if !sig.returns.is_empty() { panic!("No return values are allowed when using StructReturn: {sig:?}"); } sig.returns.insert(0, sig.params[struct_ret_index]); } sig } /// ### Pre-Regalloc Functions /// /// These methods of `Callee` may only be called before regalloc. impl Callee { /// Access the (possibly legalized) signature. pub fn signature(&self) -> &ir::Signature { debug_assert!( !missing_struct_return(&self.ir_sig), "`Callee::ir_sig` is always legalized" ); &self.ir_sig } /// Initialize. This is called after the Callee is constructed because it /// may allocate a temp vreg, which can only be allocated once the lowering /// context exists. pub fn init_retval_area( &mut self, sigs: &SigSet, vregs: &mut VRegAllocator, ) -> CodegenResult<()> { if sigs[self.sig].stack_ret_arg.is_some() { let ret_area_ptr = vregs.alloc(M::word_type())?; self.ret_area_ptr = Some(ret_area_ptr.only_reg().unwrap()); } Ok(()) } /// Get the return area pointer register, if any. pub fn ret_area_ptr(&self) -> Option { self.ret_area_ptr } /// Accumulate outgoing arguments. /// /// This ensures that at least `size` bytes are allocated in the prologue to /// be available for use in function calls to hold arguments and/or return /// values. If this function is called multiple times, the maximum of all /// `size` values will be available. pub fn accumulate_outgoing_args_size(&mut self, size: u32) { if size > self.outgoing_args_size { self.outgoing_args_size = size; } } /// Accumulate the incoming argument area size requirements for a tail call, /// as it could be larger than the incoming arguments of the function /// currently being compiled. pub fn accumulate_tail_args_size(&mut self, size: u32) { if size > self.tail_args_size { self.tail_args_size = size; } } pub fn is_forward_edge_cfi_enabled(&self) -> bool { self.isa_flags.is_forward_edge_cfi_enabled() } /// Get the calling convention implemented by this ABI object. pub fn call_conv(&self, sigs: &SigSet) -> isa::CallConv { sigs[self.sig].call_conv } /// Get the ABI-dependent MachineEnv for managing register allocation. pub fn machine_env(&self, sigs: &SigSet) -> &MachineEnv { M::get_machine_env(&self.flags, self.call_conv(sigs)) } /// The offsets of all sized stack slots (not spill slots) for debuginfo purposes. pub fn sized_stackslot_offsets(&self) -> &PrimaryMap { &self.sized_stackslots } /// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes. pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap { &self.dynamic_stackslots } /// Generate an instruction which copies an argument to a destination /// register. pub fn gen_copy_arg_to_regs( &mut self, sigs: &SigSet, idx: usize, into_regs: ValueRegs>, vregs: &mut VRegAllocator, ) -> SmallInstVec { let mut insts = smallvec![]; let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable| { match slot { &ABIArgSlot::Reg { reg, .. } => { // Add a preg -> def pair to the eventual `args` // instruction. Extension mode doesn't matter // (we're copying out, not in; we ignore high bits // by convention). let arg = ArgPair { vreg: *into_reg, preg: reg.into(), }; self.reg_args.push(arg); } &ABIArgSlot::Stack { offset, ty, extension, .. } => { // However, we have to respect the extension mode for stack // slots, or else we grab the wrong bytes on big-endian. let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension); let ty = if ext != ArgumentExtension::None && M::word_bits() > ty_bits(ty) as u32 { M::word_type() } else { ty }; insts.push(M::gen_load_stack( StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space), *into_reg, ty, )); } } }; match &sigs.args(self.sig)[idx] { &ABIArg::Slots { ref slots, .. } => { assert_eq!(into_regs.len(), slots.len()); for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) { copy_arg_slot_to_reg(&slot, &into_reg); } } &ABIArg::StructArg { offset, .. } => { let into_reg = into_regs.only_reg().unwrap(); // Buffer address is implicitly defined by the ABI. insts.push(M::gen_get_stack_addr( StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space), into_reg, )); } &ABIArg::ImplicitPtrArg { pointer, ty, .. } => { let into_reg = into_regs.only_reg().unwrap(); // We need to dereference the pointer. let base = match &pointer { &ABIArgSlot::Reg { reg, ty, .. } => { let tmp = vregs.alloc_with_deferred_error(ty).only_reg().unwrap(); self.reg_args.push(ArgPair { vreg: Writable::from_reg(tmp), preg: reg.into(), }); tmp } &ABIArgSlot::Stack { offset, ty, .. } => { let addr_reg = writable_value_regs(vregs.alloc_with_deferred_error(ty)) .only_reg() .unwrap(); insts.push(M::gen_load_stack( StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space), addr_reg, ty, )); addr_reg.to_reg() } }; insts.push(M::gen_load_base_offset(into_reg, base, 0, ty)); } } insts } /// Generate an instruction which copies a source register to a return value slot. pub fn gen_copy_regs_to_retval( &self, sigs: &SigSet, idx: usize, from_regs: ValueRegs, vregs: &mut VRegAllocator, ) -> (SmallVec<[RetPair; 2]>, SmallInstVec) { let mut reg_pairs = smallvec![]; let mut ret = smallvec![]; let word_bits = M::word_bits() as u8; match &sigs.rets(self.sig)[idx] { &ABIArg::Slots { ref slots, .. } => { assert_eq!(from_regs.len(), slots.len()); for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) { match slot { &ABIArgSlot::Reg { reg, ty, extension, .. } => { let from_bits = ty_bits(ty) as u8; let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension); let vreg = match (ext, from_bits) { (ir::ArgumentExtension::Uext, n) | (ir::ArgumentExtension::Sext, n) if n < word_bits => { let signed = ext == ir::ArgumentExtension::Sext; let dst = writable_value_regs(vregs.alloc_with_deferred_error(ty)) .only_reg() .unwrap(); ret.push(M::gen_extend( dst, from_reg, signed, from_bits, /* to_bits = */ word_bits, )); dst.to_reg() } _ => { // No move needed, regalloc2 will emit it using the constraint // added by the RetPair. from_reg } }; reg_pairs.push(RetPair { vreg, preg: Reg::from(reg), }); } &ABIArgSlot::Stack { offset, ty, extension, .. } => { let mut ty = ty; let from_bits = ty_bits(ty) as u8; // A machine ABI implementation should ensure that stack frames // have "reasonable" size. All current ABIs for machinst // backends (aarch64 and x64) enforce a 128MB limit. let off = i32::try_from(offset).expect( "Argument stack offset greater than 2GB; should hit impl limit first", ); let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension); // Trash the from_reg; it should be its last use. match (ext, from_bits) { (ir::ArgumentExtension::Uext, n) | (ir::ArgumentExtension::Sext, n) if n < word_bits => { assert_eq!(M::word_reg_class(), from_reg.class()); let signed = ext == ir::ArgumentExtension::Sext; let dst = writable_value_regs(vregs.alloc_with_deferred_error(ty)) .only_reg() .unwrap(); ret.push(M::gen_extend( dst, from_reg, signed, from_bits, /* to_bits = */ word_bits, )); // Store the extended version. ty = M::word_type(); } _ => {} }; ret.push(M::gen_store_base_offset( self.ret_area_ptr.unwrap(), off, from_reg, ty, )); } } } } ABIArg::StructArg { .. } => { panic!("StructArg in return position is unsupported"); } ABIArg::ImplicitPtrArg { .. } => { panic!("ImplicitPtrArg in return position is unsupported"); } } (reg_pairs, ret) } /// Generate any setup instruction needed to save values to the /// return-value area. This is usually used when were are multiple return /// values or an otherwise large return value that must be passed on the /// stack; typically the ABI specifies an extra hidden argument that is a /// pointer to that memory. pub fn gen_retval_area_setup( &mut self, sigs: &SigSet, vregs: &mut VRegAllocator, ) -> Option { if let Some(i) = sigs[self.sig].stack_ret_arg { let ret_area_ptr = Writable::from_reg(self.ret_area_ptr.unwrap()); let insts = self.gen_copy_arg_to_regs(sigs, i.into(), ValueRegs::one(ret_area_ptr), vregs); insts.into_iter().next().map(|inst| { trace!( "gen_retval_area_setup: inst {:?}; ptr reg is {:?}", inst, ret_area_ptr.to_reg() ); inst }) } else { trace!("gen_retval_area_setup: not needed"); None } } /// Generate a return instruction. pub fn gen_rets(&self, rets: Vec) -> M::I { M::gen_rets(rets) } /// Produce an instruction that computes a sized stackslot address. pub fn sized_stackslot_addr( &self, slot: StackSlot, offset: u32, into_reg: Writable, ) -> M::I { // Offset from beginning of stackslot area. let stack_off = self.sized_stackslots[slot] as i64; let sp_off: i64 = stack_off + (offset as i64); M::gen_get_stack_addr(StackAMode::Slot(sp_off), into_reg) } /// Produce an instruction that computes a dynamic stackslot address. pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable) -> M::I { let stack_off = self.dynamic_stackslots[slot] as i64; M::gen_get_stack_addr(StackAMode::Slot(stack_off), into_reg) } /// Get an `args` pseudo-inst, if any, that should appear at the /// very top of the function body prior to regalloc. pub fn take_args(&mut self) -> Option { if self.reg_args.len() > 0 { // Very first instruction is an `args` pseudo-inst that // establishes live-ranges for in-register arguments and // constrains them at the start of the function to the // locations defined by the ABI. Some(M::gen_args(std::mem::take(&mut self.reg_args))) } else { None } } } /// ### Post-Regalloc Functions /// /// These methods of `Callee` may only be called after /// regalloc. impl Callee { /// Compute the final frame layout, post-regalloc. /// /// This must be called before gen_prologue or gen_epilogue. pub fn compute_frame_layout( &mut self, sigs: &SigSet, spillslots: usize, clobbered: Vec>, ) { let bytes = M::word_bytes(); let total_stacksize = self.stackslots_size + bytes * spillslots as u32; let mask = M::stack_align(self.call_conv) - 1; let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack. self.frame_layout = Some(M::compute_frame_layout( self.call_conv, &self.flags, self.signature(), &clobbered, self.is_leaf, self.stack_args_size(sigs), self.tail_args_size, total_stacksize, self.outgoing_args_size, )); } /// Generate a prologue, post-regalloc. /// /// This should include any stack frame or other setup necessary to use the /// other methods (`load_arg`, `store_retval`, and spillslot accesses.) pub fn gen_prologue(&self) -> SmallInstVec { let frame_layout = self.frame_layout(); let mut insts = smallvec![]; // Set up frame. insts.extend(M::gen_prologue_frame_setup( self.call_conv, &self.flags, &self.isa_flags, &frame_layout, )); // The stack limit check needs to cover all the stack adjustments we // might make, up to the next stack limit check in any function we // call. Since this happens after frame setup, the current function's // setup area needs to be accounted for in the caller's stack limit // check, but we need to account for any setup area that our callees // might need. Note that s390x may also use the outgoing args area for // backtrace support even in leaf functions, so that should be accounted // for unconditionally. let total_stacksize = (frame_layout.tail_args_size - frame_layout.incoming_args_size) + frame_layout.clobber_size + frame_layout.fixed_frame_storage_size + frame_layout.outgoing_args_size + if self.is_leaf { 0 } else { frame_layout.setup_area_size }; // Leaf functions with zero stack don't need a stack check if one's // specified, otherwise always insert the stack check. if total_stacksize > 0 || !self.is_leaf { if let Some((reg, stack_limit_load)) = &self.stack_limit { insts.extend(stack_limit_load.clone()); self.insert_stack_check(*reg, total_stacksize, &mut insts); } if self.flags.enable_probestack() { let guard_size = 1 << self.flags.probestack_size_log2(); match self.flags.probestack_strategy() { ProbestackStrategy::Inline => M::gen_inline_probestack( &mut insts, self.call_conv, total_stacksize, guard_size, ), ProbestackStrategy::Outline => { if total_stacksize >= guard_size { M::gen_probestack(&mut insts, total_stacksize); } } } } } // Save clobbered registers. insts.extend(M::gen_clobber_save( self.call_conv, &self.flags, &frame_layout, )); insts } /// Generate an epilogue, post-regalloc. /// /// Note that this must generate the actual return instruction (rather than /// emitting this in the lowering logic), because the epilogue code comes /// before the return and the two are likely closely related. pub fn gen_epilogue(&self) -> SmallInstVec { let frame_layout = self.frame_layout(); let mut insts = smallvec![]; // Restore clobbered registers. insts.extend(M::gen_clobber_restore( self.call_conv, &self.flags, &frame_layout, )); // Tear down frame. insts.extend(M::gen_epilogue_frame_restore( self.call_conv, &self.flags, &self.isa_flags, &frame_layout, )); // And return. insts.extend(M::gen_return( self.call_conv, &self.isa_flags, &frame_layout, )); trace!("Epilogue: {:?}", insts); insts } /// Return a reference to the computed frame layout information. This /// function will panic if it's called before [`Self::compute_frame_layout`]. pub fn frame_layout(&self) -> &FrameLayout { self.frame_layout .as_ref() .expect("frame layout not computed before prologue generation") } /// Returns the full frame size for the given function, after prologue /// emission has run. This comprises the spill slots and stack-storage /// slots as well as storage for clobbered callee-save registers, but /// not arguments arguments pushed at callsites within this function, /// or other ephemeral pushes. pub fn frame_size(&self) -> u32 { let frame_layout = self.frame_layout(); frame_layout.clobber_size + frame_layout.fixed_frame_storage_size } /// Returns offset from the slot base in the current frame to the caller's SP. pub fn slot_base_to_caller_sp_offset(&self) -> u32 { let frame_layout = self.frame_layout(); frame_layout.clobber_size + frame_layout.fixed_frame_storage_size + frame_layout.setup_area_size } /// Returns the size of arguments expected on the stack. pub fn stack_args_size(&self, sigs: &SigSet) -> u32 { sigs[self.sig].sized_stack_arg_space } /// Get the spill-slot size. pub fn get_spillslot_size(&self, rc: RegClass) -> u32 { let max = if self.dynamic_type_sizes.len() == 0 { 16 } else { *self .dynamic_type_sizes .iter() .max_by(|x, y| x.1.cmp(&y.1)) .map(|(_k, v)| v) .unwrap() }; M::get_number_of_spillslots_for_value(rc, max, &self.isa_flags) } /// Get the spill slot offset relative to the fixed allocation area start. pub fn get_spillslot_offset(&self, slot: SpillSlot) -> i64 { // Offset from beginning of spillslot area. let islot = slot.index() as i64; let spill_off = islot * M::word_bytes() as i64; let sp_off = self.stackslots_size as i64 + spill_off; sp_off } /// Generate a spill. pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I { let ty = M::I::canonical_type_for_rc(from_reg.class()); debug_assert_eq!(::I::rc_for_type(ty).unwrap().1, &[ty]); let sp_off = self.get_spillslot_offset(to_slot); trace!("gen_spill: {from_reg:?} into slot {to_slot:?} at offset {sp_off}"); let from = StackAMode::Slot(sp_off); ::gen_store_stack(from, Reg::from(from_reg), ty) } /// Generate a reload (fill). pub fn gen_reload(&self, to_reg: Writable, from_slot: SpillSlot) -> M::I { let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class()); debug_assert_eq!(::I::rc_for_type(ty).unwrap().1, &[ty]); let sp_off = self.get_spillslot_offset(from_slot); trace!("gen_reload: {to_reg:?} from slot {from_slot:?} at offset {sp_off}"); let from = StackAMode::Slot(sp_off); ::gen_load_stack(from, to_reg.map(Reg::from), ty) } } /// An input argument to a call instruction: the vreg that is used, /// and the preg it is constrained to (per the ABI). #[derive(Clone, Debug)] pub struct CallArgPair { /// The virtual register to use for the argument. pub vreg: Reg, /// The real register into which the arg goes. pub preg: Reg, } /// An output return value from a call instruction: the vreg that is /// defined, and the preg it is constrained to (per the ABI). #[derive(Clone, Debug)] pub struct CallRetPair { /// The virtual register to define from this return value. pub vreg: Writable, /// The real register from which the return value is read. pub preg: Reg, } pub type CallArgList = SmallVec<[CallArgPair; 8]>; pub type CallRetList = SmallVec<[CallRetPair; 8]>; pub enum IsTailCall { Yes, No, } /// ABI object for a callsite. pub struct CallSite { /// The called function's signature. sig: Sig, /// All register uses for the callsite, i.e., function args, with /// VReg and the physical register it is constrained to. uses: CallArgList, /// All defs for the callsite, i.e., return values. defs: CallRetList, /// Call destination. dest: CallDest, is_tail_call: IsTailCall, /// Caller's calling convention. caller_conv: isa::CallConv, /// The settings controlling this compilation. flags: settings::Flags, _mach: PhantomData, } /// Destination for a call. #[derive(Debug, Clone)] pub enum CallDest { /// Call to an ExtName (named function symbol). ExtName(ir::ExternalName, RelocDistance), /// Indirect call to a function pointer in a register. Reg(Reg), } impl CallSite { /// Create a callsite ABI object for a call directly to the specified function. pub fn from_func( sigs: &SigSet, sig_ref: ir::SigRef, extname: &ir::ExternalName, is_tail_call: IsTailCall, dist: RelocDistance, caller_conv: isa::CallConv, flags: settings::Flags, ) -> CallSite { let sig = sigs.abi_sig_for_sig_ref(sig_ref); CallSite { sig, uses: smallvec![], defs: smallvec![], dest: CallDest::ExtName(extname.clone(), dist), is_tail_call, caller_conv, flags, _mach: PhantomData, } } /// Create a callsite ABI object for a call directly to the specified /// libcall. pub fn from_libcall( sigs: &SigSet, sig: &ir::Signature, extname: &ir::ExternalName, dist: RelocDistance, caller_conv: isa::CallConv, flags: settings::Flags, ) -> CallSite { let sig = sigs.abi_sig_for_signature(sig); CallSite { sig, uses: smallvec![], defs: smallvec![], dest: CallDest::ExtName(extname.clone(), dist), is_tail_call: IsTailCall::No, caller_conv, flags, _mach: PhantomData, } } /// Create a callsite ABI object for a call to a function pointer with the /// given signature. pub fn from_ptr( sigs: &SigSet, sig_ref: ir::SigRef, ptr: Reg, is_tail_call: IsTailCall, caller_conv: isa::CallConv, flags: settings::Flags, ) -> CallSite { let sig = sigs.abi_sig_for_sig_ref(sig_ref); CallSite { sig, uses: smallvec![], defs: smallvec![], dest: CallDest::Reg(ptr), is_tail_call, caller_conv, flags, _mach: PhantomData, } } pub(crate) fn dest(&self) -> &CallDest { &self.dest } pub(crate) fn take_uses(self) -> CallArgList { self.uses } pub(crate) fn sig<'a>(&self, sigs: &'a SigSet) -> &'a SigData { &sigs[self.sig] } pub(crate) fn is_tail_call(&self) -> bool { matches!(self.is_tail_call, IsTailCall::Yes) } } impl CallSite { /// Get the number of arguments expected. pub fn num_args(&self, sigs: &SigSet) -> usize { sigs.num_args(self.sig) } /// Get the number of return values expected. pub fn num_rets(&self, sigs: &SigSet) -> usize { sigs.num_rets(self.sig) } /// Emit a copy of a large argument into its associated stack buffer, if /// any. We must be careful to perform all these copies (as necessary) /// before setting up the argument registers, since we may have to invoke /// memcpy(), which could clobber any registers already set up. The /// back-end should call this routine for all arguments before calling /// `gen_arg` for all arguments. pub fn emit_copy_regs_to_buffer( &self, ctx: &mut Lower, idx: usize, from_regs: ValueRegs, ) { match &ctx.sigs().args(self.sig)[idx] { &ABIArg::Slots { .. } | &ABIArg::ImplicitPtrArg { .. } => {} &ABIArg::StructArg { offset, size, .. } => { let src_ptr = from_regs.only_reg().unwrap(); let dst_ptr = ctx.alloc_tmp(M::word_type()).only_reg().unwrap(); ctx.emit(M::gen_get_stack_addr( StackAMode::OutgoingArg(offset), dst_ptr, )); // Emit a memcpy from `src_ptr` to `dst_ptr` of `size` bytes. // N.B.: because we process StructArg params *first*, this is // safe w.r.t. clobbers: we have not yet filled in any other // arg regs. let memcpy_call_conv = isa::CallConv::for_libcall(&self.flags, ctx.sigs()[self.sig].call_conv); for insn in M::gen_memcpy( memcpy_call_conv, dst_ptr.to_reg(), src_ptr, size as usize, |ty| ctx.alloc_tmp(ty).only_reg().unwrap(), ) .into_iter() { ctx.emit(insn); } } } } /// Add a constraint for an argument value from a source register. /// For large arguments with associated stack buffer, this may /// load the address of the buffer into the argument register, if /// required by the ABI. pub fn gen_arg(&mut self, ctx: &mut Lower, idx: usize, from_regs: ValueRegs) { let stack_arg_space = ctx.sigs()[self.sig].sized_stack_arg_space; let stack_arg = if self.is_tail_call() { StackAMode::IncomingArg } else { |offset, _| StackAMode::OutgoingArg(offset) }; let word_rc = M::word_reg_class(); let word_bits = M::word_bits() as usize; match ctx.sigs().args(self.sig)[idx].clone() { ABIArg::Slots { ref slots, .. } => { assert_eq!(from_regs.len(), slots.len()); for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) { match slot { &ABIArgSlot::Reg { reg, ty, extension, .. } => { let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension); let vreg = if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits { assert_eq!(word_rc, reg.class()); let signed = match ext { ir::ArgumentExtension::Uext => false, ir::ArgumentExtension::Sext => true, _ => unreachable!(), }; let extend_result = ctx.alloc_tmp(M::word_type()).only_reg().unwrap(); ctx.emit(M::gen_extend( extend_result, *from_reg, signed, ty_bits(ty) as u8, word_bits as u8, )); extend_result.to_reg() } else { *from_reg }; let preg = reg.into(); self.uses.push(CallArgPair { vreg, preg }); } &ABIArgSlot::Stack { offset, ty, extension, .. } => { let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension); let (data, ty) = if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits { assert_eq!(word_rc, from_reg.class()); let signed = match ext { ir::ArgumentExtension::Uext => false, ir::ArgumentExtension::Sext => true, _ => unreachable!(), }; let extend_result = ctx.alloc_tmp(M::word_type()).only_reg().unwrap(); ctx.emit(M::gen_extend( extend_result, *from_reg, signed, ty_bits(ty) as u8, word_bits as u8, )); // Store the extended version. (extend_result.to_reg(), M::word_type()) } else { (*from_reg, ty) }; ctx.emit(M::gen_store_stack( stack_arg(offset, stack_arg_space), data, ty, )); } } } } ABIArg::StructArg { .. } => { // Only supported via ISLE. } ABIArg::ImplicitPtrArg { offset, pointer, ty, purpose: _, } => { assert_eq!(from_regs.len(), 1); let vreg = from_regs.regs()[0]; let amode = StackAMode::OutgoingArg(offset); let tmp = ctx.alloc_tmp(M::word_type()).only_reg().unwrap(); ctx.emit(M::gen_get_stack_addr(amode, tmp)); let tmp = tmp.to_reg(); ctx.emit(M::gen_store_base_offset(tmp, 0, vreg, ty)); match pointer { ABIArgSlot::Reg { reg, .. } => self.uses.push(CallArgPair { vreg: tmp, preg: reg.into(), }), ABIArgSlot::Stack { offset, .. } => ctx.emit(M::gen_store_stack( stack_arg(offset, stack_arg_space), tmp, M::word_type(), )), } } } } /// Call `gen_arg` for each non-hidden argument and emit all instructions /// generated. pub fn emit_args(&mut self, ctx: &mut Lower, (inputs, off): isle::ValueSlice) { let num_args = self.num_args(ctx.sigs()); assert_eq!(inputs.len(&ctx.dfg().value_lists) - off, num_args); let mut arg_value_regs: SmallVec<[_; 16]> = smallvec![]; for i in 0..num_args { let input = inputs.get(off + i, &ctx.dfg().value_lists).unwrap(); arg_value_regs.push(ctx.put_value_in_regs(input)); } for (i, arg_regs) in arg_value_regs.iter().enumerate() { self.emit_copy_regs_to_buffer(ctx, i, *arg_regs); } for (i, value_regs) in arg_value_regs.iter().enumerate() { self.gen_arg(ctx, i, *value_regs); } } /// Emit the code to forward a stack-return pointer argument through a tail /// call. pub fn emit_stack_ret_arg_for_tail_call(&mut self, ctx: &mut Lower) { if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg() { let ret_area_ptr = ctx.abi().ret_area_ptr.expect( "if the tail callee has a return pointer, then the tail caller \ must as well", ); self.gen_arg(ctx, i.into(), ValueRegs::one(ret_area_ptr)); } } /// Define a return value after the call returns. pub fn gen_retval( &mut self, ctx: &mut Lower, idx: usize, ) -> (SmallInstVec, ValueRegs) { let mut insts = smallvec![]; let mut into_regs: SmallVec<[Reg; 2]> = smallvec![]; let ret = ctx.sigs().rets(self.sig)[idx].clone(); match ret { ABIArg::Slots { ref slots, .. } => { for slot in slots { match slot { // Extension mode doesn't matter because we're copying out, not in, // and we ignore high bits in our own registers by convention. &ABIArgSlot::Reg { reg, ty, .. } => { let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap(); self.defs.push(CallRetPair { vreg: into_reg, preg: reg.into(), }); into_regs.push(into_reg.to_reg()); } &ABIArgSlot::Stack { offset, ty, .. } => { let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap(); let sig_data = &ctx.sigs()[self.sig]; // The outgoing argument area must always be restored after a call, // ensuring that the return values will be in a consistent place after // any call. let ret_area_base = sig_data.sized_stack_arg_space(); insts.push(M::gen_load_stack( StackAMode::OutgoingArg(offset + ret_area_base), into_reg, ty, )); into_regs.push(into_reg.to_reg()); } } } } ABIArg::StructArg { .. } => { panic!("StructArg not supported in return position"); } ABIArg::ImplicitPtrArg { .. } => { panic!("ImplicitPtrArg not supported in return position"); } } let value_regs = match *into_regs { [a] => ValueRegs::one(a), [a, b] => ValueRegs::two(a, b), _ => panic!("Expected to see one or two slots only from {ret:?}"), }; (insts, value_regs) } /// Emit the call itself. /// /// The returned instruction should have proper use- and def-sets according /// to the argument registers, return-value registers, and clobbered /// registers for this function signature in this ABI. /// /// (Arg registers are uses, and retval registers are defs. Clobbered /// registers are also logically defs, but should never be read; their /// values are "defined" (to the regalloc) but "undefined" in every other /// sense.) /// /// This function should only be called once, as it is allowed to re-use /// parts of the `CallSite` object in emitting instructions. pub fn emit_call(&mut self, ctx: &mut Lower) { let word_type = M::word_type(); if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg { let rd = ctx.alloc_tmp(word_type).only_reg().unwrap(); let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space(); ctx.emit(M::gen_get_stack_addr( StackAMode::OutgoingArg(ret_area_base), rd, )); self.gen_arg(ctx, i.into(), ValueRegs::one(rd.to_reg())); } let uses = mem::take(&mut self.uses); let defs = mem::take(&mut self.defs); let clobbers = { // Get clobbers: all caller-saves. These may include return value // regs, which we will remove from the clobber set below. let mut clobbers = ::get_regs_clobbered_by_call(ctx.sigs()[self.sig].call_conv); // Remove retval regs from clobbers. for def in &defs { clobbers.remove(PReg::from(def.preg.to_real_reg().unwrap())); } clobbers }; let sig = &ctx.sigs()[self.sig]; let callee_pop_size = if sig.call_conv() == isa::CallConv::Tail { // The tail calling convention has callees pop stack arguments. sig.sized_stack_arg_space } else { 0 }; let call_conv = sig.call_conv; let ret_space = sig.sized_stack_ret_space; let arg_space = sig.sized_stack_arg_space; ctx.abi_mut() .accumulate_outgoing_args_size(ret_space + arg_space); let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap(); // Any adjustment to SP to account for required outgoing arguments/stack return values must // be done inside of the call pseudo-op, to ensure that SP is always in a consistent // state for all other instructions. For example, if a tail-call abi function is called // here, the reclamation of the outgoing argument area must be done inside of the call // pseudo-op's emission to ensure that SP is consistent at all other points in the lowered // function. (Except the prologue and epilogue, but those are fairly special parts of the // function that establish the SP invariants that are relied on elsewhere and are generated // after the register allocator has run and thus cannot have register allocator-inserted // references to SP offsets.) for inst in M::gen_call( &self.dest, tmp, CallInfo { dest: (), uses, defs, clobbers, callee_conv: call_conv, caller_conv: self.caller_conv, callee_pop_size, }, ) .into_iter() { ctx.emit(inst); } } } #[cfg(test)] mod tests { use super::SigData; #[test] fn sig_data_size() { // The size of `SigData` is performance sensitive, so make sure // we don't regress it unintentionally. assert_eq!(std::mem::size_of::(), 24); } }