/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */ #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H #define OPENSSL_HEADER_CRYPTO_INTERNAL_H #include #include #include #include #include #include #include #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION) #include #endif #if defined(BORINGSSL_FIPS_BREAK_TESTS) #include #endif #if !defined(__cplusplus) #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L #include #elif defined(_MSC_VER) && !defined(__clang__) #define alignas(x) __declspec(align(x)) #define alignof __alignof #else // With the exception of MSVC, we require C11 to build the library. C11 is a // prerequisite for improved refcounting performance. All our supported C // compilers have long implemented C11 and made it default. The most likely // cause of pre-C11 modes is stale -std=c99 or -std=gnu99 flags in build // configuration. Such flags can be removed. // // TODO(davidben): In MSVC 2019 16.8 or higher (_MSC_VER >= 1928), // |__STDC_VERSION__| will be 201112 when passed /std:c11 and unset otherwise. // C11 alignas and alignof are only implemented in C11 mode. Can we mandate C11 // mode for those versions? #error "BoringSSL must be built in C11 mode or higher." #endif #endif #if defined(OPENSSL_THREADS) && \ (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__)) #include #define OPENSSL_PTHREADS #endif #if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \ defined(OPENSSL_WINDOWS) #define OPENSSL_WINDOWS_THREADS #endif // Determine the atomics implementation to use with C. #if !defined(__cplusplus) #if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \ !defined(__STDC_NO_ATOMICS__) && defined(__STDC_VERSION__) && \ __STDC_VERSION__ >= 201112L #define OPENSSL_C11_ATOMIC #endif #if defined(OPENSSL_C11_ATOMIC) #include #endif // Older MSVC does not support C11 atomics, so we fallback to the Windows APIs. // When both are available (e.g. clang-cl), we prefer the C11 ones. The Windows // APIs don't allow some operations to be implemented as efficiently. This can // be removed once we can rely on // https://devblogs.microsoft.com/cppblog/c11-atomics-in-visual-studio-2022-version-17-5-preview-2/ #if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \ defined(OPENSSL_WINDOWS) #define OPENSSL_WINDOWS_ATOMIC #endif #endif // !__cplusplus #if defined(OPENSSL_WINDOWS_THREADS) || defined(OPENSSL_WINDOWS_ATOMIC) OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include OPENSSL_MSVC_PRAGMA(warning(pop)) #endif #if defined(__cplusplus) extern "C" { #endif #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \ defined(OPENSSL_AARCH64) // OPENSSL_cpuid_setup initializes the platform-specific feature cache. void OPENSSL_cpuid_setup(void); #endif #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \ !defined(OPENSSL_STATIC_ARMCAP) // OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P| // for unit tests. Any modifications to the value must be made after // |CRYPTO_library_init| but before any other function call in BoringSSL. OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void); #endif // On non-MSVC 64-bit targets, we expect __uint128_t support. This includes // clang-cl, which defines both __clang__ and _MSC_VER. #if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT) #define BORINGSSL_HAS_UINT128 typedef __int128_t int128_t; typedef __uint128_t uint128_t; // __uint128_t division depends on intrinsics in the compiler runtime. Those // intrinsics are missing in clang-cl (https://crbug.com/787617) and nanolibc. // These may be bugs in the toolchain definition, but just disable it for now. #if !defined(_MSC_VER) && !defined(OPENSSL_NANOLIBC) #define BORINGSSL_CAN_DIVIDE_UINT128 #endif #endif #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0])) // Have a generic fall-through for different versions of C/C++. #if defined(__cplusplus) && __cplusplus >= 201703L #define OPENSSL_FALLTHROUGH [[fallthrough]] #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__) #define OPENSSL_FALLTHROUGH [[clang::fallthrough]] #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \ __GNUC__ >= 7 #define OPENSSL_FALLTHROUGH [[gnu::fallthrough]] #elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough)) #elif defined(__clang__) #if __has_attribute(fallthrough) && __clang_major__ >= 5 // Clang 3.5, at least, complains about "error: declaration does not declare // anything", possibily because we put a semicolon after this macro in // practice. Thus limit it to >= Clang 5, which does work. #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough)) #else // clang versions that do not support fallthrough. #define OPENSSL_FALLTHROUGH #endif #else // C++11 on gcc 6, and all other cases #define OPENSSL_FALLTHROUGH #endif // For convenience in testing 64-bit generic code, we allow disabling SSE2 // intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2 // available, so we would otherwise need to test such code on a non-x86_64 // platform. #if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING) #define OPENSSL_SSE2 #endif #if defined(BORINGSSL_MALLOC_FAILURE_TESTING) // OPENSSL_reset_malloc_counter_for_testing, when malloc testing is enabled, // resets the internal malloc counter, to simulate further malloc failures. This // should be called in between independent tests, at a point where failure from // a previous test will not impact subsequent ones. OPENSSL_EXPORT void OPENSSL_reset_malloc_counter_for_testing(void); #else OPENSSL_INLINE void OPENSSL_reset_malloc_counter_for_testing(void) {} #endif // Pointer utility functions. // buffers_alias returns one if |a| and |b| alias and zero otherwise. static inline int buffers_alias(const void *a, size_t a_bytes, const void *b, size_t b_bytes) { // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated // objects are undefined whereas pointer to integer conversions are merely // implementation-defined. We assume the implementation defined it in a sane // way. uintptr_t a_u = (uintptr_t)a; uintptr_t b_u = (uintptr_t)b; return a_u + a_bytes > b_u && b_u + b_bytes > a_u; } // align_pointer returns |ptr|, advanced to |alignment|. |alignment| must be a // power of two, and |ptr| must have at least |alignment - 1| bytes of scratch // space. static inline void *align_pointer(void *ptr, size_t alignment) { // |alignment| must be a power of two. assert(alignment != 0 && (alignment & (alignment - 1)) == 0); // Instead of aligning |ptr| as a |uintptr_t| and casting back, compute the // offset and advance in pointer space. C guarantees that casting from pointer // to |uintptr_t| and back gives the same pointer, but general // integer-to-pointer conversions are implementation-defined. GCC does define // it in the useful way, but this makes fewer assumptions. uintptr_t offset = (0u - (uintptr_t)ptr) & (alignment - 1); ptr = (char *)ptr + offset; assert(((uintptr_t)ptr & (alignment - 1)) == 0); return ptr; } // Constant-time utility functions. // // The following methods return a bitmask of all ones (0xff...f) for true and 0 // for false. This is useful for choosing a value based on the result of a // conditional in constant time. For example, // // if (a < b) { // c = a; // } else { // c = b; // } // // can be written as // // crypto_word_t lt = constant_time_lt_w(a, b); // c = constant_time_select_w(lt, a, b); // crypto_word_t is the type that most constant-time functions use. Ideally we // would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit // pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64 // bits. Since we want to be able to do constant-time operations on a // |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native // word length. #if defined(OPENSSL_64_BIT) typedef uint64_t crypto_word_t; #elif defined(OPENSSL_32_BIT) typedef uint32_t crypto_word_t; #else #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" #endif #define CONSTTIME_TRUE_W ~((crypto_word_t)0) #define CONSTTIME_FALSE_W ((crypto_word_t)0) #define CONSTTIME_TRUE_8 ((uint8_t)0xff) #define CONSTTIME_FALSE_8 ((uint8_t)0) // value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about // the returned value. This is used to mitigate compilers undoing constant-time // code, until we can express our requirements directly in the language. // // Note the compiler is aware that |value_barrier_w| has no side effects and // always has the same output for a given input. This allows it to eliminate // dead code, move computations across loops, and vectorize. static inline crypto_word_t value_barrier_w(crypto_word_t a) { #if defined(__GNUC__) || defined(__clang__) __asm__("" : "+r"(a) : /* no inputs */); #endif return a; } // value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|. static inline uint32_t value_barrier_u32(uint32_t a) { #if defined(__GNUC__) || defined(__clang__) __asm__("" : "+r"(a) : /* no inputs */); #endif return a; } // value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|. static inline uint64_t value_barrier_u64(uint64_t a) { #if defined(__GNUC__) || defined(__clang__) __asm__("" : "+r"(a) : /* no inputs */); #endif return a; } // |value_barrier_u8| could be defined as above, but compilers other than // clang seem to still materialize 0x00..00MM instead of reusing 0x??..??MM. // constant_time_msb_w returns the given value with the MSB copied to all the // other bits. static inline crypto_word_t constant_time_msb_w(crypto_word_t a) { return 0u - (a >> (sizeof(a) * 8 - 1)); } // constant_time_lt_w returns 0xff..f if a < b and 0 otherwise. static inline crypto_word_t constant_time_lt_w(crypto_word_t a, crypto_word_t b) { // Consider the two cases of the problem: // msb(a) == msb(b): a < b iff the MSB of a - b is set. // msb(a) != msb(b): a < b iff the MSB of b is set. // // If msb(a) == msb(b) then the following evaluates as: // msb(a^((a^b)|((a-b)^a))) == // msb(a^((a-b) ^ a)) == (because msb(a^b) == 0) // msb(a^a^(a-b)) == (rearranging) // msb(a-b) (because ∀x. x^x == 0) // // Else, if msb(a) != msb(b) then the following evaluates as: // msb(a^((a^b)|((a-b)^a))) == // msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙 // represents a value s.t. msb(𝟙) = 1) // msb(a^𝟙) == (because ORing with 1 results in 1) // msb(b) // // // Here is an SMT-LIB verification of this formula: // // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32) // (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a))) // ) // // (declare-fun a () (_ BitVec 32)) // (declare-fun b () (_ BitVec 32)) // // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b)))) // (check-sat) // (get-model) return constant_time_msb_w(a^((a^b)|((a-b)^a))); } // constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit // mask. static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) { return (uint8_t)(constant_time_lt_w(a, b)); } // constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise. static inline crypto_word_t constant_time_ge_w(crypto_word_t a, crypto_word_t b) { return ~constant_time_lt_w(a, b); } // constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit // mask. static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) { return (uint8_t)(constant_time_ge_w(a, b)); } // constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) { // Here is an SMT-LIB verification of this formula: // // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32) // (bvand (bvnot a) (bvsub a #x00000001)) // ) // // (declare-fun a () (_ BitVec 32)) // // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000)))) // (check-sat) // (get-model) return constant_time_msb_w(~a & (a - 1)); } // constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an // 8-bit mask. static inline uint8_t constant_time_is_zero_8(crypto_word_t a) { return (uint8_t)(constant_time_is_zero_w(a)); } // constant_time_eq_w returns 0xff..f if a == b and 0 otherwise. static inline crypto_word_t constant_time_eq_w(crypto_word_t a, crypto_word_t b) { return constant_time_is_zero_w(a ^ b); } // constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit // mask. static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) { return (uint8_t)(constant_time_eq_w(a, b)); } // constant_time_eq_int acts like |constant_time_eq_w| but works on int // values. static inline crypto_word_t constant_time_eq_int(int a, int b) { return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b)); } // constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit // mask. static inline uint8_t constant_time_eq_int_8(int a, int b) { return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b)); } // constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all // 1s or all 0s (as returned by the methods above), the select methods return // either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). static inline crypto_word_t constant_time_select_w(crypto_word_t mask, crypto_word_t a, crypto_word_t b) { // Clang recognizes this pattern as a select. While it usually transforms it // to a cmov, it sometimes further transforms it into a branch, which we do // not want. // // Hiding the value of the mask from the compiler evades this transformation. mask = value_barrier_w(mask); return (mask & a) | (~mask & b); } // constant_time_select_8 acts like |constant_time_select| but operates on // 8-bit values. static inline uint8_t constant_time_select_8(crypto_word_t mask, uint8_t a, uint8_t b) { // |mask| is a word instead of |uint8_t| to avoid materializing 0x000..0MM // Making both |mask| and its value barrier |uint8_t| would allow the compiler // to materialize 0x????..?MM instead, but only clang is that clever. // However, vectorization of bitwise operations seems to work better on // |uint8_t| than a mix of |uint64_t| and |uint8_t|, so |m| is cast to // |uint8_t| after the value barrier but before the bitwise operations. uint8_t m = value_barrier_w(mask); return (m & a) | (~m & b); } // constant_time_select_int acts like |constant_time_select| but operates on // ints. static inline int constant_time_select_int(crypto_word_t mask, int a, int b) { return (int)(constant_time_select_w(mask, (crypto_word_t)(a), (crypto_word_t)(b))); } // constant_time_conditional_memcpy copies |n| bytes from |src| to |dst| if // |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory // ranges at |dst| and |src| must not overlap, as when calling |memcpy|. static inline void constant_time_conditional_memcpy(void *dst, const void *src, const size_t n, const crypto_word_t mask) { assert(!buffers_alias(dst, n, src, n)); uint8_t *out = (uint8_t *)dst; const uint8_t *in = (const uint8_t *)src; for (size_t i = 0; i < n; i++) { out[i] = constant_time_select_8(mask, in[i], out[i]); } } // constant_time_conditional_memxor xors |n| bytes from |src| to |dst| if // |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory // ranges at |dst| and |src| must not overlap, as when calling |memcpy|. static inline void constant_time_conditional_memxor(void *dst, const void *src, const size_t n, const crypto_word_t mask) { assert(!buffers_alias(dst, n, src, n)); uint8_t *out = (uint8_t *)dst; const uint8_t *in = (const uint8_t *)src; for (size_t i = 0; i < n; i++) { out[i] ^= value_barrier_w(mask) & in[i]; } } #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION) // CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region // of memory as secret. Secret data is tracked as it flows to registers and // other parts of a memory. If secret data is used as a condition for a branch, // or as a memory index, it will trigger warnings in valgrind. #define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len) // CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that // region of memory as public. Public data is not subject to constant-time // rules. #define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len) #else #define CONSTTIME_SECRET(ptr, len) #define CONSTTIME_DECLASSIFY(ptr, len) #endif // BORINGSSL_CONSTANT_TIME_VALIDATION static inline crypto_word_t constant_time_declassify_w(crypto_word_t v) { // Return |v| through a value barrier to be safe. Valgrind-based constant-time // validation is partly to check the compiler has not undone any constant-time // work. Any place |BORINGSSL_CONSTANT_TIME_VALIDATION| influences // optimizations, this validation is inaccurate. // // However, by sending pointers through valgrind, we likely inhibit escape // analysis. On local variables, particularly booleans, we likely // significantly impact optimizations. // // Thus, to be safe, stick a value barrier, in hopes of comparably inhibiting // compiler analysis. CONSTTIME_DECLASSIFY(&v, sizeof(v)); return value_barrier_w(v); } static inline int constant_time_declassify_int(int v) { static_assert(sizeof(uint32_t) == sizeof(int), "int is not the same size as uint32_t"); // See comment above. CONSTTIME_DECLASSIFY(&v, sizeof(v)); return value_barrier_u32(v); } // Thread-safe initialisation. #if !defined(OPENSSL_THREADS) typedef uint32_t CRYPTO_once_t; #define CRYPTO_ONCE_INIT 0 #elif defined(OPENSSL_WINDOWS_THREADS) typedef INIT_ONCE CRYPTO_once_t; #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT #elif defined(OPENSSL_PTHREADS) typedef pthread_once_t CRYPTO_once_t; #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT #else #error "Unknown threading library" #endif // CRYPTO_once calls |init| exactly once per process. This is thread-safe: if // concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument // then they will block until |init| completes, but |init| will have only been // called once. // // The |once| argument must be a |CRYPTO_once_t| that has been initialised with // the value |CRYPTO_ONCE_INIT|. OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void)); // Atomics. // // The following functions provide an API analogous to from C11 // and abstract between a few variations on atomics we need to support. #if defined(__cplusplus) // In C++, we can't easily detect whether C will use |OPENSSL_C11_ATOMIC| or // |OPENSSL_WINDOWS_ATOMIC|. Instead, we define a layout-compatible type without // the corresponding functions. When we can rely on C11 atomics in MSVC, that // will no longer be a concern. typedef uint32_t CRYPTO_atomic_u32; #elif defined(OPENSSL_C11_ATOMIC) typedef _Atomic uint32_t CRYPTO_atomic_u32; // This should be const, but the |OPENSSL_WINDOWS_ATOMIC| implementation is not // const due to Windows limitations. When we can rely on C11 atomics, make this // const-correct. OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(CRYPTO_atomic_u32 *val) { return atomic_load(val); } OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32( CRYPTO_atomic_u32 *val, uint32_t *expected, uint32_t desired) { return atomic_compare_exchange_weak(val, expected, desired); } OPENSSL_INLINE void CRYPTO_atomic_store_u32(CRYPTO_atomic_u32 *val, uint32_t desired) { atomic_store(val, desired); } #elif defined(OPENSSL_WINDOWS_ATOMIC) typedef LONG CRYPTO_atomic_u32; OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(volatile CRYPTO_atomic_u32 *val) { // This is not ideal because it still writes to a cacheline. MSVC is not able // to optimize this to a true atomic read, and Windows does not provide an // InterlockedLoad function. // // The Windows documentation [1] does say "Simple reads and writes to // properly-aligned 32-bit variables are atomic operations", but this is not // phrased in terms of the C11 and C++11 memory models, and indeed a read or // write seems to produce slightly different code on MSVC than a sequentially // consistent std::atomic::load in C++. Moreover, it is unclear if non-MSVC // compilers on Windows provide the same guarantees. Thus we avoid relying on // this and instead still use an interlocked function. This is still // preferable a global mutex, and eventually this code will be replaced by // [2]. Additionally, on clang-cl, we'll use the |OPENSSL_C11_ATOMIC| path. // // [1] https://learn.microsoft.com/en-us/windows/win32/sync/interlocked-variable-access // [2] https://devblogs.microsoft.com/cppblog/c11-atomics-in-visual-studio-2022-version-17-5-preview-2/ return (uint32_t)InterlockedCompareExchange(val, 0, 0); } OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32( volatile CRYPTO_atomic_u32 *val, uint32_t *expected32, uint32_t desired) { LONG expected = (LONG)*expected32; LONG actual = InterlockedCompareExchange(val, (LONG)desired, expected); *expected32 = (uint32_t)actual; return actual == expected; } OPENSSL_INLINE void CRYPTO_atomic_store_u32(volatile CRYPTO_atomic_u32 *val, uint32_t desired) { InterlockedExchange(val, (LONG)desired); } #elif !defined(OPENSSL_THREADS) typedef uint32_t CRYPTO_atomic_u32; OPENSSL_INLINE uint32_t CRYPTO_atomic_load_u32(CRYPTO_atomic_u32 *val) { return *val; } OPENSSL_INLINE int CRYPTO_atomic_compare_exchange_weak_u32( CRYPTO_atomic_u32 *val, uint32_t *expected, uint32_t desired) { if (*val != *expected) { *expected = *val; return 0; } *val = desired; return 1; } OPENSSL_INLINE void CRYPTO_atomic_store_u32(CRYPTO_atomic_u32 *val, uint32_t desired) { *val = desired; } #else // Require some atomics implementation. Contact BoringSSL maintainers if you // have a platform with fails this check. #error "Thread-compatible configurations require atomics" #endif // See the comment in the |__cplusplus| section above. static_assert(sizeof(CRYPTO_atomic_u32) == sizeof(uint32_t), "CRYPTO_atomic_u32 does not match uint32_t size"); static_assert(alignof(CRYPTO_atomic_u32) == alignof(uint32_t), "CRYPTO_atomic_u32 does not match uint32_t alignment"); // Reference counting. // CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. #define CRYPTO_REFCOUNT_MAX 0xffffffff // CRYPTO_refcount_inc atomically increments the value at |*count| unless the // value would overflow. It's safe for multiple threads to concurrently call // this or |CRYPTO_refcount_dec_and_test_zero| on the same // |CRYPTO_refcount_t|. OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count); // CRYPTO_refcount_dec_and_test_zero tests the value at |*count|: // if it's zero, it crashes the address space. // if it's the maximum value, it returns zero. // otherwise, it atomically decrements it and returns one iff the resulting // value is zero. // // It's safe for multiple threads to concurrently call this or // |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count); // Locks. #if !defined(OPENSSL_THREADS) typedef struct crypto_mutex_st { char padding; // Empty structs have different sizes in C and C++. } CRYPTO_MUTEX; #define CRYPTO_MUTEX_INIT { 0 } #elif defined(OPENSSL_WINDOWS_THREADS) typedef SRWLOCK CRYPTO_MUTEX; #define CRYPTO_MUTEX_INIT SRWLOCK_INIT #elif defined(OPENSSL_PTHREADS) typedef pthread_rwlock_t CRYPTO_MUTEX; #define CRYPTO_MUTEX_INIT PTHREAD_RWLOCK_INITIALIZER #else #error "Unknown threading library" #endif // CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a // |CRYPTO_MUTEX_INIT|. OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock); // CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a // read lock, but none may have a write lock. OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock); // CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type // of lock on it. OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock); // CRYPTO_MUTEX_unlock_read unlocks |lock| for reading. OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock); // CRYPTO_MUTEX_unlock_write unlocks |lock| for writing. OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock); // CRYPTO_MUTEX_cleanup releases all resources held by |lock|. OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock); #if defined(__cplusplus) extern "C++" { BSSL_NAMESPACE_BEGIN namespace internal { // MutexLockBase is a RAII helper for CRYPTO_MUTEX locking. template class MutexLockBase { public: explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) { assert(mu_ != nullptr); LockFunc(mu_); } ~MutexLockBase() { ReleaseFunc(mu_); } MutexLockBase(const MutexLockBase &) = delete; MutexLockBase &operator=(const MutexLockBase &) = delete; private: CRYPTO_MUTEX *const mu_; }; } // namespace internal using MutexWriteLock = internal::MutexLockBase; using MutexReadLock = internal::MutexLockBase; BSSL_NAMESPACE_END } // extern "C++" #endif // defined(__cplusplus) // Thread local storage. // thread_local_data_t enumerates the types of thread-local data that can be // stored. typedef enum { OPENSSL_THREAD_LOCAL_ERR = 0, OPENSSL_THREAD_LOCAL_RAND, OPENSSL_THREAD_LOCAL_FIPS_COUNTERS, OPENSSL_THREAD_LOCAL_FIPS_SERVICE_INDICATOR_STATE, OPENSSL_THREAD_LOCAL_TEST, NUM_OPENSSL_THREAD_LOCALS, } thread_local_data_t; // thread_local_destructor_t is the type of a destructor function that will be // called when a thread exits and its thread-local storage needs to be freed. typedef void (*thread_local_destructor_t)(void *); // CRYPTO_get_thread_local gets the pointer value that is stored for the // current thread for the given index, or NULL if none has been set. OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value); // CRYPTO_set_thread_local sets a pointer value for the current thread at the // given index. This function should only be called once per thread for a given // |index|: rather than update the pointer value itself, update the data that // is pointed to. // // The destructor function will be called when a thread exits to free this // thread-local data. All calls to |CRYPTO_set_thread_local| with the same // |index| should have the same |destructor| argument. The destructor may be // called with a NULL argument if a thread that never set a thread-local // pointer for |index|, exits. The destructor may be called concurrently with // different arguments. // // This function returns one on success or zero on error. If it returns zero // then |destructor| has been called with |value| already. OPENSSL_EXPORT int CRYPTO_set_thread_local( thread_local_data_t index, void *value, thread_local_destructor_t destructor); // ex_data typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS; // CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which // supports ex_data. It should defined as a static global within the module // which defines that type. typedef struct { CRYPTO_MUTEX lock; // funcs is a linked list of |CRYPTO_EX_DATA_FUNCS| structures. It may be // traversed without serialization only up to |num_funcs|. last points to the // final entry of |funcs|, or NULL if empty. CRYPTO_EX_DATA_FUNCS *funcs, *last; // num_funcs is the number of entries in |funcs|. CRYPTO_atomic_u32 num_funcs; // num_reserved is one if the ex_data index zero is reserved for legacy // |TYPE_get_app_data| functions. uint8_t num_reserved; } CRYPTO_EX_DATA_CLASS; #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_MUTEX_INIT, NULL, NULL, 0, 0} #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \ {CRYPTO_MUTEX_INIT, NULL, NULL, 0, 1} // CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes // it to |*out_index|. Each class of object should provide a wrapper function // that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and // zero otherwise. OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class, int *out_index, long argl, void *argp, CRYPTO_EX_free *free_func); // CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class // of object should provide a wrapper function. OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val); // CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL // if no such index exists. Each class of object should provide a wrapper // function. OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index); // CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|. OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad); // CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an // object of the given class. OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class, void *obj, CRYPTO_EX_DATA *ad); // Endianness conversions. #if defined(__GNUC__) && __GNUC__ >= 2 static inline uint16_t CRYPTO_bswap2(uint16_t x) { return __builtin_bswap16(x); } static inline uint32_t CRYPTO_bswap4(uint32_t x) { return __builtin_bswap32(x); } static inline uint64_t CRYPTO_bswap8(uint64_t x) { return __builtin_bswap64(x); } #elif defined(_MSC_VER) OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include OPENSSL_MSVC_PRAGMA(warning(pop)) #pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort) static inline uint16_t CRYPTO_bswap2(uint16_t x) { return _byteswap_ushort(x); } static inline uint32_t CRYPTO_bswap4(uint32_t x) { return _byteswap_ulong(x); } static inline uint64_t CRYPTO_bswap8(uint64_t x) { return _byteswap_uint64(x); } #else static inline uint16_t CRYPTO_bswap2(uint16_t x) { return (x >> 8) | (x << 8); } static inline uint32_t CRYPTO_bswap4(uint32_t x) { x = (x >> 16) | (x << 16); x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8); return x; } static inline uint64_t CRYPTO_bswap8(uint64_t x) { return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32); } #endif // Language bug workarounds. // // Most C standard library functions are undefined if passed NULL, even when the // corresponding length is zero. This gives them (and, in turn, all functions // which call them) surprising behavior on empty arrays. Some compilers will // miscompile code due to this rule. See also // https://www.imperialviolet.org/2016/06/26/nonnull.html // // These wrapper functions behave the same as the corresponding C standard // functions, but behave as expected when passed NULL if the length is zero. // // Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|. // C++ defines |memchr| as a const-correct overload. #if defined(__cplusplus) extern "C++" { static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) { if (n == 0) { return NULL; } return memchr(s, c, n); } static inline void *OPENSSL_memchr(void *s, int c, size_t n) { if (n == 0) { return NULL; } return memchr(s, c, n); } } // extern "C++" #else // __cplusplus static inline void *OPENSSL_memchr(const void *s, int c, size_t n) { if (n == 0) { return NULL; } return memchr(s, c, n); } #endif // __cplusplus static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) { if (n == 0) { return 0; } return memcmp(s1, s2, n); } static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) { if (n == 0) { return dst; } return memcpy(dst, src, n); } static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) { if (n == 0) { return dst; } return memmove(dst, src, n); } static inline void *OPENSSL_memset(void *dst, int c, size_t n) { if (n == 0) { return dst; } return memset(dst, c, n); } // Loads and stores. // // The following functions load and store sized integers with the specified // endianness. They use |memcpy|, and so avoid alignment or strict aliasing // requirements on the input and output pointers. static inline uint32_t CRYPTO_load_u32_le(const void *in) { uint32_t v; OPENSSL_memcpy(&v, in, sizeof(v)); return v; } static inline void CRYPTO_store_u32_le(void *out, uint32_t v) { OPENSSL_memcpy(out, &v, sizeof(v)); } static inline uint32_t CRYPTO_load_u32_be(const void *in) { uint32_t v; OPENSSL_memcpy(&v, in, sizeof(v)); return CRYPTO_bswap4(v); } static inline void CRYPTO_store_u32_be(void *out, uint32_t v) { v = CRYPTO_bswap4(v); OPENSSL_memcpy(out, &v, sizeof(v)); } static inline uint64_t CRYPTO_load_u64_le(const void *in) { uint64_t v; OPENSSL_memcpy(&v, in, sizeof(v)); return v; } static inline void CRYPTO_store_u64_le(void *out, uint64_t v) { OPENSSL_memcpy(out, &v, sizeof(v)); } static inline uint64_t CRYPTO_load_u64_be(const void *ptr) { uint64_t ret; OPENSSL_memcpy(&ret, ptr, sizeof(ret)); return CRYPTO_bswap8(ret); } static inline void CRYPTO_store_u64_be(void *out, uint64_t v) { v = CRYPTO_bswap8(v); OPENSSL_memcpy(out, &v, sizeof(v)); } static inline crypto_word_t CRYPTO_load_word_le(const void *in) { crypto_word_t v; OPENSSL_memcpy(&v, in, sizeof(v)); return v; } static inline void CRYPTO_store_word_le(void *out, crypto_word_t v) { OPENSSL_memcpy(out, &v, sizeof(v)); } static inline crypto_word_t CRYPTO_load_word_be(const void *in) { crypto_word_t v; OPENSSL_memcpy(&v, in, sizeof(v)); #if defined(OPENSSL_64_BIT) static_assert(sizeof(v) == 8, "crypto_word_t has unexpected size"); return CRYPTO_bswap8(v); #else static_assert(sizeof(v) == 4, "crypto_word_t has unexpected size"); return CRYPTO_bswap4(v); #endif } // Bit rotation functions. // // Note these functions use |(-shift) & 31|, etc., because shifting by the bit // width is undefined. Both Clang and GCC recognize this pattern as a rotation, // but MSVC does not. Instead, we call MSVC's built-in functions. static inline uint32_t CRYPTO_rotl_u32(uint32_t value, int shift) { #if defined(_MSC_VER) return _rotl(value, shift); #else return (value << shift) | (value >> ((-shift) & 31)); #endif } static inline uint32_t CRYPTO_rotr_u32(uint32_t value, int shift) { #if defined(_MSC_VER) return _rotr(value, shift); #else return (value >> shift) | (value << ((-shift) & 31)); #endif } static inline uint64_t CRYPTO_rotl_u64(uint64_t value, int shift) { #if defined(_MSC_VER) return _rotl64(value, shift); #else return (value << shift) | (value >> ((-shift) & 63)); #endif } static inline uint64_t CRYPTO_rotr_u64(uint64_t value, int shift) { #if defined(_MSC_VER) return _rotr64(value, shift); #else return (value >> shift) | (value << ((-shift) & 63)); #endif } // FIPS functions. #if defined(BORINGSSL_FIPS) // BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test // fails. It prevents any further cryptographic operations by the current // process. void BORINGSSL_FIPS_abort(void) __attribute__((noreturn)); // boringssl_self_test_startup runs all startup self tests and returns one on // success or zero on error. Startup self tests do not include lazy tests. // Call |BORINGSSL_self_test| to run every self test. int boringssl_self_test_startup(void); // boringssl_ensure_rsa_self_test checks whether the RSA self-test has been run // in this address space. If not, it runs it and crashes the address space if // unsuccessful. void boringssl_ensure_rsa_self_test(void); // boringssl_ensure_ecc_self_test checks whether the ECDSA and ECDH self-test // has been run in this address space. If not, it runs it and crashes the // address space if unsuccessful. void boringssl_ensure_ecc_self_test(void); // boringssl_ensure_ffdh_self_test checks whether the FFDH self-test has been // run in this address space. If not, it runs it and crashes the address space // if unsuccessful. void boringssl_ensure_ffdh_self_test(void); #else // Outside of FIPS mode, the lazy tests are no-ops. OPENSSL_INLINE void boringssl_ensure_rsa_self_test(void) {} OPENSSL_INLINE void boringssl_ensure_ecc_self_test(void) {} OPENSSL_INLINE void boringssl_ensure_ffdh_self_test(void) {} #endif // FIPS // boringssl_self_test_sha256 performs a SHA-256 KAT. int boringssl_self_test_sha256(void); // boringssl_self_test_sha512 performs a SHA-512 KAT. int boringssl_self_test_sha512(void); // boringssl_self_test_hmac_sha256 performs an HMAC-SHA-256 KAT. int boringssl_self_test_hmac_sha256(void); #if defined(BORINGSSL_FIPS_COUNTERS) void boringssl_fips_inc_counter(enum fips_counter_t counter); #else OPENSSL_INLINE void boringssl_fips_inc_counter(enum fips_counter_t counter) {} #endif #if defined(BORINGSSL_FIPS_BREAK_TESTS) OPENSSL_INLINE int boringssl_fips_break_test(const char *test) { const char *const value = getenv("BORINGSSL_FIPS_BREAK_TEST"); return value != NULL && strcmp(value, test) == 0; } #else OPENSSL_INLINE int boringssl_fips_break_test(const char *test) { return 0; } #endif // BORINGSSL_FIPS_BREAK_TESTS // Runtime CPU feature support #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) // OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or // x86-64 system. // // Index 0: // EDX for CPUID where EAX = 1 // Bit 20 is always zero // Bit 28 is adjusted to reflect whether the data cache is shared between // multiple logical cores // Bit 30 is used to indicate an Intel CPU // Index 1: // ECX for CPUID where EAX = 1 // Bit 11 is used to indicate AMD XOP support, not SDBG // Index 2: // EBX for CPUID where EAX = 7 // Index 3: // ECX for CPUID where EAX = 7 // // Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM // bits in XCR0, so it is not necessary to check those. extern uint32_t OPENSSL_ia32cap_P[4]; #if defined(BORINGSSL_FIPS) && !defined(BORINGSSL_SHARED_LIBRARY) // The FIPS module, as a static library, requires an out-of-line version of // |OPENSSL_ia32cap_get| so accesses can be rewritten by delocate. Mark the // function const so multiple accesses can be optimized together. const uint32_t *OPENSSL_ia32cap_get(void) __attribute__((const)); #else OPENSSL_INLINE const uint32_t *OPENSSL_ia32cap_get(void) { return OPENSSL_ia32cap_P; } #endif // See Intel manual, volume 2A, table 3-11. OPENSSL_INLINE int CRYPTO_is_FXSR_capable(void) { #if defined(__FXSR__) return 1; #else return (OPENSSL_ia32cap_get()[0] & (1 << 24)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_intel_cpu(void) { // The reserved bit 30 is used to indicate an Intel CPU. return (OPENSSL_ia32cap_get()[0] & (1 << 30)) != 0; } // See Intel manual, volume 2A, table 3-10. OPENSSL_INLINE int CRYPTO_is_PCLMUL_capable(void) { #if defined(__PCLMUL__) return 1; #else return (OPENSSL_ia32cap_get()[1] & (1 << 1)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_SSSE3_capable(void) { #if defined(__SSSE3__) return 1; #else return (OPENSSL_ia32cap_get()[1] & (1 << 9)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_SSE4_1_capable(void) { #if defined(__SSE4_1__) return 1; #else return (OPENSSL_ia32cap_P[1] & (1 << 19)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_MOVBE_capable(void) { #if defined(__MOVBE__) return 1; #else return (OPENSSL_ia32cap_get()[1] & (1 << 22)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_AESNI_capable(void) { #if defined(__AES__) return 1; #else return (OPENSSL_ia32cap_get()[1] & (1 << 25)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_AVX_capable(void) { #if defined(__AVX__) return 1; #else return (OPENSSL_ia32cap_get()[1] & (1 << 28)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_RDRAND_capable(void) { // The GCC/Clang feature name and preprocessor symbol for RDRAND are "rdrnd" // and |__RDRND__|, respectively. #if defined(__RDRND__) return 1; #else return (OPENSSL_ia32cap_get()[1] & (1u << 30)) != 0; #endif } // See Intel manual, volume 2A, table 3-8. OPENSSL_INLINE int CRYPTO_is_BMI1_capable(void) { #if defined(__BMI1__) return 1; #else return (OPENSSL_ia32cap_get()[2] & (1 << 3)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_AVX2_capable(void) { #if defined(__AVX2__) return 1; #else return (OPENSSL_ia32cap_get()[2] & (1 << 5)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_BMI2_capable(void) { #if defined(__BMI2__) return 1; #else return (OPENSSL_ia32cap_get()[2] & (1 << 8)) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_ADX_capable(void) { #if defined(__ADX__) return 1; #else return (OPENSSL_ia32cap_get()[2] & (1 << 19)) != 0; #endif } #endif // OPENSSL_X86 || OPENSSL_X86_64 #if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) extern uint32_t OPENSSL_armcap_P; // We do not detect any features at runtime on several 32-bit Arm platforms. // Apple platforms and OpenBSD require NEON and moved to 64-bit to pick up Armv8 // extensions. Android baremetal does not aim to support 32-bit Arm at all, but // it simplifies things to make it build. #if defined(OPENSSL_ARM) && !defined(OPENSSL_STATIC_ARMCAP) && \ (defined(OPENSSL_APPLE) || defined(OPENSSL_OPENBSD) || \ defined(ANDROID_BAREMETAL)) #define OPENSSL_STATIC_ARMCAP #endif // Normalize some older feature flags to their modern ACLE values. // https://developer.arm.com/architectures/system-architectures/software-standards/acle #if defined(__ARM_NEON__) && !defined(__ARM_NEON) #define __ARM_NEON 1 #endif #if defined(__ARM_FEATURE_CRYPTO) #if !defined(__ARM_FEATURE_AES) #define __ARM_FEATURE_AES 1 #endif #if !defined(__ARM_FEATURE_SHA2) #define __ARM_FEATURE_SHA2 1 #endif #endif // CRYPTO_is_NEON_capable returns true if the current CPU has a NEON unit. If // this is known statically, it is a constant inline function. OPENSSL_INLINE int CRYPTO_is_NEON_capable(void) { #if defined(OPENSSL_STATIC_ARMCAP_NEON) || defined(__ARM_NEON) return 1; #elif defined(OPENSSL_STATIC_ARMCAP) return 0; #else return (OPENSSL_armcap_P & ARMV7_NEON) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_ARMv8_AES_capable(void) { #if defined(OPENSSL_STATIC_ARMCAP_AES) || defined(__ARM_FEATURE_AES) return 1; #elif defined(OPENSSL_STATIC_ARMCAP) return 0; #else return (OPENSSL_armcap_P & ARMV8_AES) != 0; #endif } OPENSSL_INLINE int CRYPTO_is_ARMv8_PMULL_capable(void) { #if defined(OPENSSL_STATIC_ARMCAP_PMULL) || defined(__ARM_FEATURE_AES) return 1; #elif defined(OPENSSL_STATIC_ARMCAP) return 0; #else return (OPENSSL_armcap_P & ARMV8_PMULL) != 0; #endif } #endif // OPENSSL_ARM || OPENSSL_AARCH64 #if defined(BORINGSSL_DISPATCH_TEST) // Runtime CPU dispatch testing support // BORINGSSL_function_hit is an array of flags. The following functions will // set these flags if BORINGSSL_DISPATCH_TEST is defined. // 0: aes_hw_ctr32_encrypt_blocks // 1: aes_hw_encrypt // 2: aesni_gcm_encrypt // 3: aes_hw_set_encrypt_key // 4: vpaes_encrypt // 5: vpaes_set_encrypt_key extern uint8_t BORINGSSL_function_hit[7]; #endif // BORINGSSL_DISPATCH_TEST // OPENSSL_vasprintf_internal is just like |vasprintf(3)|. If |system_malloc| is // 0, memory will be allocated with |OPENSSL_malloc| and must be freed with // |OPENSSL_free|. Otherwise the system |malloc| function is used and the memory // must be freed with the system |free| function. OPENSSL_EXPORT int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args, int system_malloc) OPENSSL_PRINTF_FORMAT_FUNC(2, 0); #if defined(__cplusplus) } // extern C #endif #endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H