#include #include #include "tensor_functions.h" #include "ruby_arg_parser.h" #include "templates.h" #include "utils.h" using namespace Rice; using torch::indexing::TensorIndex; template Array flat_data(Tensor& tensor) { Tensor view = tensor.reshape({tensor.numel()}); Array a; for (int i = 0; i < tensor.numel(); i++) { a.push(view[i].item().to()); } return a; } Class rb_cTensor; std::vector index_vector(Array a) { Object obj; std::vector indices; indices.reserve(a.size()); for (long i = 0; i < a.size(); i++) { obj = a[i]; if (obj.is_instance_of(rb_cInteger)) { indices.push_back(Rice::detail::From_Ruby().convert(obj.value())); } else if (obj.is_instance_of(rb_cRange)) { torch::optional start_index = torch::nullopt; torch::optional stop_index = torch::nullopt; Object begin = obj.call("begin"); if (!begin.is_nil()) { start_index = c10::SymInt(Rice::detail::From_Ruby().convert(begin.value())); } Object end = obj.call("end"); if (!end.is_nil()) { stop_index = c10::SymInt(Rice::detail::From_Ruby().convert(end.value())); } Object exclude_end = obj.call("exclude_end?"); if (stop_index.has_value() && !exclude_end) { if (stop_index.value() == -1) { stop_index = torch::nullopt; } else { stop_index = stop_index.value() + 1; } } indices.push_back(torch::indexing::Slice(start_index, stop_index)); } else if (obj.is_instance_of(rb_cTensor)) { indices.push_back(Rice::detail::From_Ruby().convert(obj.value())); } else if (obj.is_nil()) { indices.push_back(torch::indexing::None); } else if (obj == True || obj == False) { indices.push_back(Rice::detail::From_Ruby().convert(obj.value())); } else { throw Exception(rb_eArgError, "Unsupported index type: %s", rb_obj_classname(obj)); } } return indices; } // hack (removes inputs argument) // https://github.com/pytorch/pytorch/commit/2e5bfa9824f549be69a28e4705a72b4cf8a4c519 // TODO add support for inputs argument // _backward static VALUE tensor__backward(int argc, VALUE* argv, VALUE self_) { HANDLE_TH_ERRORS Tensor& self = Rice::detail::From_Ruby().convert(self_); static RubyArgParser parser({ "_backward(Tensor? gradient=None, bool? retain_graph=None, bool create_graph=False)" }); ParsedArgs<4> parsed_args; auto _r = parser.parse(self_, argc, argv, parsed_args); // _backward(Tensor self, Tensor[] inputs, Tensor? gradient=None, bool? retain_graph=None, bool create_graph=False) -> () auto dispatch__backward = [](const Tensor & self, TensorList inputs, const c10::optional & gradient, c10::optional retain_graph, bool create_graph) -> void { // in future, release GVL self._backward(inputs, gradient, retain_graph, create_graph); }; dispatch__backward(self, {}, _r.optionalTensor(0), _r.toBoolOptional(1), _r.toBool(2)); RETURN_NIL END_HANDLE_TH_ERRORS } void init_tensor(Rice::Module& m, Rice::Class& c, Rice::Class& rb_cTensorOptions) { rb_cTensor = c; rb_cTensor.add_handler(handle_error); add_tensor_functions(rb_cTensor); THPVariableClass = rb_cTensor.value(); rb_define_method(rb_cTensor, "backward", (VALUE (*)(...)) tensor__backward, -1); rb_cTensor .define_method("cuda?", [](Tensor& self) { return self.is_cuda(); }) .define_method("sparse?", [](Tensor& self) { return self.is_sparse(); }) .define_method("quantized?", [](Tensor& self) { return self.is_quantized(); }) .define_method("dim", [](Tensor& self) { return self.dim(); }) .define_method("numel", [](Tensor& self) { return self.numel(); }) .define_method("element_size", [](Tensor& self) { return self.element_size(); }) .define_method("requires_grad", [](Tensor& self) { return self.requires_grad(); }) .define_method( "_size", [](Tensor& self, int64_t dim) { return self.size(dim); }) .define_method( "_stride", [](Tensor& self, int64_t dim) { return self.stride(dim); }) // in C++ for performance .define_method( "shape", [](Tensor& self) { Array a; for (auto &size : self.sizes()) { a.push(size); } return a; }) .define_method( "_strides", [](Tensor& self) { Array a; for (auto &stride : self.strides()) { a.push(stride); } return a; }) .define_method( "_index", [](Tensor& self, Array indices) { auto vec = index_vector(indices); return self.index(vec); }) .define_method( "_index_put_custom", [](Tensor& self, Array indices, torch::Tensor& value) { auto vec = index_vector(indices); return self.index_put_(vec, value); }) .define_method( "contiguous?", [](Tensor& self) { return self.is_contiguous(); }) .define_method( "_requires_grad!", [](Tensor& self, bool requires_grad) { return self.set_requires_grad(requires_grad); }) .define_method( "grad", [](Tensor& self) { auto grad = self.grad(); return grad.defined() ? Object(Rice::detail::To_Ruby().convert(grad)) : Nil; }) // can't use grad= // assignment methods fail with Ruby 3.0 .define_method( "_set_grad", [](Tensor& self, Rice::Object value) { if (value.is_nil()) { self.mutable_grad().reset(); return; } const auto& grad = Rice::detail::From_Ruby().convert(value.value()); // TODO support sparse grad if (!grad.options().type_equal(self.options())) { rb_raise(rb_eArgError, "assigned grad has data of a different type"); } if (self.is_cuda() && grad.get_device() != self.get_device()) { rb_raise(rb_eArgError, "assigned grad has data located on a different device"); } if (!self.sizes().equals(grad.sizes())) { rb_raise(rb_eArgError, "assigned grad has data of a different size"); } self.mutable_grad() = grad; }) .define_method( "_dtype", [](Tensor& self) { return (int) at::typeMetaToScalarType(self.dtype()); }) .define_method( "_type", [](Tensor& self, int dtype) { return self.toType((torch::ScalarType) dtype); }) .define_method( "_layout", [](Tensor& self) { std::stringstream s; s << self.layout(); return s.str(); }) .define_method( "device", [](Tensor& self) { std::stringstream s; s << self.device(); return s.str(); }) .define_method( "_data_str", [](Tensor& self) { auto tensor = self; // move to CPU to get data if (tensor.device().type() != torch::kCPU) { torch::Device device("cpu"); tensor = tensor.to(device); } if (!tensor.is_contiguous()) { tensor = tensor.contiguous(); } auto data_ptr = (const char *) tensor.data_ptr(); return std::string(data_ptr, tensor.numel() * tensor.element_size()); }) // for TorchVision .define_method( "_data_ptr", [](Tensor& self) { return reinterpret_cast(self.data_ptr()); }) // TODO figure out a better way to do this .define_method( "_flat_data", [](Tensor& self) { auto tensor = self; // move to CPU to get data if (tensor.device().type() != torch::kCPU) { torch::Device device("cpu"); tensor = tensor.to(device); } auto dtype = tensor.dtype(); if (dtype == torch::kByte) { return flat_data(tensor); } else if (dtype == torch::kChar) { return flat_data(tensor); } else if (dtype == torch::kShort) { return flat_data(tensor); } else if (dtype == torch::kInt) { return flat_data(tensor); } else if (dtype == torch::kLong) { return flat_data(tensor); } else if (dtype == torch::kFloat) { return flat_data(tensor); } else if (dtype == torch::kDouble) { return flat_data(tensor); } else if (dtype == torch::kBool) { return flat_data(tensor); } else if (dtype == torch::kComplexFloat) { return flat_data>(tensor); } else if (dtype == torch::kComplexDouble) { return flat_data>(tensor); } else { throw std::runtime_error("Unsupported type"); } }) .define_method( "_to", [](Tensor& self, torch::Device& device, int dtype, bool non_blocking, bool copy) { return self.to(device, (torch::ScalarType) dtype, non_blocking, copy); }); rb_cTensorOptions .add_handler(handle_error) .define_method( "dtype", [](torch::TensorOptions& self, int dtype) { return self.dtype((torch::ScalarType) dtype); }) .define_method( "layout", [](torch::TensorOptions& self, const std::string& layout) { torch::Layout l; if (layout == "strided") { l = torch::kStrided; } else if (layout == "sparse") { l = torch::kSparse; throw std::runtime_error("Sparse layout not supported yet"); } else { throw std::runtime_error("Unsupported layout: " + layout); } return self.layout(l); }) .define_method( "device", [](torch::TensorOptions& self, const std::string& device) { torch::Device d(device); return self.device(d); }) .define_method( "requires_grad", [](torch::TensorOptions& self, bool requires_grad) { return self.requires_grad(requires_grad); }); }