# Copyright (c) 2021-2022 Andy Maleh # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. require 'perfect_shape/shape' require 'perfect_shape/point' require 'perfect_shape/multi_point' module PerfectShape class CubicBezierCurve < Shape class << self # Calculates the number of times the cubic bézier curve from (x1,y1) to (x2,y2) # crosses the ray extending to the right from (x,y). # If the point lies on a part of the curve, # then no crossings are counted for that intersection. # the level parameter should be 0 at the top-level call and will count # up for each recursion level to prevent infinite recursion # +1 is added for each crossing where the Y coordinate is increasing # -1 is added for each crossing where the Y coordinate is decreasing def point_crossings(x1, y1, xc1, yc1, xc2, yc2, x2, y2, px, py, level = 0) return 0 if (py < y1 && py < yc1 && py < yc2 && py < y2) return 0 if (py >= y1 && py >= yc1 && py >= yc2 && py >= y2) # Note y1 could equal yc1... return 0 if (px >= x1 && px >= xc1 && px >= xc2 && px >= x2) if (px < x1 && px < xc1 && px < xc2 && px < x2) if (py >= y1) return 1 if (py < y2) else # py < y1 return -1 if (py >= y2) end # py outside of y12 range, and/or y1==yc1 return 0 end # double precision only has 52 bits of mantissa return PerfectShape::Line.point_crossings(x1, y1, x2, y2, px, py) if (level > 52) xmid = BigDecimal((xc1 + xc2).to_s) / 2 ymid = BigDecimal((yc1 + yc2).to_s) / 2 xc1 = BigDecimal((x1 + xc1).to_s) / 2 yc1 = BigDecimal((y1 + yc1).to_s) / 2 xc2 = BigDecimal((xc2 + x2).to_s) / 2 yc2 = BigDecimal((yc2 + y2).to_s) / 2 xc1m = BigDecimal((xc1 + xmid).to_s) / 2 yc1m = BigDecimal((yc1 + ymid).to_s) / 2 xmc1 = BigDecimal((xmid + xc2).to_s) / 2 ymc1 = BigDecimal((ymid + yc2).to_s) / 2 xmid = BigDecimal((xc1m + xmc1).to_s) / 2 ymid = BigDecimal((yc1m + ymc1).to_s) / 2 # [xy]mid are NaN if any of [xy]c0m or [xy]mc1 are NaN # [xy]c0m or [xy]mc1 are NaN if any of [xy][c][01] are NaN # These values are also NaN if opposing infinities are added return 0 if (xmid.nan? || ymid.nan?) point_crossings(x1, y1, xc1, yc1, xc1m, yc1m, xmid, ymid, px, py, level+1) + point_crossings(xmid, ymid, xmc1, ymc1, xc2, yc2, x2, y2, px, py, level+1) end end include MultiPoint include Equalizer.new(:points) OUTLINE_MINIMUM_DISTANCE_THRESHOLD = BigDecimal('0.001') # Checks if cubic bézier curve contains point (two-number Array or x, y args) # # @param x The X coordinate of the point to test. # @param y The Y coordinate of the point to test. # # @return true if the point lies within the bound of # the cubic bézier curve, false if the point lies outside of the # cubic bézier curve's bounds. def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0) x, y = Point.normalize_point(x_or_point, y) return unless x && y if outline distance_tolerance = BigDecimal(distance_tolerance.to_s) minimum_distance_threshold = OUTLINE_MINIMUM_DISTANCE_THRESHOLD + distance_tolerance point_distance(x, y, minimum_distance_threshold: minimum_distance_threshold) < minimum_distance_threshold else # Either x or y was infinite or NaN. # A NaN always produces a negative response to any test # and Infinity values cannot be "inside" any path so # they should return false as well. return false if (!(x * 0.0 + y * 0.0 == 0.0)) # We count the "Y" crossings to determine if the point is # inside the curve bounded by its closing line. x1 = points[0][0] y1 = points[0][1] x2 = points[3][0] y2 = points[3][1] line = PerfectShape::Line.new(points: [[x1, y1], [x2, y2]]) crossings = line.point_crossings(x, y) + point_crossings(x, y) (crossings & 1) == 1 end end # Calculates the number of times the cubic bézier curve # crosses the ray extending to the right from (x,y). # If the point lies on a part of the curve, # then no crossings are counted for that intersection. # the level parameter should be 0 at the top-level call and will count # up for each recursion level to prevent infinite recursion # +1 is added for each crossing where the Y coordinate is increasing # -1 is added for each crossing where the Y coordinate is decreasing def point_crossings(x_or_point, y = nil, level = 0) x, y = Point.normalize_point(x_or_point, y) return unless x && y CubicBezierCurve.point_crossings(points[0][0], points[0][1], points[1][0], points[1][1], points[2][0], points[2][1], points[3][0], points[3][1], x, y, level) end # The center point on the outline of the curve def curve_center_point subdivisions.last.points[0] end # The center point x on the outline of the curve def curve_center_x subdivisions.last.points[0][0] end # The center point y on the outline of the curve def curve_center_y subdivisions.last.points[0][1] end # Subdivides CubicBezierCurve exactly at its curve center # returning 2 CubicBezierCurve's as a two-element Array by default # # Optional `level` parameter specifies the level of recursions to # perform to get more subdivisions. The number of resulting # subdivisions is 2 to the power of `level` (e.g. 2 subdivisions # for level=1, 4 subdivisions for level=2, and 8 subdivisions for level=3) def subdivisions(level = 1) level -= 1 # consume 1 level x1 = points[0][0] y1 = points[0][1] ctrlx1 = points[1][0] ctrly1 = points[1][1] ctrlx2 = points[2][0] ctrly2 = points[2][1] x2 = points[3][0] y2 = points[3][1] centerx = BigDecimal((ctrlx1 + ctrlx2).to_s) / 2 centery = BigDecimal((ctrly1 + ctrly2).to_s) / 2 ctrlx1 = BigDecimal((x1 + ctrlx1).to_s) / 2 ctrly1 = BigDecimal((y1 + ctrly1).to_s) / 2 ctrlx2 = BigDecimal((x2 + ctrlx2).to_s) / 2 ctrly2 = BigDecimal((y2 + ctrly2).to_s) / 2 ctrlx12 = BigDecimal((ctrlx1 + centerx).to_s) / 2 ctrly12 = BigDecimal((ctrly1 + centery).to_s) / 2 ctrlx21 = BigDecimal((ctrlx2 + centerx).to_s) / 2 ctrly21 = BigDecimal((ctrly2 + centery).to_s) / 2 centerx = BigDecimal((ctrlx12 + ctrlx21).to_s) / 2 centery = BigDecimal((ctrly12 + ctrly21).to_s) / 2 first_curve = CubicBezierCurve.new(points: [x1, y1, ctrlx1, ctrly1, ctrlx12, ctrly12, centerx, centery]) second_curve = CubicBezierCurve.new(points: [centerx, centery, ctrlx21, ctrly21, ctrlx2, ctrly2, x2, y2]) default_subdivisions = [first_curve, second_curve] if level == 0 default_subdivisions else default_subdivisions.map { |curve| curve.subdivisions(level) }.flatten end end def point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD) x, y = Point.normalize_point(x_or_point, y) return unless x && y point = Point.new(x, y) current_curve = self minimum_distance = point.point_distance(curve_center_point) last_minimum_distance = minimum_distance + 1 # start bigger to ensure going through loop once at least while minimum_distance >= minimum_distance_threshold && minimum_distance < last_minimum_distance curve1, curve2 = current_curve.subdivisions curve1_center_point = curve1.curve_center_point distance1 = point.point_distance(curve1_center_point) curve2_center_point = curve2.curve_center_point distance2 = point.point_distance(curve2_center_point) last_minimum_distance = minimum_distance if distance1 < distance2 minimum_distance = distance1 current_curve = curve1 else minimum_distance = distance2 current_curve = curve2 end end if minimum_distance < minimum_distance_threshold minimum_distance else last_minimum_distance end end def intersect?(rectangle) w = rectangle.width h = rectangle.height # Trivially reject non-existant rectangles return false if w <= 0 || h <= 0 num_crossings = rectangle_crossings(rectangle) # the intended return value is # num_crossings != 0 || num_crossings == PerfectShape::Rectangle::RECT_INTERSECTS # but if (num_crossings != 0) num_crossings == INTERSECTS won't matter # and if !(num_crossings != 0) then num_crossings == 0, so # num_crossings != RECT_INTERSECT num_crossings != 0 end def rectangle_crossings(rectangle) x = rectangle.x y = rectangle.y w = rectangle.width h = rectangle.height x1 = points[0][0] y1 = points[0][1] x2 = points[3][0] y2 = points[3][1] crossings = 0 if !(x1 == x2 && y1 == y2) line = PerfectShape::Line.new(points: [[x1, y1], [x2, y2]]) crossings = line.rect_crossings(x, y, x+w, y+h, crossings) return crossings if crossings == PerfectShape::Rectangle::RECT_INTERSECTS end # we call this with the curve's direction reversed, because we wanted # to call rectCrossingsForLine first, because it's cheaper. rect_crossings(x, y, x+w, y+h, 0, crossings) end # Accumulate the number of times the cubic crosses the shadow # extending to the right of the rectangle. See the comment # for the RECT_INTERSECTS constant for more complete details. # # crossings arg is the initial crossings value to add to (useful # in cases where you want to accumulate crossings from multiple # shapes) def rect_crossings(rxmin, rymin, rxmax, rymax, level, crossings = 0) x0 = points[0][0] y0 = points[0][1] xc0 = points[1][0] yc0 = points[1][1] xc1 = points[2][0] yc1 = points[2][1] x1 = points[3][0] y1 = points[3][1] return crossings if y0 >= rymax && yc0 >= rymax && yc1 >= rymax && y1 >= rymax return crossings if y0 <= rymin && yc0 <= rymin && yc1 <= rymin && y1 <= rymin return crossings if x0 <= rxmin && xc0 <= rxmin && xc1 <= rxmin && x1 <= rxmin if x0 >= rxmax && xc0 >= rxmax && xc1 >= rxmax && x1 >= rxmax # Cubic is entirely to the right of the rect # and the vertical range of the 4 Y coordinates of the cubic # overlaps the vertical range of the rect by a non-empty amount # We now judge the crossings solely based on the line segment # connecting the endpoints of the cubic. # Note that we may have 0, 1, or 2 crossings as the control # points may be causing the Y range intersection while the # two endpoints are entirely above or below. if y0 < y1 # y-increasing line segment... crossings += 1 if (y0 <= rymin && y1 > rymin) crossings += 1 if (y0 < rymax && y1 >= rymax) elsif y1 < y0 # y-decreasing line segment... crossings -= 1 if (y1 <= rymin && y0 > rymin) crossings -= 1 if (y1 < rymax && y0 >= rymax) end return crossings end # The intersection of ranges is more complicated # First do trivial INTERSECTS rejection of the cases # where one of the endpoints is inside the rectangle. return PerfectShape::Rectangle::RECT_INTERSECTS if ((x0 > rxmin && x0 < rxmax && y0 > rymin && y0 < rymax) || (x1 > rxmin && x1 < rxmax && y1 > rymin && y1 < rymax)) # Otherwise, subdivide and look for one of the cases above. # double precision only has 52 bits of mantissa return PerfectShape::Line.new(points: [[x0, y0], [x1, y1]]).rect_crossings(rxmin, rymin, rxmax, rymax, crossings) if (level > 52) xmid = BigDecimal((xc0 + xc1).to_s) / 2 ymid = BigDecimal((yc0 + yc1).to_s) / 2 xc0 = BigDecimal((x0 + xc0).to_s) / 2 yc0 = BigDecimal((y0 + yc0).to_s) / 2 xc1 = BigDecimal((xc1 + x1).to_s) / 2 yc1 = BigDecimal((yc1 + y1).to_s) / 2 xc0m = BigDecimal((xc0 + xmid).to_s) / 2 yc0m = BigDecimal((yc0 + ymid).to_s) / 2 xmc1 = BigDecimal((xmid + xc1).to_s) / 2 ymc1 = BigDecimal((ymid + yc1).to_s) / 2 xmid = BigDecimal((xc0m + xmc1).to_s) / 2 ymid = BigDecimal((yc0m + ymc1).to_s) / 2 # [xy]mid are NaN if any of [xy]c0m or [xy]mc1 are NaN # [xy]c0m or [xy]mc1 are NaN if any of [xy][c][01] are NaN # These values are also NaN if opposing infinities are added return 0 if xmid.nan? || ymid.nan? cubic1 = CubicBezierCurve.new(points: [[x0, y0], [xc0, yc0], [xc0m, yc0m], [xmid, ymid]]) crossings = cubic1.rect_crossings(rxmin, rymin, rxmax, rymax, level + 1, crossings) if crossings != PerfectShape::Rectangle::RECT_INTERSECTS cubic2 = CubicBezierCurve.new(points: [[xmid, ymid], [xmc1, ymc1], [xc1, yc1], [x1, y1]]) crossings = cubic2.rect_crossings(rxmin, rymin, rxmax, rymax, level + 1, crossings) end crossings end end end