# -*- encoding: utf-8; frozen_string_literal: true -*- # #-- # This file is part of HexaPDF. # # HexaPDF - A Versatile PDF Creation and Manipulation Library For Ruby # Copyright (C) 2014-2019 Thomas Leitner # # HexaPDF is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License version 3 as # published by the Free Software Foundation with the addition of the # following permission added to Section 15 as permitted in Section 7(a): # FOR ANY PART OF THE COVERED WORK IN WHICH THE COPYRIGHT IS OWNED BY # THOMAS LEITNER, THOMAS LEITNER DISCLAIMS THE WARRANTY OF NON # INFRINGEMENT OF THIRD PARTY RIGHTS. # # HexaPDF is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public # License for more details. # # You should have received a copy of the GNU Affero General Public License # along with HexaPDF. If not, see . # # The interactive user interfaces in modified source and object code # versions of HexaPDF must display Appropriate Legal Notices, as required # under Section 5 of the GNU Affero General Public License version 3. # # In accordance with Section 7(b) of the GNU Affero General Public # License, a covered work must retain the producer line in every PDF that # is created or manipulated using HexaPDF. # # If the GNU Affero General Public License doesn't fit your need, # commercial licenses are available at . #++ module HexaPDF module Utils # Provides the convenience methods that are used for name trees and number trees. # # The provided methods require two methods defined in the including class so that they work # correctly: # # leaf_node_container_name:: # Defines the dictionary entry name that contains the leaf node entries. # # For example, for name trees this would be :Names. # # key_type:: # Defines the class that is used for the keys in the tree. # # The class defined this way is used for making sure that only valid keys are used. # # For example, for name trees this would be String. # # Note: Like with HexaPDF::Dictionary, the keys are assumed to always be direct objects! # # See: HexaPDF::NameTreeNode, HexaPDF::NumberTreeNode module SortedTreeNode # Tree nodes must always be indirect. # # Note: There is no requirement that the root node of a tree must be indirect. However, making # it indirect simplifies the implementation and is not against the spec. def must_be_indirect? true end # :call-seq: # tree.add_entry(key, data, overwrite: true) -> true or false # # Adds a new tree entry (key-data pair) to the sorted tree and returns +true+ if it was # successfully added. # # If the option +overwrite+ is +true+, an existing entry is overwritten. Otherwise an error is # raised. # # This method has to be invoked on the root node of the tree! def add_entry(key, data, overwrite: true) if key?(:Limits) raise HexaPDF::Error, "Adding a new tree entry is only allowed via the root node" elsif !key.kind_of?(key_type) raise ArgumentError, "A key must be a #{key_type} object, not a #{key.class}" end container_name = leaf_node_container_name if (!key?(:Kids) && !key?(container_name)) || (value[:Kids] && self[:Kids].empty?) value.delete(:Kids) value[container_name] = [] end if key?(container_name) result = insert_pair(self[container_name], key, data, overwrite: overwrite) split_if_needed(self, self) else stack = [] path_to_key(self, key, stack) result = insert_pair(stack.last[container_name], key, data, overwrite: overwrite) stack.last[:Limits] = stack.last[container_name].values_at(0, -2) stack.reverse_each.inject do |nested_node, node| nested_lower = nested_node[:Limits][0] nested_upper = nested_node[:Limits][1] if node[:Limits][0] > nested_lower node[:Limits][0] = nested_lower elsif node[:Limits][1] < nested_upper node[:Limits][1] = nested_upper end node end split_if_needed(stack[-2] || self, stack[-1]) end result end # Deletes the entry specified by the +key+ from the tree and returns the data. If the tree # doesn't contain the key, +nil+ is returned. # # This method has to be invoked on the root node of the tree! def delete_entry(key) if key?(:Limits) raise HexaPDF::Error, "Deleting a tree entry is only allowed via the root node" end stack = [self] path_to_key(self, key, stack) container_name = leaf_node_container_name return unless stack.last[container_name] index = find_in_leaf_node(stack.last[container_name], key) return unless stack.last[container_name][index] == key stack.last[container_name].delete_at(index) # deletes key value = stack.last[container_name].delete_at(index) stack.last[:Limits] = stack.last[container_name].values_at(0, -2) if stack.last[:Limits] stack.reverse_each.inject do |nested_node, node| if (!nested_node[container_name] || nested_node[container_name].empty?) && (!nested_node[:Kids] || nested_node[:Kids].empty?) node[:Kids].delete_at(node[:Kids].index {|n| document.deref(n) == nested_node }) document.delete(nested_node) end if !node[:Kids].empty? && node[:Limits] node[:Limits][0] = document.deref(node[:Kids][0])[:Limits][0] node[:Limits][1] = document.deref(node[:Kids][-1])[:Limits][1] end node end value end # Finds and returns the associated entry for the key, or returns +nil+ if no such key is # found. def find_entry(key) container_name = leaf_node_container_name node = self result = nil while result.nil? if node.key?(container_name) index = find_in_leaf_node(node[container_name], key) if node[container_name][index] == key result = document.deref(node[container_name][index + 1]) end elsif node.key?(:Kids) index = find_in_intermediate_node(node[:Kids], key) node = document.deref(node[:Kids][index]) break unless key >= node[:Limits][0] && key <= node[:Limits][1] else break end end result end # :call-seq: # node.each_entry {|key, data| block } -> node # node.each_entry -> Enumerator # # Calls the given block once for each entry (key-data pair) of the sorted tree. def each_entry return to_enum(__method__) unless block_given? container_name = leaf_node_container_name stack = [self] until stack.empty? node = document.deref(stack.pop) if node.key?(container_name) data = node[container_name] index = 0 while index < data.length yield(data[index], document.deref(data[index + 1])) index += 2 end elsif node.key?(:Kids) stack.concat(node[:Kids].reverse_each.to_a) end end self end private # Starting from node traverses the tree to the node where the key is located or, if not # present, where it would be located and adds the nodes to the stack. def path_to_key(node, key, stack) return unless node.key?(:Kids) index = find_in_intermediate_node(node[:Kids], key) stack << document.deref(node[:Kids][index]) path_to_key(stack.last, key, stack) end # Returns the index into the /Kids array where the entry for +key+ is located or, if not # present, where it would be located. def find_in_intermediate_node(array, key) left = 0 right = array.length - 1 while left < right mid = (left + right) / 2 limits = document.deref(array[mid])[:Limits] if limits[1] < key left = mid + 1 elsif limits[0] > key right = mid - 1 else left = right = mid end end left end # Inserts the key-data pair into array at the correct position and returns +true+ if the # key-data pair was successfully inserted. # # An existing entry for the key is only overwritten if the option +overwrite+ is +true+. def insert_pair(array, key, data, overwrite: true) index = find_in_leaf_node(array, key) return false if array[index] == key && !overwrite if array[index] == key array[index + 1] = data else array.insert(index, key, data) end true end # Returns the index into the array where the entry for +key+ is located or, if not present, # where it would be located. def find_in_leaf_node(array, key) left = 0 right = array.length - 1 while left <= right mid = ((left + right) / 2) & ~1 # mid must be even because of [key val key val...] if array[mid] < key left = mid + 2 elsif array[mid] > key right = mid - 2 else left = mid right = left - 1 end end left end # Splits the leaf node if it contains the maximum number of entries. def split_if_needed(parent, leaf_node) container_name = leaf_node_container_name max_size = config['sorted_tree.max_leaf_node_size'] * 2 return unless leaf_node[container_name].size >= max_size split_point = (max_size / 2) & ~1 if parent == leaf_node node1 = document.add(document.wrap({}, type: self.class)) node2 = document.add(document.wrap({}, type: self.class)) node1[container_name] = leaf_node[container_name][0, split_point] node1[:Limits] = node1[container_name].values_at(0, -2) node2[container_name] = leaf_node[container_name][split_point..-1] node2[:Limits] = node2[container_name].values_at(0, -2) parent.delete(container_name) parent[:Kids] = [node1, node2] else node = document.add(document.wrap({}, type: self.class)) node[container_name] = leaf_node[container_name].slice!(split_point..-1) node[:Limits] = node[container_name].values_at(0, -2) leaf_node[:Limits][1] = leaf_node[container_name][-2] index = 1 + parent[:Kids].index {|o| document.deref(o) == leaf_node } parent[:Kids].insert(index, node) end end # Validates the sorted tree node. def perform_validation super container_name = leaf_node_container_name # All kids entries must be indirect objects if key?(:Kids) self[:Kids].each do |kid| unless (kid.kind_of?(HexaPDF::Object) && kid.indirect?) || kid.kind_of?(HexaPDF::Reference) yield("Child entries of sorted tree nodes must be indirect objects", false) end end end # All keys of the container must be lexically ordered strings and the container must be # correctly formatted if key?(container_name) container = self[container_name] if container.length.odd? yield("Sorted tree leaf node contains odd number of entries", false) end index = 0 old = nil while index < container.length key = document.unwrap(container[index]) if !key.kind_of?(key_type) yield("A key must be a #{key_type} object, not a #{key.class}", false) elsif old && old > key yield("Sorted tree leaf node entries are not correctly sorted", false) end old = key index += 2 end end end end end end