// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "compilation-cache.h" #include "execution.h" #include "heap-profiler.h" #include "gdb-jit.h" #include "global-handles.h" #include "ic-inl.h" #include "liveobjectlist-inl.h" #include "mark-compact.h" #include "objects-visiting.h" #include "stub-cache.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // MarkCompactCollector MarkCompactCollector::MarkCompactCollector() : // NOLINT #ifdef DEBUG state_(IDLE), #endif force_compaction_(false), compacting_collection_(false), compact_on_next_gc_(false), previous_marked_count_(0), tracer_(NULL), #ifdef DEBUG live_young_objects_size_(0), live_old_pointer_objects_size_(0), live_old_data_objects_size_(0), live_code_objects_size_(0), live_map_objects_size_(0), live_cell_objects_size_(0), live_lo_objects_size_(0), live_bytes_(0), #endif heap_(NULL), code_flusher_(NULL) { } void MarkCompactCollector::CollectGarbage() { // Make sure that Prepare() has been called. The individual steps below will // update the state as they proceed. ASSERT(state_ == PREPARE_GC); // Prepare has selected whether to compact the old generation or not. // Tell the tracer. if (IsCompacting()) tracer_->set_is_compacting(); MarkLiveObjects(); if (FLAG_collect_maps) ClearNonLiveTransitions(); SweepLargeObjectSpace(); if (IsCompacting()) { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_COMPACT); EncodeForwardingAddresses(); heap()->MarkMapPointersAsEncoded(true); UpdatePointers(); heap()->MarkMapPointersAsEncoded(false); heap()->isolate()->pc_to_code_cache()->Flush(); RelocateObjects(); } else { SweepSpaces(); heap()->isolate()->pc_to_code_cache()->Flush(); } Finish(); // Save the count of marked objects remaining after the collection and // null out the GC tracer. previous_marked_count_ = tracer_->marked_count(); ASSERT(previous_marked_count_ == 0); tracer_ = NULL; } void MarkCompactCollector::Prepare(GCTracer* tracer) { // Rather than passing the tracer around we stash it in a static member // variable. tracer_ = tracer; #ifdef DEBUG ASSERT(state_ == IDLE); state_ = PREPARE_GC; #endif ASSERT(!FLAG_always_compact || !FLAG_never_compact); compacting_collection_ = FLAG_always_compact || force_compaction_ || compact_on_next_gc_; compact_on_next_gc_ = false; if (FLAG_never_compact) compacting_collection_ = false; if (!heap()->map_space()->MapPointersEncodable()) compacting_collection_ = false; if (FLAG_collect_maps) CreateBackPointers(); #ifdef ENABLE_GDB_JIT_INTERFACE if (FLAG_gdbjit) { // If GDBJIT interface is active disable compaction. compacting_collection_ = false; } #endif PagedSpaces spaces; for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->PrepareForMarkCompact(compacting_collection_); } #ifdef DEBUG live_bytes_ = 0; live_young_objects_size_ = 0; live_old_pointer_objects_size_ = 0; live_old_data_objects_size_ = 0; live_code_objects_size_ = 0; live_map_objects_size_ = 0; live_cell_objects_size_ = 0; live_lo_objects_size_ = 0; #endif } void MarkCompactCollector::Finish() { #ifdef DEBUG ASSERT(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS); state_ = IDLE; #endif // The stub cache is not traversed during GC; clear the cache to // force lazy re-initialization of it. This must be done after the // GC, because it relies on the new address of certain old space // objects (empty string, illegal builtin). heap()->isolate()->stub_cache()->Clear(); heap()->external_string_table_.CleanUp(); // If we've just compacted old space there's no reason to check the // fragmentation limit. Just return. if (HasCompacted()) return; // We compact the old generation on the next GC if it has gotten too // fragmented (ie, we could recover an expected amount of space by // reclaiming the waste and free list blocks). static const int kFragmentationLimit = 15; // Percent. static const int kFragmentationAllowed = 1 * MB; // Absolute. intptr_t old_gen_recoverable = 0; intptr_t old_gen_used = 0; OldSpaces spaces; for (OldSpace* space = spaces.next(); space != NULL; space = spaces.next()) { old_gen_recoverable += space->Waste() + space->AvailableFree(); old_gen_used += space->Size(); } int old_gen_fragmentation = static_cast((old_gen_recoverable * 100.0) / old_gen_used); if (old_gen_fragmentation > kFragmentationLimit && old_gen_recoverable > kFragmentationAllowed) { compact_on_next_gc_ = true; } } // ------------------------------------------------------------------------- // Phase 1: tracing and marking live objects. // before: all objects are in normal state. // after: a live object's map pointer is marked as '00'. // Marking all live objects in the heap as part of mark-sweep or mark-compact // collection. Before marking, all objects are in their normal state. After // marking, live objects' map pointers are marked indicating that the object // has been found reachable. // // The marking algorithm is a (mostly) depth-first (because of possible stack // overflow) traversal of the graph of objects reachable from the roots. It // uses an explicit stack of pointers rather than recursion. The young // generation's inactive ('from') space is used as a marking stack. The // objects in the marking stack are the ones that have been reached and marked // but their children have not yet been visited. // // The marking stack can overflow during traversal. In that case, we set an // overflow flag. When the overflow flag is set, we continue marking objects // reachable from the objects on the marking stack, but no longer push them on // the marking stack. Instead, we mark them as both marked and overflowed. // When the stack is in the overflowed state, objects marked as overflowed // have been reached and marked but their children have not been visited yet. // After emptying the marking stack, we clear the overflow flag and traverse // the heap looking for objects marked as overflowed, push them on the stack, // and continue with marking. This process repeats until all reachable // objects have been marked. class CodeFlusher { public: explicit CodeFlusher(Isolate* isolate) : isolate_(isolate), jsfunction_candidates_head_(NULL), shared_function_info_candidates_head_(NULL) {} void AddCandidate(SharedFunctionInfo* shared_info) { SetNextCandidate(shared_info, shared_function_info_candidates_head_); shared_function_info_candidates_head_ = shared_info; } void AddCandidate(JSFunction* function) { ASSERT(function->unchecked_code() == function->unchecked_shared()->unchecked_code()); SetNextCandidate(function, jsfunction_candidates_head_); jsfunction_candidates_head_ = function; } void ProcessCandidates() { ProcessSharedFunctionInfoCandidates(); ProcessJSFunctionCandidates(); } private: void ProcessJSFunctionCandidates() { Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kLazyCompile); JSFunction* candidate = jsfunction_candidates_head_; JSFunction* next_candidate; while (candidate != NULL) { next_candidate = GetNextCandidate(candidate); SharedFunctionInfo* shared = candidate->unchecked_shared(); Code* code = shared->unchecked_code(); if (!code->IsMarked()) { shared->set_code(lazy_compile); candidate->set_code(lazy_compile); } else { candidate->set_code(shared->unchecked_code()); } candidate = next_candidate; } jsfunction_candidates_head_ = NULL; } void ProcessSharedFunctionInfoCandidates() { Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kLazyCompile); SharedFunctionInfo* candidate = shared_function_info_candidates_head_; SharedFunctionInfo* next_candidate; while (candidate != NULL) { next_candidate = GetNextCandidate(candidate); SetNextCandidate(candidate, NULL); Code* code = candidate->unchecked_code(); if (!code->IsMarked()) { candidate->set_code(lazy_compile); } candidate = next_candidate; } shared_function_info_candidates_head_ = NULL; } static JSFunction** GetNextCandidateField(JSFunction* candidate) { return reinterpret_cast( candidate->address() + JSFunction::kCodeEntryOffset); } static JSFunction* GetNextCandidate(JSFunction* candidate) { return *GetNextCandidateField(candidate); } static void SetNextCandidate(JSFunction* candidate, JSFunction* next_candidate) { *GetNextCandidateField(candidate) = next_candidate; } static SharedFunctionInfo** GetNextCandidateField( SharedFunctionInfo* candidate) { Code* code = candidate->unchecked_code(); return reinterpret_cast( code->address() + Code::kNextCodeFlushingCandidateOffset); } static SharedFunctionInfo* GetNextCandidate(SharedFunctionInfo* candidate) { return *GetNextCandidateField(candidate); } static void SetNextCandidate(SharedFunctionInfo* candidate, SharedFunctionInfo* next_candidate) { *GetNextCandidateField(candidate) = next_candidate; } Isolate* isolate_; JSFunction* jsfunction_candidates_head_; SharedFunctionInfo* shared_function_info_candidates_head_; DISALLOW_COPY_AND_ASSIGN(CodeFlusher); }; MarkCompactCollector::~MarkCompactCollector() { if (code_flusher_ != NULL) { delete code_flusher_; code_flusher_ = NULL; } } static inline HeapObject* ShortCircuitConsString(Object** p) { // Optimization: If the heap object pointed to by p is a non-symbol // cons string whose right substring is HEAP->empty_string, update // it in place to its left substring. Return the updated value. // // Here we assume that if we change *p, we replace it with a heap object // (ie, the left substring of a cons string is always a heap object). // // The check performed is: // object->IsConsString() && !object->IsSymbol() && // (ConsString::cast(object)->second() == HEAP->empty_string()) // except the maps for the object and its possible substrings might be // marked. HeapObject* object = HeapObject::cast(*p); MapWord map_word = object->map_word(); map_word.ClearMark(); InstanceType type = map_word.ToMap()->instance_type(); if ((type & kShortcutTypeMask) != kShortcutTypeTag) return object; Object* second = reinterpret_cast(object)->unchecked_second(); Heap* heap = map_word.ToMap()->heap(); if (second != heap->raw_unchecked_empty_string()) { return object; } // Since we don't have the object's start, it is impossible to update the // page dirty marks. Therefore, we only replace the string with its left // substring when page dirty marks do not change. Object* first = reinterpret_cast(object)->unchecked_first(); if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object; *p = first; return HeapObject::cast(first); } class StaticMarkingVisitor : public StaticVisitorBase { public: static inline void IterateBody(Map* map, HeapObject* obj) { table_.GetVisitor(map)(map, obj); } static void Initialize() { table_.Register(kVisitShortcutCandidate, &FixedBodyVisitor::Visit); table_.Register(kVisitConsString, &FixedBodyVisitor::Visit); table_.Register(kVisitFixedArray, &FlexibleBodyVisitor::Visit); table_.Register(kVisitGlobalContext, &FixedBodyVisitor::Visit); table_.Register(kVisitByteArray, &DataObjectVisitor::Visit); table_.Register(kVisitSeqAsciiString, &DataObjectVisitor::Visit); table_.Register(kVisitSeqTwoByteString, &DataObjectVisitor::Visit); table_.Register(kVisitOddball, &FixedBodyVisitor::Visit); table_.Register(kVisitMap, &FixedBodyVisitor::Visit); table_.Register(kVisitCode, &VisitCode); table_.Register(kVisitSharedFunctionInfo, &VisitSharedFunctionInfoAndFlushCode); table_.Register(kVisitJSFunction, &VisitJSFunctionAndFlushCode); table_.Register(kVisitPropertyCell, &FixedBodyVisitor::Visit); table_.RegisterSpecializations(); table_.RegisterSpecializations(); table_.RegisterSpecializations(); } INLINE(static void VisitPointer(Heap* heap, Object** p)) { MarkObjectByPointer(heap, p); } INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) { // Mark all objects pointed to in [start, end). const int kMinRangeForMarkingRecursion = 64; if (end - start >= kMinRangeForMarkingRecursion) { if (VisitUnmarkedObjects(heap, start, end)) return; // We are close to a stack overflow, so just mark the objects. } for (Object** p = start; p < end; p++) MarkObjectByPointer(heap, p); } static inline void VisitCodeTarget(Heap* heap, RelocInfo* rinfo) { ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); Code* code = Code::GetCodeFromTargetAddress(rinfo->target_address()); if (FLAG_cleanup_code_caches_at_gc && code->is_inline_cache_stub()) { IC::Clear(rinfo->pc()); // Please note targets for cleared inline cached do not have to be // marked since they are contained in HEAP->non_monomorphic_cache(). } else { heap->mark_compact_collector()->MarkObject(code); } } static void VisitGlobalPropertyCell(Heap* heap, RelocInfo* rinfo) { ASSERT(rinfo->rmode() == RelocInfo::GLOBAL_PROPERTY_CELL); Object* cell = rinfo->target_cell(); Object* old_cell = cell; VisitPointer(heap, &cell); if (cell != old_cell) { rinfo->set_target_cell(reinterpret_cast(cell)); } } static inline void VisitDebugTarget(Heap* heap, RelocInfo* rinfo) { ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) && rinfo->IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && rinfo->IsPatchedDebugBreakSlotSequence())); HeapObject* code = Code::GetCodeFromTargetAddress(rinfo->call_address()); heap->mark_compact_collector()->MarkObject(code); } // Mark object pointed to by p. INLINE(static void MarkObjectByPointer(Heap* heap, Object** p)) { if (!(*p)->IsHeapObject()) return; HeapObject* object = ShortCircuitConsString(p); if (!object->IsMarked()) { heap->mark_compact_collector()->MarkUnmarkedObject(object); } } // Visit an unmarked object. INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector, HeapObject* obj)) { #ifdef DEBUG ASSERT(Isolate::Current()->heap()->Contains(obj)); ASSERT(!obj->IsMarked()); #endif Map* map = obj->map(); collector->SetMark(obj); // Mark the map pointer and the body. if (!map->IsMarked()) collector->MarkUnmarkedObject(map); IterateBody(map, obj); } // Visit all unmarked objects pointed to by [start, end). // Returns false if the operation fails (lack of stack space). static inline bool VisitUnmarkedObjects(Heap* heap, Object** start, Object** end) { // Return false is we are close to the stack limit. StackLimitCheck check(heap->isolate()); if (check.HasOverflowed()) return false; MarkCompactCollector* collector = heap->mark_compact_collector(); // Visit the unmarked objects. for (Object** p = start; p < end; p++) { if (!(*p)->IsHeapObject()) continue; HeapObject* obj = HeapObject::cast(*p); if (obj->IsMarked()) continue; VisitUnmarkedObject(collector, obj); } return true; } static inline void VisitExternalReference(Address* p) { } static inline void VisitRuntimeEntry(RelocInfo* rinfo) { } private: class DataObjectVisitor { public: template static void VisitSpecialized(Map* map, HeapObject* object) { } static void Visit(Map* map, HeapObject* object) { } }; typedef FlexibleBodyVisitor JSObjectVisitor; typedef FlexibleBodyVisitor StructObjectVisitor; static void VisitCode(Map* map, HeapObject* object) { reinterpret_cast(object)->CodeIterateBody( map->heap()); } // Code flushing support. // How many collections newly compiled code object will survive before being // flushed. static const int kCodeAgeThreshold = 5; inline static bool HasSourceCode(Heap* heap, SharedFunctionInfo* info) { Object* undefined = heap->raw_unchecked_undefined_value(); return (info->script() != undefined) && (reinterpret_cast(info->script())->source() != undefined); } inline static bool IsCompiled(JSFunction* function) { return function->unchecked_code() != function->GetIsolate()->builtins()->builtin(Builtins::kLazyCompile); } inline static bool IsCompiled(SharedFunctionInfo* function) { return function->unchecked_code() != function->GetIsolate()->builtins()->builtin(Builtins::kLazyCompile); } inline static bool IsFlushable(Heap* heap, JSFunction* function) { SharedFunctionInfo* shared_info = function->unchecked_shared(); // Code is either on stack, in compilation cache or referenced // by optimized version of function. if (function->unchecked_code()->IsMarked()) { shared_info->set_code_age(0); return false; } // We do not flush code for optimized functions. if (function->code() != shared_info->unchecked_code()) { return false; } return IsFlushable(heap, shared_info); } inline static bool IsFlushable(Heap* heap, SharedFunctionInfo* shared_info) { // Code is either on stack, in compilation cache or referenced // by optimized version of function. if (shared_info->unchecked_code()->IsMarked()) { shared_info->set_code_age(0); return false; } // The function must be compiled and have the source code available, // to be able to recompile it in case we need the function again. if (!(shared_info->is_compiled() && HasSourceCode(heap, shared_info))) { return false; } // We never flush code for Api functions. Object* function_data = shared_info->function_data(); if (function_data->IsHeapObject() && (SafeMap(function_data)->instance_type() == FUNCTION_TEMPLATE_INFO_TYPE)) { return false; } // Only flush code for functions. if (shared_info->code()->kind() != Code::FUNCTION) return false; // Function must be lazy compilable. if (!shared_info->allows_lazy_compilation()) return false; // If this is a full script wrapped in a function we do no flush the code. if (shared_info->is_toplevel()) return false; // Age this shared function info. if (shared_info->code_age() < kCodeAgeThreshold) { shared_info->set_code_age(shared_info->code_age() + 1); return false; } return true; } static bool FlushCodeForFunction(Heap* heap, JSFunction* function) { if (!IsFlushable(heap, function)) return false; // This function's code looks flushable. But we have to postpone the // decision until we see all functions that point to the same // SharedFunctionInfo because some of them might be optimized. // That would make the nonoptimized version of the code nonflushable, // because it is required for bailing out from optimized code. heap->mark_compact_collector()->code_flusher()->AddCandidate(function); return true; } static inline Map* SafeMap(Object* obj) { MapWord map_word = HeapObject::cast(obj)->map_word(); map_word.ClearMark(); map_word.ClearOverflow(); return map_word.ToMap(); } static inline bool IsJSBuiltinsObject(Object* obj) { return obj->IsHeapObject() && (SafeMap(obj)->instance_type() == JS_BUILTINS_OBJECT_TYPE); } static inline bool IsValidNotBuiltinContext(Object* ctx) { if (!ctx->IsHeapObject()) return false; Map* map = SafeMap(ctx); Heap* heap = map->heap(); if (!(map == heap->raw_unchecked_context_map() || map == heap->raw_unchecked_catch_context_map() || map == heap->raw_unchecked_global_context_map())) { return false; } Context* context = reinterpret_cast(ctx); if (IsJSBuiltinsObject(context->global())) { return false; } return true; } static void VisitSharedFunctionInfoGeneric(Map* map, HeapObject* object) { SharedFunctionInfo* shared = reinterpret_cast(object); if (shared->IsInobjectSlackTrackingInProgress()) shared->DetachInitialMap(); FixedBodyVisitor::Visit(map, object); } static void VisitSharedFunctionInfoAndFlushCode(Map* map, HeapObject* object) { MarkCompactCollector* collector = map->heap()->mark_compact_collector(); if (!collector->is_code_flushing_enabled()) { VisitSharedFunctionInfoGeneric(map, object); return; } VisitSharedFunctionInfoAndFlushCodeGeneric(map, object, false); } static void VisitSharedFunctionInfoAndFlushCodeGeneric( Map* map, HeapObject* object, bool known_flush_code_candidate) { Heap* heap = map->heap(); SharedFunctionInfo* shared = reinterpret_cast(object); if (shared->IsInobjectSlackTrackingInProgress()) shared->DetachInitialMap(); if (!known_flush_code_candidate) { known_flush_code_candidate = IsFlushable(heap, shared); if (known_flush_code_candidate) { heap->mark_compact_collector()->code_flusher()->AddCandidate(shared); } } VisitSharedFunctionInfoFields(heap, object, known_flush_code_candidate); } static void VisitCodeEntry(Heap* heap, Address entry_address) { Object* code = Code::GetObjectFromEntryAddress(entry_address); Object* old_code = code; VisitPointer(heap, &code); if (code != old_code) { Memory::Address_at(entry_address) = reinterpret_cast(code)->entry(); } } static void VisitJSFunctionAndFlushCode(Map* map, HeapObject* object) { Heap* heap = map->heap(); MarkCompactCollector* collector = heap->mark_compact_collector(); if (!collector->is_code_flushing_enabled()) { VisitJSFunction(map, object); return; } JSFunction* jsfunction = reinterpret_cast(object); // The function must have a valid context and not be a builtin. bool flush_code_candidate = false; if (IsValidNotBuiltinContext(jsfunction->unchecked_context())) { flush_code_candidate = FlushCodeForFunction(heap, jsfunction); } if (!flush_code_candidate) { collector->MarkObject(jsfunction->unchecked_shared()->unchecked_code()); if (jsfunction->unchecked_code()->kind() == Code::OPTIMIZED_FUNCTION) { // For optimized functions we should retain both non-optimized version // of it's code and non-optimized version of all inlined functions. // This is required to support bailing out from inlined code. DeoptimizationInputData* data = reinterpret_cast( jsfunction->unchecked_code()->unchecked_deoptimization_data()); FixedArray* literals = data->UncheckedLiteralArray(); for (int i = 0, count = data->InlinedFunctionCount()->value(); i < count; i++) { JSFunction* inlined = reinterpret_cast(literals->get(i)); collector->MarkObject(inlined->unchecked_shared()->unchecked_code()); } } } VisitJSFunctionFields(map, reinterpret_cast(object), flush_code_candidate); } static void VisitJSFunction(Map* map, HeapObject* object) { VisitJSFunctionFields(map, reinterpret_cast(object), false); } #define SLOT_ADDR(obj, offset) \ reinterpret_cast((obj)->address() + offset) static inline void VisitJSFunctionFields(Map* map, JSFunction* object, bool flush_code_candidate) { Heap* heap = map->heap(); MarkCompactCollector* collector = heap->mark_compact_collector(); VisitPointers(heap, SLOT_ADDR(object, JSFunction::kPropertiesOffset), SLOT_ADDR(object, JSFunction::kCodeEntryOffset)); if (!flush_code_candidate) { VisitCodeEntry(heap, object->address() + JSFunction::kCodeEntryOffset); } else { // Don't visit code object. // Visit shared function info to avoid double checking of it's // flushability. SharedFunctionInfo* shared_info = object->unchecked_shared(); if (!shared_info->IsMarked()) { Map* shared_info_map = shared_info->map(); collector->SetMark(shared_info); collector->MarkObject(shared_info_map); VisitSharedFunctionInfoAndFlushCodeGeneric(shared_info_map, shared_info, true); } } VisitPointers(heap, SLOT_ADDR(object, JSFunction::kCodeEntryOffset + kPointerSize), SLOT_ADDR(object, JSFunction::kNonWeakFieldsEndOffset)); // Don't visit the next function list field as it is a weak reference. } static void VisitSharedFunctionInfoFields(Heap* heap, HeapObject* object, bool flush_code_candidate) { VisitPointer(heap, SLOT_ADDR(object, SharedFunctionInfo::kNameOffset)); if (!flush_code_candidate) { VisitPointer(heap, SLOT_ADDR(object, SharedFunctionInfo::kCodeOffset)); } VisitPointers(heap, SLOT_ADDR(object, SharedFunctionInfo::kScopeInfoOffset), SLOT_ADDR(object, SharedFunctionInfo::kSize)); } #undef SLOT_ADDR typedef void (*Callback)(Map* map, HeapObject* object); static VisitorDispatchTable table_; }; VisitorDispatchTable StaticMarkingVisitor::table_; class MarkingVisitor : public ObjectVisitor { public: explicit MarkingVisitor(Heap* heap) : heap_(heap) { } void VisitPointer(Object** p) { StaticMarkingVisitor::VisitPointer(heap_, p); } void VisitPointers(Object** start, Object** end) { StaticMarkingVisitor::VisitPointers(heap_, start, end); } void VisitCodeTarget(Heap* heap, RelocInfo* rinfo) { StaticMarkingVisitor::VisitCodeTarget(heap, rinfo); } void VisitGlobalPropertyCell(Heap* heap, RelocInfo* rinfo) { StaticMarkingVisitor::VisitGlobalPropertyCell(heap, rinfo); } void VisitDebugTarget(Heap* heap, RelocInfo* rinfo) { StaticMarkingVisitor::VisitDebugTarget(heap, rinfo); } private: Heap* heap_; }; class CodeMarkingVisitor : public ThreadVisitor { public: explicit CodeMarkingVisitor(MarkCompactCollector* collector) : collector_(collector) {} void VisitThread(Isolate* isolate, ThreadLocalTop* top) { for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) { collector_->MarkObject(it.frame()->unchecked_code()); } } private: MarkCompactCollector* collector_; }; class SharedFunctionInfoMarkingVisitor : public ObjectVisitor { public: explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector) : collector_(collector) {} void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) VisitPointer(p); } void VisitPointer(Object** slot) { Object* obj = *slot; if (obj->IsSharedFunctionInfo()) { SharedFunctionInfo* shared = reinterpret_cast(obj); collector_->MarkObject(shared->unchecked_code()); collector_->MarkObject(shared); } } private: MarkCompactCollector* collector_; }; void MarkCompactCollector::PrepareForCodeFlushing() { ASSERT(heap() == Isolate::Current()->heap()); if (!FLAG_flush_code) { EnableCodeFlushing(false); return; } #ifdef ENABLE_DEBUGGER_SUPPORT if (heap()->isolate()->debug()->IsLoaded() || heap()->isolate()->debug()->has_break_points()) { EnableCodeFlushing(false); return; } #endif EnableCodeFlushing(true); // Ensure that empty descriptor array is marked. Method MarkDescriptorArray // relies on it being marked before any other descriptor array. MarkObject(heap()->raw_unchecked_empty_descriptor_array()); // Make sure we are not referencing the code from the stack. ASSERT(this == heap()->mark_compact_collector()); for (StackFrameIterator it; !it.done(); it.Advance()) { MarkObject(it.frame()->unchecked_code()); } // Iterate the archived stacks in all threads to check if // the code is referenced. CodeMarkingVisitor code_marking_visitor(this); heap()->isolate()->thread_manager()->IterateArchivedThreads( &code_marking_visitor); SharedFunctionInfoMarkingVisitor visitor(this); heap()->isolate()->compilation_cache()->IterateFunctions(&visitor); heap()->isolate()->handle_scope_implementer()->Iterate(&visitor); ProcessMarkingStack(); } // Visitor class for marking heap roots. class RootMarkingVisitor : public ObjectVisitor { public: explicit RootMarkingVisitor(Heap* heap) : collector_(heap->mark_compact_collector()) { } void VisitPointer(Object** p) { MarkObjectByPointer(p); } void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) MarkObjectByPointer(p); } private: void MarkObjectByPointer(Object** p) { if (!(*p)->IsHeapObject()) return; // Replace flat cons strings in place. HeapObject* object = ShortCircuitConsString(p); if (object->IsMarked()) return; Map* map = object->map(); // Mark the object. collector_->SetMark(object); // Mark the map pointer and body, and push them on the marking stack. collector_->MarkObject(map); StaticMarkingVisitor::IterateBody(map, object); // Mark all the objects reachable from the map and body. May leave // overflowed objects in the heap. collector_->EmptyMarkingStack(); } MarkCompactCollector* collector_; }; // Helper class for pruning the symbol table. class SymbolTableCleaner : public ObjectVisitor { public: explicit SymbolTableCleaner(Heap* heap) : heap_(heap), pointers_removed_(0) { } virtual void VisitPointers(Object** start, Object** end) { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject() && !HeapObject::cast(*p)->IsMarked()) { // Check if the symbol being pruned is an external symbol. We need to // delete the associated external data as this symbol is going away. // Since no objects have yet been moved we can safely access the map of // the object. if ((*p)->IsExternalString()) { heap_->FinalizeExternalString(String::cast(*p)); } // Set the entry to null_value (as deleted). *p = heap_->raw_unchecked_null_value(); pointers_removed_++; } } } int PointersRemoved() { return pointers_removed_; } private: Heap* heap_; int pointers_removed_; }; // Implementation of WeakObjectRetainer for mark compact GCs. All marked objects // are retained. class MarkCompactWeakObjectRetainer : public WeakObjectRetainer { public: virtual Object* RetainAs(Object* object) { MapWord first_word = HeapObject::cast(object)->map_word(); if (first_word.IsMarked()) { return object; } else { return NULL; } } }; void MarkCompactCollector::MarkUnmarkedObject(HeapObject* object) { ASSERT(!object->IsMarked()); ASSERT(HEAP->Contains(object)); if (object->IsMap()) { Map* map = Map::cast(object); if (FLAG_cleanup_code_caches_at_gc) { map->ClearCodeCache(heap()); } SetMark(map); if (FLAG_collect_maps && map->instance_type() >= FIRST_JS_OBJECT_TYPE && map->instance_type() <= JS_FUNCTION_TYPE) { MarkMapContents(map); } else { marking_stack_.Push(map); } } else { SetMark(object); marking_stack_.Push(object); } } void MarkCompactCollector::MarkMapContents(Map* map) { // Mark prototype transitions array but don't push it into marking stack. // This will make references from it weak. We will clean dead prototype // transitions in ClearNonLiveTransitions. FixedArray* prototype_transitions = map->unchecked_prototype_transitions(); if (!prototype_transitions->IsMarked()) SetMark(prototype_transitions); Object* raw_descriptor_array = *HeapObject::RawField(map, Map::kInstanceDescriptorsOrBitField3Offset); if (!raw_descriptor_array->IsSmi()) { MarkDescriptorArray( reinterpret_cast(raw_descriptor_array)); } // Mark the Object* fields of the Map. // Since the descriptor array has been marked already, it is fine // that one of these fields contains a pointer to it. Object** start_slot = HeapObject::RawField(map, Map::kPointerFieldsBeginOffset); Object** end_slot = HeapObject::RawField(map, Map::kPointerFieldsEndOffset); StaticMarkingVisitor::VisitPointers(map->heap(), start_slot, end_slot); } void MarkCompactCollector::MarkDescriptorArray( DescriptorArray* descriptors) { if (descriptors->IsMarked()) return; // Empty descriptor array is marked as a root before any maps are marked. ASSERT(descriptors != HEAP->raw_unchecked_empty_descriptor_array()); SetMark(descriptors); FixedArray* contents = reinterpret_cast( descriptors->get(DescriptorArray::kContentArrayIndex)); ASSERT(contents->IsHeapObject()); ASSERT(!contents->IsMarked()); ASSERT(contents->IsFixedArray()); ASSERT(contents->length() >= 2); SetMark(contents); // Contents contains (value, details) pairs. If the details say that the type // of descriptor is MAP_TRANSITION, CONSTANT_TRANSITION, // EXTERNAL_ARRAY_TRANSITION or NULL_DESCRIPTOR, we don't mark the value as // live. Only for MAP_TRANSITION, EXTERNAL_ARRAY_TRANSITION and // CONSTANT_TRANSITION is the value an Object* (a Map*). for (int i = 0; i < contents->length(); i += 2) { // If the pair (value, details) at index i, i+1 is not // a transition or null descriptor, mark the value. PropertyDetails details(Smi::cast(contents->get(i + 1))); if (details.type() < FIRST_PHANTOM_PROPERTY_TYPE) { HeapObject* object = reinterpret_cast(contents->get(i)); if (object->IsHeapObject() && !object->IsMarked()) { SetMark(object); marking_stack_.Push(object); } } } // The DescriptorArray descriptors contains a pointer to its contents array, // but the contents array is already marked. marking_stack_.Push(descriptors); } void MarkCompactCollector::CreateBackPointers() { HeapObjectIterator iterator(heap()->map_space()); for (HeapObject* next_object = iterator.next(); next_object != NULL; next_object = iterator.next()) { if (next_object->IsMap()) { // Could also be ByteArray on free list. Map* map = Map::cast(next_object); if (map->instance_type() >= FIRST_JS_OBJECT_TYPE && map->instance_type() <= JS_FUNCTION_TYPE) { map->CreateBackPointers(); } else { ASSERT(map->instance_descriptors() == heap()->empty_descriptor_array()); } } } } static int OverflowObjectSize(HeapObject* obj) { // Recover the normal map pointer, it might be marked as live and // overflowed. MapWord map_word = obj->map_word(); map_word.ClearMark(); map_word.ClearOverflow(); return obj->SizeFromMap(map_word.ToMap()); } class OverflowedObjectsScanner : public AllStatic { public: // Fill the marking stack with overflowed objects returned by the given // iterator. Stop when the marking stack is filled or the end of the space // is reached, whichever comes first. template static inline void ScanOverflowedObjects(MarkCompactCollector* collector, T* it) { // The caller should ensure that the marking stack is initially not full, // so that we don't waste effort pointlessly scanning for objects. ASSERT(!collector->marking_stack_.is_full()); for (HeapObject* object = it->next(); object != NULL; object = it->next()) { if (object->IsOverflowed()) { object->ClearOverflow(); ASSERT(object->IsMarked()); ASSERT(HEAP->Contains(object)); collector->marking_stack_.Push(object); if (collector->marking_stack_.is_full()) return; } } } }; bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) { return (*p)->IsHeapObject() && !HeapObject::cast(*p)->IsMarked(); } void MarkCompactCollector::MarkSymbolTable() { SymbolTable* symbol_table = heap()->raw_unchecked_symbol_table(); // Mark the symbol table itself. SetMark(symbol_table); // Explicitly mark the prefix. MarkingVisitor marker(heap()); symbol_table->IteratePrefix(&marker); ProcessMarkingStack(); } void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) { // Mark the heap roots including global variables, stack variables, // etc., and all objects reachable from them. heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG); // Handle the symbol table specially. MarkSymbolTable(); // There may be overflowed objects in the heap. Visit them now. while (marking_stack_.overflowed()) { RefillMarkingStack(); EmptyMarkingStack(); } } void MarkCompactCollector::MarkObjectGroups() { List* object_groups = heap()->isolate()->global_handles()->object_groups(); int last = 0; for (int i = 0; i < object_groups->length(); i++) { ObjectGroup* entry = object_groups->at(i); ASSERT(entry != NULL); Object*** objects = entry->objects_; bool group_marked = false; for (size_t j = 0; j < entry->length_; j++) { Object* object = *objects[j]; if (object->IsHeapObject() && HeapObject::cast(object)->IsMarked()) { group_marked = true; break; } } if (!group_marked) { (*object_groups)[last++] = entry; continue; } // An object in the group is marked, so mark all heap objects in // the group. for (size_t j = 0; j < entry->length_; ++j) { if ((*objects[j])->IsHeapObject()) { MarkObject(HeapObject::cast(*objects[j])); } } // Once the entire group has been marked, dispose it because it's // not needed anymore. entry->Dispose(); } object_groups->Rewind(last); } void MarkCompactCollector::MarkImplicitRefGroups() { List* ref_groups = heap()->isolate()->global_handles()->implicit_ref_groups(); int last = 0; for (int i = 0; i < ref_groups->length(); i++) { ImplicitRefGroup* entry = ref_groups->at(i); ASSERT(entry != NULL); if (!(*entry->parent_)->IsMarked()) { (*ref_groups)[last++] = entry; continue; } Object*** children = entry->children_; // A parent object is marked, so mark all child heap objects. for (size_t j = 0; j < entry->length_; ++j) { if ((*children[j])->IsHeapObject()) { MarkObject(HeapObject::cast(*children[j])); } } // Once the entire group has been marked, dispose it because it's // not needed anymore. entry->Dispose(); } ref_groups->Rewind(last); } // Mark all objects reachable from the objects on the marking stack. // Before: the marking stack contains zero or more heap object pointers. // After: the marking stack is empty, and all objects reachable from the // marking stack have been marked, or are overflowed in the heap. void MarkCompactCollector::EmptyMarkingStack() { while (!marking_stack_.is_empty()) { HeapObject* object = marking_stack_.Pop(); ASSERT(object->IsHeapObject()); ASSERT(heap()->Contains(object)); ASSERT(object->IsMarked()); ASSERT(!object->IsOverflowed()); // Because the object is marked, we have to recover the original map // pointer and use it to mark the object's body. MapWord map_word = object->map_word(); map_word.ClearMark(); Map* map = map_word.ToMap(); MarkObject(map); StaticMarkingVisitor::IterateBody(map, object); } } // Sweep the heap for overflowed objects, clear their overflow bits, and // push them on the marking stack. Stop early if the marking stack fills // before sweeping completes. If sweeping completes, there are no remaining // overflowed objects in the heap so the overflow flag on the markings stack // is cleared. void MarkCompactCollector::RefillMarkingStack() { ASSERT(marking_stack_.overflowed()); SemiSpaceIterator new_it(heap()->new_space(), &OverflowObjectSize); OverflowedObjectsScanner::ScanOverflowedObjects(this, &new_it); if (marking_stack_.is_full()) return; HeapObjectIterator old_pointer_it(heap()->old_pointer_space(), &OverflowObjectSize); OverflowedObjectsScanner::ScanOverflowedObjects(this, &old_pointer_it); if (marking_stack_.is_full()) return; HeapObjectIterator old_data_it(heap()->old_data_space(), &OverflowObjectSize); OverflowedObjectsScanner::ScanOverflowedObjects(this, &old_data_it); if (marking_stack_.is_full()) return; HeapObjectIterator code_it(heap()->code_space(), &OverflowObjectSize); OverflowedObjectsScanner::ScanOverflowedObjects(this, &code_it); if (marking_stack_.is_full()) return; HeapObjectIterator map_it(heap()->map_space(), &OverflowObjectSize); OverflowedObjectsScanner::ScanOverflowedObjects(this, &map_it); if (marking_stack_.is_full()) return; HeapObjectIterator cell_it(heap()->cell_space(), &OverflowObjectSize); OverflowedObjectsScanner::ScanOverflowedObjects(this, &cell_it); if (marking_stack_.is_full()) return; LargeObjectIterator lo_it(heap()->lo_space(), &OverflowObjectSize); OverflowedObjectsScanner::ScanOverflowedObjects(this, &lo_it); if (marking_stack_.is_full()) return; marking_stack_.clear_overflowed(); } // Mark all objects reachable (transitively) from objects on the marking // stack. Before: the marking stack contains zero or more heap object // pointers. After: the marking stack is empty and there are no overflowed // objects in the heap. void MarkCompactCollector::ProcessMarkingStack() { EmptyMarkingStack(); while (marking_stack_.overflowed()) { RefillMarkingStack(); EmptyMarkingStack(); } } void MarkCompactCollector::ProcessExternalMarking() { bool work_to_do = true; ASSERT(marking_stack_.is_empty()); while (work_to_do) { MarkObjectGroups(); MarkImplicitRefGroups(); work_to_do = !marking_stack_.is_empty(); ProcessMarkingStack(); } } void MarkCompactCollector::MarkLiveObjects() { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_MARK); // The recursive GC marker detects when it is nearing stack overflow, // and switches to a different marking system. JS interrupts interfere // with the C stack limit check. PostponeInterruptsScope postpone(heap()->isolate()); #ifdef DEBUG ASSERT(state_ == PREPARE_GC); state_ = MARK_LIVE_OBJECTS; #endif // The to space contains live objects, the from space is used as a marking // stack. marking_stack_.Initialize(heap()->new_space()->FromSpaceLow(), heap()->new_space()->FromSpaceHigh()); ASSERT(!marking_stack_.overflowed()); PrepareForCodeFlushing(); RootMarkingVisitor root_visitor(heap()); MarkRoots(&root_visitor); // The objects reachable from the roots are marked, yet unreachable // objects are unmarked. Mark objects reachable due to host // application specific logic. ProcessExternalMarking(); // The objects reachable from the roots or object groups are marked, // yet unreachable objects are unmarked. Mark objects reachable // only from weak global handles. // // First we identify nonlive weak handles and mark them as pending // destruction. heap()->isolate()->global_handles()->IdentifyWeakHandles( &IsUnmarkedHeapObject); // Then we mark the objects and process the transitive closure. heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor); while (marking_stack_.overflowed()) { RefillMarkingStack(); EmptyMarkingStack(); } // Repeat host application specific marking to mark unmarked objects // reachable from the weak roots. ProcessExternalMarking(); // Prune the symbol table removing all symbols only pointed to by the // symbol table. Cannot use symbol_table() here because the symbol // table is marked. SymbolTable* symbol_table = heap()->raw_unchecked_symbol_table(); SymbolTableCleaner v(heap()); symbol_table->IterateElements(&v); symbol_table->ElementsRemoved(v.PointersRemoved()); heap()->external_string_table_.Iterate(&v); heap()->external_string_table_.CleanUp(); // Process the weak references. MarkCompactWeakObjectRetainer mark_compact_object_retainer; heap()->ProcessWeakReferences(&mark_compact_object_retainer); // Remove object groups after marking phase. heap()->isolate()->global_handles()->RemoveObjectGroups(); heap()->isolate()->global_handles()->RemoveImplicitRefGroups(); // Flush code from collected candidates. if (is_code_flushing_enabled()) { code_flusher_->ProcessCandidates(); } // Clean up dead objects from the runtime profiler. heap()->isolate()->runtime_profiler()->RemoveDeadSamples(); } #ifdef DEBUG void MarkCompactCollector::UpdateLiveObjectCount(HeapObject* obj) { live_bytes_ += obj->Size(); if (heap()->new_space()->Contains(obj)) { live_young_objects_size_ += obj->Size(); } else if (heap()->map_space()->Contains(obj)) { ASSERT(obj->IsMap()); live_map_objects_size_ += obj->Size(); } else if (heap()->cell_space()->Contains(obj)) { ASSERT(obj->IsJSGlobalPropertyCell()); live_cell_objects_size_ += obj->Size(); } else if (heap()->old_pointer_space()->Contains(obj)) { live_old_pointer_objects_size_ += obj->Size(); } else if (heap()->old_data_space()->Contains(obj)) { live_old_data_objects_size_ += obj->Size(); } else if (heap()->code_space()->Contains(obj)) { live_code_objects_size_ += obj->Size(); } else if (heap()->lo_space()->Contains(obj)) { live_lo_objects_size_ += obj->Size(); } else { UNREACHABLE(); } } #endif // DEBUG void MarkCompactCollector::SweepLargeObjectSpace() { #ifdef DEBUG ASSERT(state_ == MARK_LIVE_OBJECTS); state_ = compacting_collection_ ? ENCODE_FORWARDING_ADDRESSES : SWEEP_SPACES; #endif // Deallocate unmarked objects and clear marked bits for marked objects. heap()->lo_space()->FreeUnmarkedObjects(); } // Safe to use during marking phase only. bool MarkCompactCollector::SafeIsMap(HeapObject* object) { MapWord metamap = object->map_word(); metamap.ClearMark(); return metamap.ToMap()->instance_type() == MAP_TYPE; } void MarkCompactCollector::ClearNonLiveTransitions() { HeapObjectIterator map_iterator(heap()->map_space(), &SizeOfMarkedObject); // Iterate over the map space, setting map transitions that go from // a marked map to an unmarked map to null transitions. At the same time, // set all the prototype fields of maps back to their original value, // dropping the back pointers temporarily stored in the prototype field. // Setting the prototype field requires following the linked list of // back pointers, reversing them all at once. This allows us to find // those maps with map transitions that need to be nulled, and only // scan the descriptor arrays of those maps, not all maps. // All of these actions are carried out only on maps of JSObjects // and related subtypes. for (HeapObject* obj = map_iterator.next(); obj != NULL; obj = map_iterator.next()) { Map* map = reinterpret_cast(obj); if (!map->IsMarked() && map->IsByteArray()) continue; ASSERT(SafeIsMap(map)); // Only JSObject and subtypes have map transitions and back pointers. if (map->instance_type() < FIRST_JS_OBJECT_TYPE) continue; if (map->instance_type() > JS_FUNCTION_TYPE) continue; if (map->IsMarked() && map->attached_to_shared_function_info()) { // This map is used for inobject slack tracking and has been detached // from SharedFunctionInfo during the mark phase. // Since it survived the GC, reattach it now. map->unchecked_constructor()->unchecked_shared()->AttachInitialMap(map); } // Clear dead prototype transitions. FixedArray* prototype_transitions = map->unchecked_prototype_transitions(); if (prototype_transitions->length() > 0) { int finger = Smi::cast(prototype_transitions->get(0))->value(); int new_finger = 1; for (int i = 1; i < finger; i += 2) { Object* prototype = prototype_transitions->get(i); Object* cached_map = prototype_transitions->get(i + 1); if (HeapObject::cast(prototype)->IsMarked() && HeapObject::cast(cached_map)->IsMarked()) { if (new_finger != i) { prototype_transitions->set_unchecked(heap_, new_finger, prototype, UPDATE_WRITE_BARRIER); prototype_transitions->set_unchecked(heap_, new_finger + 1, cached_map, SKIP_WRITE_BARRIER); } new_finger += 2; } } // Fill slots that became free with undefined value. Object* undefined = heap()->raw_unchecked_undefined_value(); for (int i = new_finger; i < finger; i++) { prototype_transitions->set_unchecked(heap_, i, undefined, SKIP_WRITE_BARRIER); } prototype_transitions->set_unchecked(0, Smi::FromInt(new_finger)); } // Follow the chain of back pointers to find the prototype. Map* current = map; while (SafeIsMap(current)) { current = reinterpret_cast(current->prototype()); ASSERT(current->IsHeapObject()); } Object* real_prototype = current; // Follow back pointers, setting them to prototype, // clearing map transitions when necessary. current = map; bool on_dead_path = !current->IsMarked(); Object* next; while (SafeIsMap(current)) { next = current->prototype(); // There should never be a dead map above a live map. ASSERT(on_dead_path || current->IsMarked()); // A live map above a dead map indicates a dead transition. // This test will always be false on the first iteration. if (on_dead_path && current->IsMarked()) { on_dead_path = false; current->ClearNonLiveTransitions(heap(), real_prototype); } *HeapObject::RawField(current, Map::kPrototypeOffset) = real_prototype; current = reinterpret_cast(next); } } } // ------------------------------------------------------------------------- // Phase 2: Encode forwarding addresses. // When compacting, forwarding addresses for objects in old space and map // space are encoded in their map pointer word (along with an encoding of // their map pointers). // // The excact encoding is described in the comments for class MapWord in // objects.h. // // An address range [start, end) can have both live and non-live objects. // Maximal non-live regions are marked so they can be skipped on subsequent // sweeps of the heap. A distinguished map-pointer encoding is used to mark // free regions of one-word size (in which case the next word is the start // of a live object). A second distinguished map-pointer encoding is used // to mark free regions larger than one word, and the size of the free // region (including the first word) is written to the second word of the // region. // // Any valid map page offset must lie in the object area of the page, so map // page offsets less than Page::kObjectStartOffset are invalid. We use a // pair of distinguished invalid map encodings (for single word and multiple // words) to indicate free regions in the page found during computation of // forwarding addresses and skipped over in subsequent sweeps. // Encode a free region, defined by the given start address and size, in the // first word or two of the region. void EncodeFreeRegion(Address free_start, int free_size) { ASSERT(free_size >= kIntSize); if (free_size == kIntSize) { Memory::uint32_at(free_start) = MarkCompactCollector::kSingleFreeEncoding; } else { ASSERT(free_size >= 2 * kIntSize); Memory::uint32_at(free_start) = MarkCompactCollector::kMultiFreeEncoding; Memory::int_at(free_start + kIntSize) = free_size; } #ifdef DEBUG // Zap the body of the free region. if (FLAG_enable_slow_asserts) { for (int offset = 2 * kIntSize; offset < free_size; offset += kPointerSize) { Memory::Address_at(free_start + offset) = kZapValue; } } #endif } // Try to promote all objects in new space. Heap numbers and sequential // strings are promoted to the code space, large objects to large object space, // and all others to the old space. inline MaybeObject* MCAllocateFromNewSpace(Heap* heap, HeapObject* object, int object_size) { MaybeObject* forwarded; if (object_size > heap->MaxObjectSizeInPagedSpace()) { forwarded = Failure::Exception(); } else { OldSpace* target_space = heap->TargetSpace(object); ASSERT(target_space == heap->old_pointer_space() || target_space == heap->old_data_space()); forwarded = target_space->MCAllocateRaw(object_size); } Object* result; if (!forwarded->ToObject(&result)) { result = heap->new_space()->MCAllocateRaw(object_size)->ToObjectUnchecked(); } return result; } // Allocation functions for the paged spaces call the space's MCAllocateRaw. MUST_USE_RESULT inline MaybeObject* MCAllocateFromOldPointerSpace( Heap *heap, HeapObject* ignore, int object_size) { return heap->old_pointer_space()->MCAllocateRaw(object_size); } MUST_USE_RESULT inline MaybeObject* MCAllocateFromOldDataSpace( Heap* heap, HeapObject* ignore, int object_size) { return heap->old_data_space()->MCAllocateRaw(object_size); } MUST_USE_RESULT inline MaybeObject* MCAllocateFromCodeSpace( Heap* heap, HeapObject* ignore, int object_size) { return heap->code_space()->MCAllocateRaw(object_size); } MUST_USE_RESULT inline MaybeObject* MCAllocateFromMapSpace( Heap* heap, HeapObject* ignore, int object_size) { return heap->map_space()->MCAllocateRaw(object_size); } MUST_USE_RESULT inline MaybeObject* MCAllocateFromCellSpace( Heap* heap, HeapObject* ignore, int object_size) { return heap->cell_space()->MCAllocateRaw(object_size); } // The forwarding address is encoded at the same offset as the current // to-space object, but in from space. inline void EncodeForwardingAddressInNewSpace(Heap* heap, HeapObject* old_object, int object_size, Object* new_object, int* ignored) { int offset = heap->new_space()->ToSpaceOffsetForAddress(old_object->address()); Memory::Address_at(heap->new_space()->FromSpaceLow() + offset) = HeapObject::cast(new_object)->address(); } // The forwarding address is encoded in the map pointer of the object as an // offset (in terms of live bytes) from the address of the first live object // in the page. inline void EncodeForwardingAddressInPagedSpace(Heap* heap, HeapObject* old_object, int object_size, Object* new_object, int* offset) { // Record the forwarding address of the first live object if necessary. if (*offset == 0) { Page::FromAddress(old_object->address())->mc_first_forwarded = HeapObject::cast(new_object)->address(); } MapWord encoding = MapWord::EncodeAddress(old_object->map()->address(), *offset); old_object->set_map_word(encoding); *offset += object_size; ASSERT(*offset <= Page::kObjectAreaSize); } // Most non-live objects are ignored. inline void IgnoreNonLiveObject(HeapObject* object, Isolate* isolate) {} // Function template that, given a range of addresses (eg, a semispace or a // paged space page), iterates through the objects in the range to clear // mark bits and compute and encode forwarding addresses. As a side effect, // maximal free chunks are marked so that they can be skipped on subsequent // sweeps. // // The template parameters are an allocation function, a forwarding address // encoding function, and a function to process non-live objects. template inline void EncodeForwardingAddressesInRange(MarkCompactCollector* collector, Address start, Address end, int* offset) { // The start address of the current free region while sweeping the space. // This address is set when a transition from live to non-live objects is // encountered. A value (an encoding of the 'next free region' pointer) // is written to memory at this address when a transition from non-live to // live objects is encountered. Address free_start = NULL; // A flag giving the state of the previously swept object. Initially true // to ensure that free_start is initialized to a proper address before // trying to write to it. bool is_prev_alive = true; int object_size; // Will be set on each iteration of the loop. for (Address current = start; current < end; current += object_size) { HeapObject* object = HeapObject::FromAddress(current); if (object->IsMarked()) { object->ClearMark(); collector->tracer()->decrement_marked_count(); object_size = object->Size(); Object* forwarded = Alloc(collector->heap(), object, object_size)->ToObjectUnchecked(); Encode(collector->heap(), object, object_size, forwarded, offset); #ifdef DEBUG if (FLAG_gc_verbose) { PrintF("forward %p -> %p.\n", object->address(), HeapObject::cast(forwarded)->address()); } #endif if (!is_prev_alive) { // Transition from non-live to live. EncodeFreeRegion(free_start, static_cast(current - free_start)); is_prev_alive = true; } } else { // Non-live object. object_size = object->Size(); ProcessNonLive(object, collector->heap()->isolate()); if (is_prev_alive) { // Transition from live to non-live. free_start = current; is_prev_alive = false; } LiveObjectList::ProcessNonLive(object); } } // If we ended on a free region, mark it. if (!is_prev_alive) { EncodeFreeRegion(free_start, static_cast(end - free_start)); } } // Functions to encode the forwarding pointers in each compactable space. void MarkCompactCollector::EncodeForwardingAddressesInNewSpace() { int ignored; EncodeForwardingAddressesInRange( this, heap()->new_space()->bottom(), heap()->new_space()->top(), &ignored); } template void MarkCompactCollector::EncodeForwardingAddressesInPagedSpace( PagedSpace* space) { PageIterator it(space, PageIterator::PAGES_IN_USE); while (it.has_next()) { Page* p = it.next(); // The offset of each live object in the page from the first live object // in the page. int offset = 0; EncodeForwardingAddressesInRange( this, p->ObjectAreaStart(), p->AllocationTop(), &offset); } } // We scavange new space simultaneously with sweeping. This is done in two // passes. // The first pass migrates all alive objects from one semispace to another or // promotes them to old space. Forwading address is written directly into // first word of object without any encoding. If object is dead we are writing // NULL as a forwarding address. // The second pass updates pointers to new space in all spaces. It is possible // to encounter pointers to dead objects during traversal of dirty regions we // should clear them to avoid encountering them during next dirty regions // iteration. static void MigrateObject(Heap* heap, Address dst, Address src, int size, bool to_old_space) { if (to_old_space) { heap->CopyBlockToOldSpaceAndUpdateRegionMarks(dst, src, size); } else { heap->CopyBlock(dst, src, size); } Memory::Address_at(src) = dst; } class StaticPointersToNewGenUpdatingVisitor : public StaticNewSpaceVisitor { public: static inline void VisitPointer(Heap* heap, Object** p) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); Address old_addr = obj->address(); if (heap->new_space()->Contains(obj)) { ASSERT(heap->InFromSpace(*p)); *p = HeapObject::FromAddress(Memory::Address_at(old_addr)); } } }; // Visitor for updating pointers from live objects in old spaces to new space. // It does not expect to encounter pointers to dead objects. class PointersToNewGenUpdatingVisitor: public ObjectVisitor { public: explicit PointersToNewGenUpdatingVisitor(Heap* heap) : heap_(heap) { } void VisitPointer(Object** p) { StaticPointersToNewGenUpdatingVisitor::VisitPointer(heap_, p); } void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { StaticPointersToNewGenUpdatingVisitor::VisitPointer(heap_, p); } } void VisitCodeTarget(RelocInfo* rinfo) { ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); VisitPointer(&target); rinfo->set_target_address(Code::cast(target)->instruction_start()); } void VisitDebugTarget(RelocInfo* rinfo) { ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) && rinfo->IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && rinfo->IsPatchedDebugBreakSlotSequence())); Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address()); VisitPointer(&target); rinfo->set_call_address(Code::cast(target)->instruction_start()); } private: Heap* heap_; }; // Visitor for updating pointers from live objects in old spaces to new space. // It can encounter pointers to dead objects in new space when traversing map // space (see comment for MigrateObject). static void UpdatePointerToNewGen(HeapObject** p) { if (!(*p)->IsHeapObject()) return; Address old_addr = (*p)->address(); ASSERT(HEAP->InFromSpace(*p)); Address new_addr = Memory::Address_at(old_addr); if (new_addr == NULL) { // We encountered pointer to a dead object. Clear it so we will // not visit it again during next iteration of dirty regions. *p = NULL; } else { *p = HeapObject::FromAddress(new_addr); } } static String* UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap, Object** p) { Address old_addr = HeapObject::cast(*p)->address(); Address new_addr = Memory::Address_at(old_addr); return String::cast(HeapObject::FromAddress(new_addr)); } static bool TryPromoteObject(Heap* heap, HeapObject* object, int object_size) { Object* result; if (object_size > heap->MaxObjectSizeInPagedSpace()) { MaybeObject* maybe_result = heap->lo_space()->AllocateRawFixedArray(object_size); if (maybe_result->ToObject(&result)) { HeapObject* target = HeapObject::cast(result); MigrateObject(heap, target->address(), object->address(), object_size, true); heap->mark_compact_collector()->tracer()-> increment_promoted_objects_size(object_size); return true; } } else { OldSpace* target_space = heap->TargetSpace(object); ASSERT(target_space == heap->old_pointer_space() || target_space == heap->old_data_space()); MaybeObject* maybe_result = target_space->AllocateRaw(object_size); if (maybe_result->ToObject(&result)) { HeapObject* target = HeapObject::cast(result); MigrateObject(heap, target->address(), object->address(), object_size, target_space == heap->old_pointer_space()); heap->mark_compact_collector()->tracer()-> increment_promoted_objects_size(object_size); return true; } } return false; } static void SweepNewSpace(Heap* heap, NewSpace* space) { heap->CheckNewSpaceExpansionCriteria(); Address from_bottom = space->bottom(); Address from_top = space->top(); // Flip the semispaces. After flipping, to space is empty, from space has // live objects. space->Flip(); space->ResetAllocationInfo(); int size = 0; int survivors_size = 0; // First pass: traverse all objects in inactive semispace, remove marks, // migrate live objects and write forwarding addresses. for (Address current = from_bottom; current < from_top; current += size) { HeapObject* object = HeapObject::FromAddress(current); if (object->IsMarked()) { object->ClearMark(); heap->mark_compact_collector()->tracer()->decrement_marked_count(); size = object->Size(); survivors_size += size; // Aggressively promote young survivors to the old space. if (TryPromoteObject(heap, object, size)) { continue; } // Promotion failed. Just migrate object to another semispace. // Allocation cannot fail at this point: semispaces are of equal size. Object* target = space->AllocateRaw(size)->ToObjectUnchecked(); MigrateObject(heap, HeapObject::cast(target)->address(), current, size, false); } else { // Process the dead object before we write a NULL into its header. LiveObjectList::ProcessNonLive(object); size = object->Size(); Memory::Address_at(current) = NULL; } } // Second pass: find pointers to new space and update them. PointersToNewGenUpdatingVisitor updating_visitor(heap); // Update pointers in to space. Address current = space->bottom(); while (current < space->top()) { HeapObject* object = HeapObject::FromAddress(current); current += StaticPointersToNewGenUpdatingVisitor::IterateBody(object->map(), object); } // Update roots. heap->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE); LiveObjectList::IterateElements(&updating_visitor); // Update pointers in old spaces. heap->IterateDirtyRegions(heap->old_pointer_space(), &Heap::IteratePointersInDirtyRegion, &UpdatePointerToNewGen, heap->WATERMARK_SHOULD_BE_VALID); heap->lo_space()->IterateDirtyRegions(&UpdatePointerToNewGen); // Update pointers from cells. HeapObjectIterator cell_iterator(heap->cell_space()); for (HeapObject* cell = cell_iterator.next(); cell != NULL; cell = cell_iterator.next()) { if (cell->IsJSGlobalPropertyCell()) { Address value_address = reinterpret_cast
(cell) + (JSGlobalPropertyCell::kValueOffset - kHeapObjectTag); updating_visitor.VisitPointer(reinterpret_cast(value_address)); } } // Update pointer from the global contexts list. updating_visitor.VisitPointer(heap->global_contexts_list_address()); // Update pointers from external string table. heap->UpdateNewSpaceReferencesInExternalStringTable( &UpdateNewSpaceReferenceInExternalStringTableEntry); // All pointers were updated. Update auxiliary allocation info. heap->IncrementYoungSurvivorsCounter(survivors_size); space->set_age_mark(space->top()); // Update JSFunction pointers from the runtime profiler. heap->isolate()->runtime_profiler()->UpdateSamplesAfterScavenge(); } static void SweepSpace(Heap* heap, PagedSpace* space) { PageIterator it(space, PageIterator::PAGES_IN_USE); // During sweeping of paged space we are trying to find longest sequences // of pages without live objects and free them (instead of putting them on // the free list). // Page preceding current. Page* prev = Page::FromAddress(NULL); // First empty page in a sequence. Page* first_empty_page = Page::FromAddress(NULL); // Page preceding first empty page. Page* prec_first_empty_page = Page::FromAddress(NULL); // If last used page of space ends with a sequence of dead objects // we can adjust allocation top instead of puting this free area into // the free list. Thus during sweeping we keep track of such areas // and defer their deallocation until the sweeping of the next page // is done: if one of the next pages contains live objects we have // to put such area into the free list. Address last_free_start = NULL; int last_free_size = 0; while (it.has_next()) { Page* p = it.next(); bool is_previous_alive = true; Address free_start = NULL; HeapObject* object; for (Address current = p->ObjectAreaStart(); current < p->AllocationTop(); current += object->Size()) { object = HeapObject::FromAddress(current); if (object->IsMarked()) { object->ClearMark(); heap->mark_compact_collector()->tracer()->decrement_marked_count(); if (!is_previous_alive) { // Transition from free to live. space->DeallocateBlock(free_start, static_cast(current - free_start), true); is_previous_alive = true; } } else { heap->mark_compact_collector()->ReportDeleteIfNeeded( object, heap->isolate()); if (is_previous_alive) { // Transition from live to free. free_start = current; is_previous_alive = false; } LiveObjectList::ProcessNonLive(object); } // The object is now unmarked for the call to Size() at the top of the // loop. } bool page_is_empty = (p->ObjectAreaStart() == p->AllocationTop()) || (!is_previous_alive && free_start == p->ObjectAreaStart()); if (page_is_empty) { // This page is empty. Check whether we are in the middle of // sequence of empty pages and start one if not. if (!first_empty_page->is_valid()) { first_empty_page = p; prec_first_empty_page = prev; } if (!is_previous_alive) { // There are dead objects on this page. Update space accounting stats // without putting anything into free list. int size_in_bytes = static_cast(p->AllocationTop() - free_start); if (size_in_bytes > 0) { space->DeallocateBlock(free_start, size_in_bytes, false); } } } else { // This page is not empty. Sequence of empty pages ended on the previous // one. if (first_empty_page->is_valid()) { space->FreePages(prec_first_empty_page, prev); prec_first_empty_page = first_empty_page = Page::FromAddress(NULL); } // If there is a free ending area on one of the previous pages we have // deallocate that area and put it on the free list. if (last_free_size > 0) { Page::FromAddress(last_free_start)-> SetAllocationWatermark(last_free_start); space->DeallocateBlock(last_free_start, last_free_size, true); last_free_start = NULL; last_free_size = 0; } // If the last region of this page was not live we remember it. if (!is_previous_alive) { ASSERT(last_free_size == 0); last_free_size = static_cast(p->AllocationTop() - free_start); last_free_start = free_start; } } prev = p; } // We reached end of space. See if we need to adjust allocation top. Address new_allocation_top = NULL; if (first_empty_page->is_valid()) { // Last used pages in space are empty. We can move allocation top backwards // to the beginning of first empty page. ASSERT(prev == space->AllocationTopPage()); new_allocation_top = first_empty_page->ObjectAreaStart(); } if (last_free_size > 0) { // There was a free ending area on the previous page. // Deallocate it without putting it into freelist and move allocation // top to the beginning of this free area. space->DeallocateBlock(last_free_start, last_free_size, false); new_allocation_top = last_free_start; } if (new_allocation_top != NULL) { #ifdef DEBUG Page* new_allocation_top_page = Page::FromAllocationTop(new_allocation_top); if (!first_empty_page->is_valid()) { ASSERT(new_allocation_top_page == space->AllocationTopPage()); } else if (last_free_size > 0) { ASSERT(new_allocation_top_page == prec_first_empty_page); } else { ASSERT(new_allocation_top_page == first_empty_page); } #endif space->SetTop(new_allocation_top); } } void MarkCompactCollector::EncodeForwardingAddresses() { ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES); // Objects in the active semispace of the young generation may be // relocated to the inactive semispace (if not promoted). Set the // relocation info to the beginning of the inactive semispace. heap()->new_space()->MCResetRelocationInfo(); // Compute the forwarding pointers in each space. EncodeForwardingAddressesInPagedSpace( heap()->old_pointer_space()); EncodeForwardingAddressesInPagedSpace( heap()->old_data_space()); EncodeForwardingAddressesInPagedSpace( heap()->code_space()); EncodeForwardingAddressesInPagedSpace( heap()->cell_space()); // Compute new space next to last after the old and code spaces have been // compacted. Objects in new space can be promoted to old or code space. EncodeForwardingAddressesInNewSpace(); // Compute map space last because computing forwarding addresses // overwrites non-live objects. Objects in the other spaces rely on // non-live map pointers to get the sizes of non-live objects. EncodeForwardingAddressesInPagedSpace( heap()->map_space()); // Write relocation info to the top page, so we can use it later. This is // done after promoting objects from the new space so we get the correct // allocation top. heap()->old_pointer_space()->MCWriteRelocationInfoToPage(); heap()->old_data_space()->MCWriteRelocationInfoToPage(); heap()->code_space()->MCWriteRelocationInfoToPage(); heap()->map_space()->MCWriteRelocationInfoToPage(); heap()->cell_space()->MCWriteRelocationInfoToPage(); } class MapIterator : public HeapObjectIterator { public: explicit MapIterator(Heap* heap) : HeapObjectIterator(heap->map_space(), &SizeCallback) { } MapIterator(Heap* heap, Address start) : HeapObjectIterator(heap->map_space(), start, &SizeCallback) { } private: static int SizeCallback(HeapObject* unused) { USE(unused); return Map::kSize; } }; class MapCompact { public: explicit MapCompact(Heap* heap, int live_maps) : heap_(heap), live_maps_(live_maps), to_evacuate_start_(heap->map_space()->TopAfterCompaction(live_maps)), vacant_map_it_(heap), map_to_evacuate_it_(heap, to_evacuate_start_), first_map_to_evacuate_( reinterpret_cast(HeapObject::FromAddress(to_evacuate_start_))) { } void CompactMaps() { // As we know the number of maps to evacuate beforehand, // we stop then there is no more vacant maps. for (Map* next_vacant_map = NextVacantMap(); next_vacant_map; next_vacant_map = NextVacantMap()) { EvacuateMap(next_vacant_map, NextMapToEvacuate()); } #ifdef DEBUG CheckNoMapsToEvacuate(); #endif } void UpdateMapPointersInRoots() { MapUpdatingVisitor map_updating_visitor; heap()->IterateRoots(&map_updating_visitor, VISIT_ONLY_STRONG); heap()->isolate()->global_handles()->IterateWeakRoots( &map_updating_visitor); LiveObjectList::IterateElements(&map_updating_visitor); } void UpdateMapPointersInPagedSpace(PagedSpace* space) { ASSERT(space != heap()->map_space()); PageIterator it(space, PageIterator::PAGES_IN_USE); while (it.has_next()) { Page* p = it.next(); UpdateMapPointersInRange(heap(), p->ObjectAreaStart(), p->AllocationTop()); } } void UpdateMapPointersInNewSpace() { NewSpace* space = heap()->new_space(); UpdateMapPointersInRange(heap(), space->bottom(), space->top()); } void UpdateMapPointersInLargeObjectSpace() { LargeObjectIterator it(heap()->lo_space()); for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) UpdateMapPointersInObject(heap(), obj); } void Finish() { heap()->map_space()->FinishCompaction(to_evacuate_start_, live_maps_); } inline Heap* heap() const { return heap_; } private: Heap* heap_; int live_maps_; Address to_evacuate_start_; MapIterator vacant_map_it_; MapIterator map_to_evacuate_it_; Map* first_map_to_evacuate_; // Helper class for updating map pointers in HeapObjects. class MapUpdatingVisitor: public ObjectVisitor { public: MapUpdatingVisitor() {} void VisitPointer(Object** p) { UpdateMapPointer(p); } void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) UpdateMapPointer(p); } private: void UpdateMapPointer(Object** p) { if (!(*p)->IsHeapObject()) return; HeapObject* old_map = reinterpret_cast(*p); // Moved maps are tagged with overflowed map word. They are the only // objects those map word is overflowed as marking is already complete. MapWord map_word = old_map->map_word(); if (!map_word.IsOverflowed()) return; *p = GetForwardedMap(map_word); } }; static Map* NextMap(MapIterator* it, HeapObject* last, bool live) { while (true) { HeapObject* next = it->next(); ASSERT(next != NULL); if (next == last) return NULL; ASSERT(!next->IsOverflowed()); ASSERT(!next->IsMarked()); ASSERT(next->IsMap() || FreeListNode::IsFreeListNode(next)); if (next->IsMap() == live) return reinterpret_cast(next); } } Map* NextVacantMap() { Map* map = NextMap(&vacant_map_it_, first_map_to_evacuate_, false); ASSERT(map == NULL || FreeListNode::IsFreeListNode(map)); return map; } Map* NextMapToEvacuate() { Map* map = NextMap(&map_to_evacuate_it_, NULL, true); ASSERT(map != NULL); ASSERT(map->IsMap()); return map; } static void EvacuateMap(Map* vacant_map, Map* map_to_evacuate) { ASSERT(FreeListNode::IsFreeListNode(vacant_map)); ASSERT(map_to_evacuate->IsMap()); ASSERT(Map::kSize % 4 == 0); map_to_evacuate->heap()->CopyBlockToOldSpaceAndUpdateRegionMarks( vacant_map->address(), map_to_evacuate->address(), Map::kSize); ASSERT(vacant_map->IsMap()); // Due to memcpy above. MapWord forwarding_map_word = MapWord::FromMap(vacant_map); forwarding_map_word.SetOverflow(); map_to_evacuate->set_map_word(forwarding_map_word); ASSERT(map_to_evacuate->map_word().IsOverflowed()); ASSERT(GetForwardedMap(map_to_evacuate->map_word()) == vacant_map); } static Map* GetForwardedMap(MapWord map_word) { ASSERT(map_word.IsOverflowed()); map_word.ClearOverflow(); Map* new_map = map_word.ToMap(); ASSERT_MAP_ALIGNED(new_map->address()); return new_map; } static int UpdateMapPointersInObject(Heap* heap, HeapObject* obj) { ASSERT(!obj->IsMarked()); Map* map = obj->map(); ASSERT(heap->map_space()->Contains(map)); MapWord map_word = map->map_word(); ASSERT(!map_word.IsMarked()); if (map_word.IsOverflowed()) { Map* new_map = GetForwardedMap(map_word); ASSERT(heap->map_space()->Contains(new_map)); obj->set_map(new_map); #ifdef DEBUG if (FLAG_gc_verbose) { PrintF("update %p : %p -> %p\n", obj->address(), reinterpret_cast(map), reinterpret_cast(new_map)); } #endif } int size = obj->SizeFromMap(map); MapUpdatingVisitor map_updating_visitor; obj->IterateBody(map->instance_type(), size, &map_updating_visitor); return size; } static void UpdateMapPointersInRange(Heap* heap, Address start, Address end) { HeapObject* object; int size; for (Address current = start; current < end; current += size) { object = HeapObject::FromAddress(current); size = UpdateMapPointersInObject(heap, object); ASSERT(size > 0); } } #ifdef DEBUG void CheckNoMapsToEvacuate() { if (!FLAG_enable_slow_asserts) return; for (HeapObject* obj = map_to_evacuate_it_.next(); obj != NULL; obj = map_to_evacuate_it_.next()) ASSERT(FreeListNode::IsFreeListNode(obj)); } #endif }; void MarkCompactCollector::SweepSpaces() { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP); ASSERT(state_ == SWEEP_SPACES); ASSERT(!IsCompacting()); // Noncompacting collections simply sweep the spaces to clear the mark // bits and free the nonlive blocks (for old and map spaces). We sweep // the map space last because freeing non-live maps overwrites them and // the other spaces rely on possibly non-live maps to get the sizes for // non-live objects. SweepSpace(heap(), heap()->old_pointer_space()); SweepSpace(heap(), heap()->old_data_space()); SweepSpace(heap(), heap()->code_space()); SweepSpace(heap(), heap()->cell_space()); { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP_NEWSPACE); SweepNewSpace(heap(), heap()->new_space()); } SweepSpace(heap(), heap()->map_space()); heap()->IterateDirtyRegions(heap()->map_space(), &heap()->IteratePointersInDirtyMapsRegion, &UpdatePointerToNewGen, heap()->WATERMARK_SHOULD_BE_VALID); intptr_t live_maps_size = heap()->map_space()->Size(); int live_maps = static_cast(live_maps_size / Map::kSize); ASSERT(live_map_objects_size_ == live_maps_size); if (heap()->map_space()->NeedsCompaction(live_maps)) { MapCompact map_compact(heap(), live_maps); map_compact.CompactMaps(); map_compact.UpdateMapPointersInRoots(); PagedSpaces spaces; for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { if (space == heap()->map_space()) continue; map_compact.UpdateMapPointersInPagedSpace(space); } map_compact.UpdateMapPointersInNewSpace(); map_compact.UpdateMapPointersInLargeObjectSpace(); map_compact.Finish(); } } // Iterate the live objects in a range of addresses (eg, a page or a // semispace). The live regions of the range have been linked into a list. // The first live region is [first_live_start, first_live_end), and the last // address in the range is top. The callback function is used to get the // size of each live object. int MarkCompactCollector::IterateLiveObjectsInRange( Address start, Address end, LiveObjectCallback size_func) { int live_objects_size = 0; Address current = start; while (current < end) { uint32_t encoded_map = Memory::uint32_at(current); if (encoded_map == kSingleFreeEncoding) { current += kPointerSize; } else if (encoded_map == kMultiFreeEncoding) { current += Memory::int_at(current + kIntSize); } else { int size = (this->*size_func)(HeapObject::FromAddress(current)); current += size; live_objects_size += size; } } return live_objects_size; } int MarkCompactCollector::IterateLiveObjects( NewSpace* space, LiveObjectCallback size_f) { ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS); return IterateLiveObjectsInRange(space->bottom(), space->top(), size_f); } int MarkCompactCollector::IterateLiveObjects( PagedSpace* space, LiveObjectCallback size_f) { ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS); int total = 0; PageIterator it(space, PageIterator::PAGES_IN_USE); while (it.has_next()) { Page* p = it.next(); total += IterateLiveObjectsInRange(p->ObjectAreaStart(), p->AllocationTop(), size_f); } return total; } // ------------------------------------------------------------------------- // Phase 3: Update pointers // Helper class for updating pointers in HeapObjects. class UpdatingVisitor: public ObjectVisitor { public: explicit UpdatingVisitor(Heap* heap) : heap_(heap) {} void VisitPointer(Object** p) { UpdatePointer(p); } void VisitPointers(Object** start, Object** end) { // Mark all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) UpdatePointer(p); } void VisitCodeTarget(RelocInfo* rinfo) { ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); VisitPointer(&target); rinfo->set_target_address( reinterpret_cast(target)->instruction_start()); } void VisitDebugTarget(RelocInfo* rinfo) { ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) && rinfo->IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && rinfo->IsPatchedDebugBreakSlotSequence())); Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address()); VisitPointer(&target); rinfo->set_call_address( reinterpret_cast(target)->instruction_start()); } inline Heap* heap() const { return heap_; } private: void UpdatePointer(Object** p) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); Address old_addr = obj->address(); Address new_addr; ASSERT(!heap()->InFromSpace(obj)); if (heap()->new_space()->Contains(obj)) { Address forwarding_pointer_addr = heap()->new_space()->FromSpaceLow() + heap()->new_space()->ToSpaceOffsetForAddress(old_addr); new_addr = Memory::Address_at(forwarding_pointer_addr); #ifdef DEBUG ASSERT(heap()->old_pointer_space()->Contains(new_addr) || heap()->old_data_space()->Contains(new_addr) || heap()->new_space()->FromSpaceContains(new_addr) || heap()->lo_space()->Contains(HeapObject::FromAddress(new_addr))); if (heap()->new_space()->FromSpaceContains(new_addr)) { ASSERT(heap()->new_space()->FromSpaceOffsetForAddress(new_addr) <= heap()->new_space()->ToSpaceOffsetForAddress(old_addr)); } #endif } else if (heap()->lo_space()->Contains(obj)) { // Don't move objects in the large object space. return; } else { #ifdef DEBUG PagedSpaces spaces; PagedSpace* original_space = spaces.next(); while (original_space != NULL) { if (original_space->Contains(obj)) break; original_space = spaces.next(); } ASSERT(original_space != NULL); #endif new_addr = MarkCompactCollector::GetForwardingAddressInOldSpace(obj); ASSERT(original_space->Contains(new_addr)); ASSERT(original_space->MCSpaceOffsetForAddress(new_addr) <= original_space->MCSpaceOffsetForAddress(old_addr)); } *p = HeapObject::FromAddress(new_addr); #ifdef DEBUG if (FLAG_gc_verbose) { PrintF("update %p : %p -> %p\n", reinterpret_cast
(p), old_addr, new_addr); } #endif } Heap* heap_; }; void MarkCompactCollector::UpdatePointers() { #ifdef DEBUG ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES); state_ = UPDATE_POINTERS; #endif UpdatingVisitor updating_visitor(heap()); heap()->isolate()->runtime_profiler()->UpdateSamplesAfterCompact( &updating_visitor); heap()->IterateRoots(&updating_visitor, VISIT_ONLY_STRONG); heap()->isolate()->global_handles()->IterateWeakRoots(&updating_visitor); // Update the pointer to the head of the weak list of global contexts. updating_visitor.VisitPointer(&heap()->global_contexts_list_); LiveObjectList::IterateElements(&updating_visitor); int live_maps_size = IterateLiveObjects( heap()->map_space(), &MarkCompactCollector::UpdatePointersInOldObject); int live_pointer_olds_size = IterateLiveObjects( heap()->old_pointer_space(), &MarkCompactCollector::UpdatePointersInOldObject); int live_data_olds_size = IterateLiveObjects( heap()->old_data_space(), &MarkCompactCollector::UpdatePointersInOldObject); int live_codes_size = IterateLiveObjects( heap()->code_space(), &MarkCompactCollector::UpdatePointersInOldObject); int live_cells_size = IterateLiveObjects( heap()->cell_space(), &MarkCompactCollector::UpdatePointersInOldObject); int live_news_size = IterateLiveObjects( heap()->new_space(), &MarkCompactCollector::UpdatePointersInNewObject); // Large objects do not move, the map word can be updated directly. LargeObjectIterator it(heap()->lo_space()); for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) { UpdatePointersInNewObject(obj); } USE(live_maps_size); USE(live_pointer_olds_size); USE(live_data_olds_size); USE(live_codes_size); USE(live_cells_size); USE(live_news_size); ASSERT(live_maps_size == live_map_objects_size_); ASSERT(live_data_olds_size == live_old_data_objects_size_); ASSERT(live_pointer_olds_size == live_old_pointer_objects_size_); ASSERT(live_codes_size == live_code_objects_size_); ASSERT(live_cells_size == live_cell_objects_size_); ASSERT(live_news_size == live_young_objects_size_); } int MarkCompactCollector::UpdatePointersInNewObject(HeapObject* obj) { // Keep old map pointers Map* old_map = obj->map(); ASSERT(old_map->IsHeapObject()); Address forwarded = GetForwardingAddressInOldSpace(old_map); ASSERT(heap()->map_space()->Contains(old_map)); ASSERT(heap()->map_space()->Contains(forwarded)); #ifdef DEBUG if (FLAG_gc_verbose) { PrintF("update %p : %p -> %p\n", obj->address(), old_map->address(), forwarded); } #endif // Update the map pointer. obj->set_map(reinterpret_cast(HeapObject::FromAddress(forwarded))); // We have to compute the object size relying on the old map because // map objects are not relocated yet. int obj_size = obj->SizeFromMap(old_map); // Update pointers in the object body. UpdatingVisitor updating_visitor(heap()); obj->IterateBody(old_map->instance_type(), obj_size, &updating_visitor); return obj_size; } int MarkCompactCollector::UpdatePointersInOldObject(HeapObject* obj) { // Decode the map pointer. MapWord encoding = obj->map_word(); Address map_addr = encoding.DecodeMapAddress(heap()->map_space()); ASSERT(heap()->map_space()->Contains(HeapObject::FromAddress(map_addr))); // At this point, the first word of map_addr is also encoded, cannot // cast it to Map* using Map::cast. Map* map = reinterpret_cast(HeapObject::FromAddress(map_addr)); int obj_size = obj->SizeFromMap(map); InstanceType type = map->instance_type(); // Update map pointer. Address new_map_addr = GetForwardingAddressInOldSpace(map); int offset = encoding.DecodeOffset(); obj->set_map_word(MapWord::EncodeAddress(new_map_addr, offset)); #ifdef DEBUG if (FLAG_gc_verbose) { PrintF("update %p : %p -> %p\n", obj->address(), map_addr, new_map_addr); } #endif // Update pointers in the object body. UpdatingVisitor updating_visitor(heap()); obj->IterateBody(type, obj_size, &updating_visitor); return obj_size; } Address MarkCompactCollector::GetForwardingAddressInOldSpace(HeapObject* obj) { // Object should either in old or map space. MapWord encoding = obj->map_word(); // Offset to the first live object's forwarding address. int offset = encoding.DecodeOffset(); Address obj_addr = obj->address(); // Find the first live object's forwarding address. Page* p = Page::FromAddress(obj_addr); Address first_forwarded = p->mc_first_forwarded; // Page start address of forwarded address. Page* forwarded_page = Page::FromAddress(first_forwarded); int forwarded_offset = forwarded_page->Offset(first_forwarded); // Find end of allocation in the page of first_forwarded. int mc_top_offset = forwarded_page->AllocationWatermarkOffset(); // Check if current object's forward pointer is in the same page // as the first live object's forwarding pointer if (forwarded_offset + offset < mc_top_offset) { // In the same page. return first_forwarded + offset; } // Must be in the next page, NOTE: this may cross chunks. Page* next_page = forwarded_page->next_page(); ASSERT(next_page->is_valid()); offset -= (mc_top_offset - forwarded_offset); offset += Page::kObjectStartOffset; ASSERT_PAGE_OFFSET(offset); ASSERT(next_page->OffsetToAddress(offset) < next_page->AllocationTop()); return next_page->OffsetToAddress(offset); } // ------------------------------------------------------------------------- // Phase 4: Relocate objects void MarkCompactCollector::RelocateObjects() { #ifdef DEBUG ASSERT(state_ == UPDATE_POINTERS); state_ = RELOCATE_OBJECTS; #endif // Relocates objects, always relocate map objects first. Relocating // objects in other space relies on map objects to get object size. int live_maps_size = IterateLiveObjects( heap()->map_space(), &MarkCompactCollector::RelocateMapObject); int live_pointer_olds_size = IterateLiveObjects( heap()->old_pointer_space(), &MarkCompactCollector::RelocateOldPointerObject); int live_data_olds_size = IterateLiveObjects( heap()->old_data_space(), &MarkCompactCollector::RelocateOldDataObject); int live_codes_size = IterateLiveObjects( heap()->code_space(), &MarkCompactCollector::RelocateCodeObject); int live_cells_size = IterateLiveObjects( heap()->cell_space(), &MarkCompactCollector::RelocateCellObject); int live_news_size = IterateLiveObjects( heap()->new_space(), &MarkCompactCollector::RelocateNewObject); USE(live_maps_size); USE(live_pointer_olds_size); USE(live_data_olds_size); USE(live_codes_size); USE(live_cells_size); USE(live_news_size); ASSERT(live_maps_size == live_map_objects_size_); ASSERT(live_data_olds_size == live_old_data_objects_size_); ASSERT(live_pointer_olds_size == live_old_pointer_objects_size_); ASSERT(live_codes_size == live_code_objects_size_); ASSERT(live_cells_size == live_cell_objects_size_); ASSERT(live_news_size == live_young_objects_size_); // Flip from and to spaces heap()->new_space()->Flip(); heap()->new_space()->MCCommitRelocationInfo(); // Set age_mark to bottom in to space Address mark = heap()->new_space()->bottom(); heap()->new_space()->set_age_mark(mark); PagedSpaces spaces; for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) space->MCCommitRelocationInfo(); heap()->CheckNewSpaceExpansionCriteria(); heap()->IncrementYoungSurvivorsCounter(live_news_size); } int MarkCompactCollector::RelocateMapObject(HeapObject* obj) { // Recover map pointer. MapWord encoding = obj->map_word(); Address map_addr = encoding.DecodeMapAddress(heap()->map_space()); ASSERT(heap()->map_space()->Contains(HeapObject::FromAddress(map_addr))); // Get forwarding address before resetting map pointer Address new_addr = GetForwardingAddressInOldSpace(obj); // Reset map pointer. The meta map object may not be copied yet so // Map::cast does not yet work. obj->set_map(reinterpret_cast(HeapObject::FromAddress(map_addr))); Address old_addr = obj->address(); if (new_addr != old_addr) { // Move contents. heap()->MoveBlockToOldSpaceAndUpdateRegionMarks(new_addr, old_addr, Map::kSize); } #ifdef DEBUG if (FLAG_gc_verbose) { PrintF("relocate %p -> %p\n", old_addr, new_addr); } #endif return Map::kSize; } static inline int RestoreMap(HeapObject* obj, PagedSpace* space, Address new_addr, Address map_addr) { // This must be a non-map object, and the function relies on the // assumption that the Map space is compacted before the other paged // spaces (see RelocateObjects). // Reset map pointer. obj->set_map(Map::cast(HeapObject::FromAddress(map_addr))); int obj_size = obj->Size(); ASSERT_OBJECT_SIZE(obj_size); ASSERT(space->MCSpaceOffsetForAddress(new_addr) <= space->MCSpaceOffsetForAddress(obj->address())); #ifdef DEBUG if (FLAG_gc_verbose) { PrintF("relocate %p -> %p\n", obj->address(), new_addr); } #endif return obj_size; } int MarkCompactCollector::RelocateOldNonCodeObject(HeapObject* obj, PagedSpace* space) { // Recover map pointer. MapWord encoding = obj->map_word(); Address map_addr = encoding.DecodeMapAddress(heap()->map_space()); ASSERT(heap()->map_space()->Contains(map_addr)); // Get forwarding address before resetting map pointer. Address new_addr = GetForwardingAddressInOldSpace(obj); // Reset the map pointer. int obj_size = RestoreMap(obj, space, new_addr, map_addr); Address old_addr = obj->address(); if (new_addr != old_addr) { // Move contents. if (space == heap()->old_data_space()) { heap()->MoveBlock(new_addr, old_addr, obj_size); } else { heap()->MoveBlockToOldSpaceAndUpdateRegionMarks(new_addr, old_addr, obj_size); } } ASSERT(!HeapObject::FromAddress(new_addr)->IsCode()); HeapObject* copied_to = HeapObject::FromAddress(new_addr); if (copied_to->IsSharedFunctionInfo()) { PROFILE(heap()->isolate(), SharedFunctionInfoMoveEvent(old_addr, new_addr)); } HEAP_PROFILE(heap(), ObjectMoveEvent(old_addr, new_addr)); return obj_size; } int MarkCompactCollector::RelocateOldPointerObject(HeapObject* obj) { return RelocateOldNonCodeObject(obj, heap()->old_pointer_space()); } int MarkCompactCollector::RelocateOldDataObject(HeapObject* obj) { return RelocateOldNonCodeObject(obj, heap()->old_data_space()); } int MarkCompactCollector::RelocateCellObject(HeapObject* obj) { return RelocateOldNonCodeObject(obj, heap()->cell_space()); } int MarkCompactCollector::RelocateCodeObject(HeapObject* obj) { // Recover map pointer. MapWord encoding = obj->map_word(); Address map_addr = encoding.DecodeMapAddress(heap()->map_space()); ASSERT(heap()->map_space()->Contains(HeapObject::FromAddress(map_addr))); // Get forwarding address before resetting map pointer Address new_addr = GetForwardingAddressInOldSpace(obj); // Reset the map pointer. int obj_size = RestoreMap(obj, heap()->code_space(), new_addr, map_addr); Address old_addr = obj->address(); if (new_addr != old_addr) { // Move contents. heap()->MoveBlock(new_addr, old_addr, obj_size); } HeapObject* copied_to = HeapObject::FromAddress(new_addr); if (copied_to->IsCode()) { // May also update inline cache target. Code::cast(copied_to)->Relocate(new_addr - old_addr); // Notify the logger that compiled code has moved. PROFILE(heap()->isolate(), CodeMoveEvent(old_addr, new_addr)); } HEAP_PROFILE(heap(), ObjectMoveEvent(old_addr, new_addr)); return obj_size; } int MarkCompactCollector::RelocateNewObject(HeapObject* obj) { int obj_size = obj->Size(); // Get forwarding address Address old_addr = obj->address(); int offset = heap()->new_space()->ToSpaceOffsetForAddress(old_addr); Address new_addr = Memory::Address_at(heap()->new_space()->FromSpaceLow() + offset); #ifdef DEBUG if (heap()->new_space()->FromSpaceContains(new_addr)) { ASSERT(heap()->new_space()->FromSpaceOffsetForAddress(new_addr) <= heap()->new_space()->ToSpaceOffsetForAddress(old_addr)); } else { ASSERT(heap()->TargetSpace(obj) == heap()->old_pointer_space() || heap()->TargetSpace(obj) == heap()->old_data_space()); } #endif // New and old addresses cannot overlap. if (heap()->InNewSpace(HeapObject::FromAddress(new_addr))) { heap()->CopyBlock(new_addr, old_addr, obj_size); } else { heap()->CopyBlockToOldSpaceAndUpdateRegionMarks(new_addr, old_addr, obj_size); } #ifdef DEBUG if (FLAG_gc_verbose) { PrintF("relocate %p -> %p\n", old_addr, new_addr); } #endif HeapObject* copied_to = HeapObject::FromAddress(new_addr); if (copied_to->IsSharedFunctionInfo()) { PROFILE(heap()->isolate(), SharedFunctionInfoMoveEvent(old_addr, new_addr)); } HEAP_PROFILE(heap(), ObjectMoveEvent(old_addr, new_addr)); return obj_size; } void MarkCompactCollector::EnableCodeFlushing(bool enable) { if (enable) { if (code_flusher_ != NULL) return; code_flusher_ = new CodeFlusher(heap()->isolate()); } else { if (code_flusher_ == NULL) return; delete code_flusher_; code_flusher_ = NULL; } } void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate) { #ifdef ENABLE_GDB_JIT_INTERFACE if (obj->IsCode()) { GDBJITInterface::RemoveCode(reinterpret_cast(obj)); } #endif #ifdef ENABLE_LOGGING_AND_PROFILING if (obj->IsCode()) { PROFILE(isolate, CodeDeleteEvent(obj->address())); } #endif } int MarkCompactCollector::SizeOfMarkedObject(HeapObject* obj) { MapWord map_word = obj->map_word(); map_word.ClearMark(); return obj->SizeFromMap(map_word.ToMap()); } void MarkCompactCollector::Initialize() { StaticPointersToNewGenUpdatingVisitor::Initialize(); StaticMarkingVisitor::Initialize(); } } } // namespace v8::internal