Sha256: 7fde9efb54f50c00c8f7936d26a904e5597454c73e667ab9f060efcbf777506c
Contents?: true
Size: 1.3 KB
Versions: 1
Compression:
Stored size: 1.3 KB
Contents
# LearnKit ## Installation Add this line to your application's Gemfile: ```ruby gem 'learn_kit' ``` And then execute: $ bundle Or install it yourself as: $ gem install learn_kit ### K-Nearest Neighbors Initialize classificator with data set consists from labels and features: ```ruby data_set = { label1: [[-1, -1], [-2, -1], [-3, -2]], label2: [[1, 1], [2, 1], [3, 2], [-2, -2]] } clf = LearnKit::Knn.new(data_set: data_set) ``` Predict label for new feature: ```ruby clf.predict(k: 3, algorithm: 'brute', weight: 'uniform', point: [-1, -2]) ``` k - number of nearest neighbors algorithm - algorithm for calculation of distances, one of the [brute] weight - method of weighted neighbors, one of the [uniform|distance] point - new feature for prediction ### Naive Bayes #### Gaussian Initialize classificator with data set consists from labels and features: ```ruby data_set = { label1: [[-1, -1], [-2, -1], [-3, -2]], label2: [[1, 1], [2, 1], [3, 2], [-2, -2]] } clf = LearnKit::NaiveBayes::Gaussian.new(data_set: data_set) ``` Make fit of test data: ```ruby clf.fit ``` Predict label for new feature: ```ruby clf.predict([-1, -2]) ``` Or show probability for all labels: ```ruby clf.predict_proba([-1, -2]) ``` Calculate accuracy for test data: ```ruby clf.score ```
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
learn_kit-0.0.1 | README.md |