// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "api.h" #include "arguments.h" #include "ast.h" #include "code-stubs.h" #include "gdb-jit.h" #include "ic-inl.h" #include "stub-cache.h" #include "vm-state-inl.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------- // StubCache implementation. StubCache::StubCache(Isolate* isolate) : isolate_(isolate) { ASSERT(isolate == Isolate::Current()); memset(primary_, 0, sizeof(primary_[0]) * StubCache::kPrimaryTableSize); memset(secondary_, 0, sizeof(secondary_[0]) * StubCache::kSecondaryTableSize); } void StubCache::Initialize(bool create_heap_objects) { ASSERT(IsPowerOf2(kPrimaryTableSize)); ASSERT(IsPowerOf2(kSecondaryTableSize)); if (create_heap_objects) { HandleScope scope; Clear(); } } Code* StubCache::Set(String* name, Map* map, Code* code) { // Get the flags from the code. Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); // Validate that the name does not move on scavenge, and that we // can use identity checks instead of string equality checks. ASSERT(!heap()->InNewSpace(name)); ASSERT(name->IsSymbol()); // The state bits are not important to the hash function because // the stub cache only contains monomorphic stubs. Make sure that // the bits are the least significant so they will be the ones // masked out. ASSERT(Code::ExtractICStateFromFlags(flags) == MONOMORPHIC); ASSERT(Code::kFlagsICStateShift == 0); // Make sure that the code type is not included in the hash. ASSERT(Code::ExtractTypeFromFlags(flags) == 0); // Compute the primary entry. int primary_offset = PrimaryOffset(name, flags, map); Entry* primary = entry(primary_, primary_offset); Code* hit = primary->value; // If the primary entry has useful data in it, we retire it to the // secondary cache before overwriting it. if (hit != isolate_->builtins()->builtin(Builtins::kIllegal)) { Code::Flags primary_flags = Code::RemoveTypeFromFlags(hit->flags()); int secondary_offset = SecondaryOffset(primary->key, primary_flags, primary_offset); Entry* secondary = entry(secondary_, secondary_offset); *secondary = *primary; } // Update primary cache. primary->key = name; primary->value = code; return code; } MaybeObject* StubCache::ComputeLoadNonexistent(String* name, JSObject* receiver) { ASSERT(receiver->IsGlobalObject() || receiver->HasFastProperties()); // If no global objects are present in the prototype chain, the load // nonexistent IC stub can be shared for all names for a given map // and we use the empty string for the map cache in that case. If // there are global objects involved, we need to check global // property cells in the stub and therefore the stub will be // specific to the name. String* cache_name = heap()->empty_string(); if (receiver->IsGlobalObject()) cache_name = name; JSObject* last = receiver; while (last->GetPrototype() != heap()->null_value()) { last = JSObject::cast(last->GetPrototype()); if (last->IsGlobalObject()) cache_name = name; } // Compile the stub that is either shared for all names or // name specific if there are global objects involved. Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, NONEXISTENT); Object* code = receiver->map()->FindInCodeCache(cache_name, flags); if (code->IsUndefined()) { LoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadNonexistent(cache_name, receiver, last); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), cache_name)); GDBJIT(AddCode(GDBJITInterface::LOAD_IC, cache_name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(cache_name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeLoadField(String* name, JSObject* receiver, JSObject* holder, int field_index) { ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP); Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, FIELD); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { LoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadField(receiver, holder, field_index, name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeLoadCallback(String* name, JSObject* receiver, JSObject* holder, AccessorInfo* callback) { ASSERT(v8::ToCData
(callback->getter()) != 0); ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP); Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, CALLBACKS); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { LoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadCallback(name, receiver, holder, callback); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeLoadConstant(String* name, JSObject* receiver, JSObject* holder, Object* value) { ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP); Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, CONSTANT_FUNCTION); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { LoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadConstant(receiver, holder, value, name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeLoadInterceptor(String* name, JSObject* receiver, JSObject* holder) { ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP); Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, INTERCEPTOR); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { LoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadInterceptor(receiver, holder, name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeLoadNormal() { return isolate_->builtins()->builtin(Builtins::kLoadIC_Normal); } MaybeObject* StubCache::ComputeLoadGlobal(String* name, JSObject* receiver, GlobalObject* holder, JSGlobalPropertyCell* cell, bool is_dont_delete) { ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP); Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, NORMAL); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { LoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadGlobal(receiver, holder, cell, name, is_dont_delete); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeKeyedLoadField(String* name, JSObject* receiver, JSObject* holder, int field_index) { ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP); Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, FIELD); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { KeyedLoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadField(name, receiver, holder, field_index); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeKeyedLoadConstant(String* name, JSObject* receiver, JSObject* holder, Object* value) { ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP); Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CONSTANT_FUNCTION); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { KeyedLoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadConstant(name, receiver, holder, value); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeKeyedLoadInterceptor(String* name, JSObject* receiver, JSObject* holder) { ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP); Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, INTERCEPTOR); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { KeyedLoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadInterceptor(receiver, holder, name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeKeyedLoadCallback(String* name, JSObject* receiver, JSObject* holder, AccessorInfo* callback) { ASSERT(IC::GetCodeCacheForObject(receiver, holder) == OWN_MAP); Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { KeyedLoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadCallback(name, receiver, holder, callback); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeKeyedLoadArrayLength(String* name, JSArray* receiver) { Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS); ASSERT(receiver->IsJSObject()); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { KeyedLoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadArrayLength(name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeKeyedLoadStringLength(String* name, String* receiver) { Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS); Map* map = receiver->map(); Object* code = map->FindInCodeCache(name, flags); if (code->IsUndefined()) { KeyedLoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadStringLength(name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = map->UpdateCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeKeyedLoadFunctionPrototype( String* name, JSFunction* receiver) { Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC, CALLBACKS); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { KeyedLoadStubCompiler compiler; { MaybeObject* maybe_code = compiler.CompileLoadFunctionPrototype(name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::KEYED_LOAD_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeStoreField(String* name, JSObject* receiver, int field_index, Map* transition, StrictModeFlag strict_mode) { PropertyType type = (transition == NULL) ? FIELD : MAP_TRANSITION; Code::Flags flags = Code::ComputeMonomorphicFlags( Code::STORE_IC, type, strict_mode); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { StoreStubCompiler compiler(strict_mode); { MaybeObject* maybe_code = compiler.CompileStoreField(receiver, field_index, transition, name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::STORE_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::STORE_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeKeyedLoadOrStoreElement( JSObject* receiver, bool is_store, StrictModeFlag strict_mode) { Code::Flags flags = Code::ComputeMonomorphicFlags( is_store ? Code::KEYED_STORE_IC : Code::KEYED_LOAD_IC, NORMAL, strict_mode); String* name = is_store ? isolate()->heap()->KeyedStoreElementMonomorphic_symbol() : isolate()->heap()->KeyedLoadElementMonomorphic_symbol(); Object* maybe_code = receiver->map()->FindInCodeCache(name, flags); if (!maybe_code->IsUndefined()) return Code::cast(maybe_code); MaybeObject* maybe_new_code = NULL; Map* receiver_map = receiver->map(); if (is_store) { KeyedStoreStubCompiler compiler(strict_mode); maybe_new_code = compiler.CompileStoreElement(receiver_map); } else { KeyedLoadStubCompiler compiler; maybe_new_code = compiler.CompileLoadElement(receiver_map); } Code* code; if (!maybe_new_code->To(&code)) return maybe_new_code; if (is_store) { PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_STORE_IC_TAG, Code::cast(code), 0)); } else { PROFILE(isolate_, CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(code), 0)); } ASSERT(code->IsCode()); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } return code; } MaybeObject* StubCache::ComputeStoreNormal(StrictModeFlag strict_mode) { return isolate_->builtins()->builtin((strict_mode == kStrictMode) ? Builtins::kStoreIC_Normal_Strict : Builtins::kStoreIC_Normal); } MaybeObject* StubCache::ComputeStoreGlobal(String* name, GlobalObject* receiver, JSGlobalPropertyCell* cell, StrictModeFlag strict_mode) { Code::Flags flags = Code::ComputeMonomorphicFlags( Code::STORE_IC, NORMAL, strict_mode); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { StoreStubCompiler compiler(strict_mode); { MaybeObject* maybe_code = compiler.CompileStoreGlobal(receiver, cell, name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::STORE_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::STORE_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeStoreCallback( String* name, JSObject* receiver, AccessorInfo* callback, StrictModeFlag strict_mode) { ASSERT(v8::ToCData
(callback->setter()) != 0); Code::Flags flags = Code::ComputeMonomorphicFlags( Code::STORE_IC, CALLBACKS, strict_mode); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { StoreStubCompiler compiler(strict_mode); { MaybeObject* maybe_code = compiler.CompileStoreCallback(receiver, callback, name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::STORE_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::STORE_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeStoreInterceptor( String* name, JSObject* receiver, StrictModeFlag strict_mode) { Code::Flags flags = Code::ComputeMonomorphicFlags( Code::STORE_IC, INTERCEPTOR, strict_mode); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { StoreStubCompiler compiler(strict_mode); { MaybeObject* maybe_code = compiler.CompileStoreInterceptor(receiver, name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate_, CodeCreateEvent(Logger::STORE_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::STORE_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeKeyedStoreField(String* name, JSObject* receiver, int field_index, Map* transition, StrictModeFlag strict_mode) { PropertyType type = (transition == NULL) ? FIELD : MAP_TRANSITION; Code::Flags flags = Code::ComputeMonomorphicFlags( Code::KEYED_STORE_IC, type, strict_mode); Object* code = receiver->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { KeyedStoreStubCompiler compiler(strict_mode); { MaybeObject* maybe_code = compiler.CompileStoreField(receiver, field_index, transition, name); if (!maybe_code->ToObject(&code)) return maybe_code; } PROFILE(isolate(), CodeCreateEvent(Logger::KEYED_STORE_IC_TAG, Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::KEYED_STORE_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = receiver->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } #define CALL_LOGGER_TAG(kind, type) \ (kind == Code::CALL_IC ? Logger::type : Logger::KEYED_##type) MaybeObject* StubCache::ComputeCallConstant(int argc, InLoopFlag in_loop, Code::Kind kind, Code::ExtraICState extra_ic_state, String* name, Object* object, JSObject* holder, JSFunction* function) { // Compute the check type and the map. InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(object, holder); JSObject* map_holder = IC::GetCodeCacheHolder(object, cache_holder); // Compute check type based on receiver/holder. CheckType check = RECEIVER_MAP_CHECK; if (object->IsString()) { check = STRING_CHECK; } else if (object->IsNumber()) { check = NUMBER_CHECK; } else if (object->IsBoolean()) { check = BOOLEAN_CHECK; } Code::Flags flags = Code::ComputeMonomorphicFlags(kind, CONSTANT_FUNCTION, extra_ic_state, cache_holder, in_loop, argc); Object* code = map_holder->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { // If the function hasn't been compiled yet, we cannot do it now // because it may cause GC. To avoid this issue, we return an // internal error which will make sure we do not update any // caches. if (!function->is_compiled()) return Failure::InternalError(); // Compile the stub - only create stubs for fully compiled functions. CallStubCompiler compiler( argc, in_loop, kind, extra_ic_state, cache_holder); { MaybeObject* maybe_code = compiler.CompileCallConstant(object, holder, function, name, check); if (!maybe_code->ToObject(&code)) return maybe_code; } Code::cast(code)->set_check_type(check); ASSERT_EQ(flags, Code::cast(code)->flags()); PROFILE(isolate_, CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::CALL_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = map_holder->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeCallField(int argc, InLoopFlag in_loop, Code::Kind kind, Code::ExtraICState extra_ic_state, String* name, Object* object, JSObject* holder, int index) { // Compute the check type and the map. InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(object, holder); JSObject* map_holder = IC::GetCodeCacheHolder(object, cache_holder); // TODO(1233596): We cannot do receiver map check for non-JS objects // because they may be represented as immediates without a // map. Instead, we check against the map in the holder. if (object->IsNumber() || object->IsBoolean() || object->IsString()) { object = holder; } Code::Flags flags = Code::ComputeMonomorphicFlags(kind, FIELD, extra_ic_state, cache_holder, in_loop, argc); Object* code = map_holder->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { CallStubCompiler compiler( argc, in_loop, kind, extra_ic_state, cache_holder); { MaybeObject* maybe_code = compiler.CompileCallField(JSObject::cast(object), holder, index, name); if (!maybe_code->ToObject(&code)) return maybe_code; } ASSERT_EQ(flags, Code::cast(code)->flags()); PROFILE(isolate_, CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::CALL_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = map_holder->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeCallInterceptor( int argc, Code::Kind kind, Code::ExtraICState extra_ic_state, String* name, Object* object, JSObject* holder) { // Compute the check type and the map. InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(object, holder); JSObject* map_holder = IC::GetCodeCacheHolder(object, cache_holder); // TODO(1233596): We cannot do receiver map check for non-JS objects // because they may be represented as immediates without a // map. Instead, we check against the map in the holder. if (object->IsNumber() || object->IsBoolean() || object->IsString()) { object = holder; } Code::Flags flags = Code::ComputeMonomorphicFlags(kind, INTERCEPTOR, extra_ic_state, cache_holder, NOT_IN_LOOP, argc); Object* code = map_holder->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { CallStubCompiler compiler( argc, NOT_IN_LOOP, kind, extra_ic_state, cache_holder); { MaybeObject* maybe_code = compiler.CompileCallInterceptor(JSObject::cast(object), holder, name); if (!maybe_code->ToObject(&code)) return maybe_code; } ASSERT_EQ(flags, Code::cast(code)->flags()); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::CALL_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = map_holder->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } MaybeObject* StubCache::ComputeCallNormal(int argc, InLoopFlag in_loop, Code::Kind kind, Code::ExtraICState extra_ic_state, String* name, JSObject* receiver) { Object* code; { MaybeObject* maybe_code = ComputeCallNormal(argc, in_loop, kind, extra_ic_state); if (!maybe_code->ToObject(&code)) return maybe_code; } return code; } MaybeObject* StubCache::ComputeCallGlobal(int argc, InLoopFlag in_loop, Code::Kind kind, Code::ExtraICState extra_ic_state, String* name, JSObject* receiver, GlobalObject* holder, JSGlobalPropertyCell* cell, JSFunction* function) { InlineCacheHolderFlag cache_holder = IC::GetCodeCacheForObject(receiver, holder); JSObject* map_holder = IC::GetCodeCacheHolder(receiver, cache_holder); Code::Flags flags = Code::ComputeMonomorphicFlags(kind, NORMAL, extra_ic_state, cache_holder, in_loop, argc); Object* code = map_holder->map()->FindInCodeCache(name, flags); if (code->IsUndefined()) { // If the function hasn't been compiled yet, we cannot do it now // because it may cause GC. To avoid this issue, we return an // internal error which will make sure we do not update any // caches. if (!function->is_compiled()) return Failure::InternalError(); CallStubCompiler compiler( argc, in_loop, kind, extra_ic_state, cache_holder); { MaybeObject* maybe_code = compiler.CompileCallGlobal(receiver, holder, cell, function, name); if (!maybe_code->ToObject(&code)) return maybe_code; } ASSERT_EQ(flags, Code::cast(code)->flags()); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_IC_TAG), Code::cast(code), name)); GDBJIT(AddCode(GDBJITInterface::CALL_IC, name, Code::cast(code))); Object* result; { MaybeObject* maybe_result = map_holder->UpdateMapCodeCache(name, Code::cast(code)); if (!maybe_result->ToObject(&result)) return maybe_result; } } return code; } static Object* GetProbeValue(Isolate* isolate, Code::Flags flags) { // Use raw_unchecked... so we don't get assert failures during GC. NumberDictionary* dictionary = isolate->heap()->raw_unchecked_non_monomorphic_cache(); int entry = dictionary->FindEntry(isolate, flags); if (entry != -1) return dictionary->ValueAt(entry); return isolate->heap()->raw_unchecked_undefined_value(); } MUST_USE_RESULT static MaybeObject* ProbeCache(Isolate* isolate, Code::Flags flags) { Heap* heap = isolate->heap(); Object* probe = GetProbeValue(isolate, flags); if (probe != heap->undefined_value()) return probe; // Seed the cache with an undefined value to make sure that any // generated code object can always be inserted into the cache // without causing allocation failures. Object* result; { MaybeObject* maybe_result = heap->non_monomorphic_cache()->AtNumberPut(flags, heap->undefined_value()); if (!maybe_result->ToObject(&result)) return maybe_result; } heap->public_set_non_monomorphic_cache(NumberDictionary::cast(result)); return probe; } static MaybeObject* FillCache(Isolate* isolate, MaybeObject* maybe_code) { Object* code; if (maybe_code->ToObject(&code)) { if (code->IsCode()) { Heap* heap = isolate->heap(); int entry = heap->non_monomorphic_cache()->FindEntry( Code::cast(code)->flags()); // The entry must be present see comment in ProbeCache. ASSERT(entry != -1); ASSERT(heap->non_monomorphic_cache()->ValueAt(entry) == heap->undefined_value()); heap->non_monomorphic_cache()->ValueAtPut(entry, code); CHECK(GetProbeValue(isolate, Code::cast(code)->flags()) == code); } } return maybe_code; } Code* StubCache::FindCallInitialize(int argc, InLoopFlag in_loop, RelocInfo::Mode mode, Code::Kind kind) { Code::ExtraICState extra_state = CallICBase::StringStubState::encode(DEFAULT_STRING_STUB) | CallICBase::Contextual::encode(mode == RelocInfo::CODE_TARGET_CONTEXT); Code::Flags flags = Code::ComputeFlags(kind, in_loop, UNINITIALIZED, extra_state, NORMAL, argc); Object* result = ProbeCache(isolate(), flags)->ToObjectUnchecked(); ASSERT(result != heap()->undefined_value()); // This might be called during the marking phase of the collector // hence the unchecked cast. return reinterpret_cast(result); } MaybeObject* StubCache::ComputeCallInitialize(int argc, InLoopFlag in_loop, RelocInfo::Mode mode, Code::Kind kind) { Code::ExtraICState extra_state = CallICBase::StringStubState::encode(DEFAULT_STRING_STUB) | CallICBase::Contextual::encode(mode == RelocInfo::CODE_TARGET_CONTEXT); Code::Flags flags = Code::ComputeFlags(kind, in_loop, UNINITIALIZED, extra_state, NORMAL, argc); Object* probe; { MaybeObject* maybe_probe = ProbeCache(isolate_, flags); if (!maybe_probe->ToObject(&probe)) return maybe_probe; } if (!probe->IsUndefined()) return probe; StubCompiler compiler; return FillCache(isolate_, compiler.CompileCallInitialize(flags)); } Handle StubCache::ComputeCallInitialize(int argc, InLoopFlag in_loop, RelocInfo::Mode mode) { if (in_loop == IN_LOOP) { // Force the creation of the corresponding stub outside loops, // because it may be used when clearing the ICs later - it is // possible for a series of IC transitions to lose the in-loop // information, and the IC clearing code can't generate a stub // that it needs so we need to ensure it is generated already. ComputeCallInitialize(argc, NOT_IN_LOOP, mode); } CALL_HEAP_FUNCTION(isolate_, ComputeCallInitialize(argc, in_loop, mode, Code::CALL_IC), Code); } Handle StubCache::ComputeKeyedCallInitialize(int argc, InLoopFlag in_loop) { if (in_loop == IN_LOOP) { // Force the creation of the corresponding stub outside loops, // because it may be used when clearing the ICs later - it is // possible for a series of IC transitions to lose the in-loop // information, and the IC clearing code can't generate a stub // that it needs so we need to ensure it is generated already. ComputeKeyedCallInitialize(argc, NOT_IN_LOOP); } CALL_HEAP_FUNCTION( isolate_, ComputeCallInitialize(argc, in_loop, RelocInfo::CODE_TARGET, Code::KEYED_CALL_IC), Code); } MaybeObject* StubCache::ComputeCallPreMonomorphic( int argc, InLoopFlag in_loop, Code::Kind kind, Code::ExtraICState extra_ic_state) { Code::Flags flags = Code::ComputeFlags(kind, in_loop, PREMONOMORPHIC, extra_ic_state, NORMAL, argc); Object* probe; { MaybeObject* maybe_probe = ProbeCache(isolate_, flags); if (!maybe_probe->ToObject(&probe)) return maybe_probe; } if (!probe->IsUndefined()) return probe; StubCompiler compiler; return FillCache(isolate_, compiler.CompileCallPreMonomorphic(flags)); } MaybeObject* StubCache::ComputeCallNormal(int argc, InLoopFlag in_loop, Code::Kind kind, Code::ExtraICState extra_ic_state) { Code::Flags flags = Code::ComputeFlags(kind, in_loop, MONOMORPHIC, extra_ic_state, NORMAL, argc); Object* probe; { MaybeObject* maybe_probe = ProbeCache(isolate_, flags); if (!maybe_probe->ToObject(&probe)) return maybe_probe; } if (!probe->IsUndefined()) return probe; StubCompiler compiler; return FillCache(isolate_, compiler.CompileCallNormal(flags)); } MaybeObject* StubCache::ComputeCallArguments(int argc, InLoopFlag in_loop, Code::Kind kind) { ASSERT(kind == Code::KEYED_CALL_IC); Code::Flags flags = Code::ComputeFlags(kind, in_loop, MEGAMORPHIC, Code::kNoExtraICState, NORMAL, argc); Object* probe; { MaybeObject* maybe_probe = ProbeCache(isolate_, flags); if (!maybe_probe->ToObject(&probe)) return maybe_probe; } if (!probe->IsUndefined()) return probe; StubCompiler compiler; return FillCache(isolate_, compiler.CompileCallArguments(flags)); } MaybeObject* StubCache::ComputeCallMegamorphic( int argc, InLoopFlag in_loop, Code::Kind kind, Code::ExtraICState extra_ic_state) { Code::Flags flags = Code::ComputeFlags(kind, in_loop, MEGAMORPHIC, extra_ic_state, NORMAL, argc); Object* probe; { MaybeObject* maybe_probe = ProbeCache(isolate_, flags); if (!maybe_probe->ToObject(&probe)) return maybe_probe; } if (!probe->IsUndefined()) return probe; StubCompiler compiler; return FillCache(isolate_, compiler.CompileCallMegamorphic(flags)); } MaybeObject* StubCache::ComputeCallMiss(int argc, Code::Kind kind, Code::ExtraICState extra_ic_state) { // MONOMORPHIC_PROTOTYPE_FAILURE state is used to make sure that miss stubs // and monomorphic stubs are not mixed up together in the stub cache. Code::Flags flags = Code::ComputeFlags(kind, NOT_IN_LOOP, MONOMORPHIC_PROTOTYPE_FAILURE, extra_ic_state, NORMAL, argc, OWN_MAP); Object* probe; { MaybeObject* maybe_probe = ProbeCache(isolate_, flags); if (!maybe_probe->ToObject(&probe)) return maybe_probe; } if (!probe->IsUndefined()) return probe; StubCompiler compiler; return FillCache(isolate_, compiler.CompileCallMiss(flags)); } #ifdef ENABLE_DEBUGGER_SUPPORT MaybeObject* StubCache::ComputeCallDebugBreak( int argc, Code::Kind kind) { // Extra IC state is irrelevant for debug break ICs. They jump to // the actual call ic to carry out the work. Code::Flags flags = Code::ComputeFlags(kind, NOT_IN_LOOP, DEBUG_BREAK, Code::kNoExtraICState, NORMAL, argc); Object* probe; { MaybeObject* maybe_probe = ProbeCache(isolate_, flags); if (!maybe_probe->ToObject(&probe)) return maybe_probe; } if (!probe->IsUndefined()) return probe; StubCompiler compiler; return FillCache(isolate_, compiler.CompileCallDebugBreak(flags)); } MaybeObject* StubCache::ComputeCallDebugPrepareStepIn( int argc, Code::Kind kind) { // Extra IC state is irrelevant for debug break ICs. They jump to // the actual call ic to carry out the work. Code::Flags flags = Code::ComputeFlags(kind, NOT_IN_LOOP, DEBUG_PREPARE_STEP_IN, Code::kNoExtraICState, NORMAL, argc); Object* probe; { MaybeObject* maybe_probe = ProbeCache(isolate_, flags); if (!maybe_probe->ToObject(&probe)) return maybe_probe; } if (!probe->IsUndefined()) return probe; StubCompiler compiler; return FillCache(isolate_, compiler.CompileCallDebugPrepareStepIn(flags)); } #endif void StubCache::Clear() { for (int i = 0; i < kPrimaryTableSize; i++) { primary_[i].key = heap()->empty_string(); primary_[i].value = isolate_->builtins()->builtin( Builtins::kIllegal); } for (int j = 0; j < kSecondaryTableSize; j++) { secondary_[j].key = heap()->empty_string(); secondary_[j].value = isolate_->builtins()->builtin( Builtins::kIllegal); } } void StubCache::CollectMatchingMaps(SmallMapList* types, String* name, Code::Flags flags) { for (int i = 0; i < kPrimaryTableSize; i++) { if (primary_[i].key == name) { Map* map = primary_[i].value->FindFirstMap(); // Map can be NULL, if the stub is constant function call // with a primitive receiver. if (map == NULL) continue; int offset = PrimaryOffset(name, flags, map); if (entry(primary_, offset) == &primary_[i]) { types->Add(Handle(map)); } } } for (int i = 0; i < kSecondaryTableSize; i++) { if (secondary_[i].key == name) { Map* map = secondary_[i].value->FindFirstMap(); // Map can be NULL, if the stub is constant function call // with a primitive receiver. if (map == NULL) continue; // Lookup in primary table and skip duplicates. int primary_offset = PrimaryOffset(name, flags, map); Entry* primary_entry = entry(primary_, primary_offset); if (primary_entry->key == name) { Map* primary_map = primary_entry->value->FindFirstMap(); if (map == primary_map) continue; } // Lookup in secondary table and add matches. int offset = SecondaryOffset(name, flags, primary_offset); if (entry(secondary_, offset) == &secondary_[i]) { types->Add(Handle(map)); } } } } // ------------------------------------------------------------------------ // StubCompiler implementation. RUNTIME_FUNCTION(MaybeObject*, LoadCallbackProperty) { ASSERT(args[0]->IsJSObject()); ASSERT(args[1]->IsJSObject()); AccessorInfo* callback = AccessorInfo::cast(args[3]); Address getter_address = v8::ToCData
(callback->getter()); v8::AccessorGetter fun = FUNCTION_CAST(getter_address); ASSERT(fun != NULL); v8::AccessorInfo info(&args[0]); HandleScope scope(isolate); v8::Handle result; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); ExternalCallbackScope call_scope(isolate, getter_address); result = fun(v8::Utils::ToLocal(args.at(4)), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (result.IsEmpty()) return HEAP->undefined_value(); return *v8::Utils::OpenHandle(*result); } RUNTIME_FUNCTION(MaybeObject*, StoreCallbackProperty) { JSObject* recv = JSObject::cast(args[0]); AccessorInfo* callback = AccessorInfo::cast(args[1]); Address setter_address = v8::ToCData
(callback->setter()); v8::AccessorSetter fun = FUNCTION_CAST(setter_address); ASSERT(fun != NULL); Handle name = args.at(2); Handle value = args.at(3); HandleScope scope(isolate); LOG(isolate, ApiNamedPropertyAccess("store", recv, *name)); CustomArguments custom_args(isolate, callback->data(), recv, recv); v8::AccessorInfo info(custom_args.end()); { // Leaving JavaScript. VMState state(isolate, EXTERNAL); ExternalCallbackScope call_scope(isolate, setter_address); fun(v8::Utils::ToLocal(name), v8::Utils::ToLocal(value), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); return *value; } static const int kAccessorInfoOffsetInInterceptorArgs = 2; /** * Attempts to load a property with an interceptor (which must be present), * but doesn't search the prototype chain. * * Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't * provide any value for the given name. */ RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorOnly) { Handle name_handle = args.at(0); Handle interceptor_info = args.at(1); ASSERT(kAccessorInfoOffsetInInterceptorArgs == 2); ASSERT(args[2]->IsJSObject()); // Receiver. ASSERT(args[3]->IsJSObject()); // Holder. ASSERT(args.length() == 5); // Last arg is data object. Address getter_address = v8::ToCData
(interceptor_info->getter()); v8::NamedPropertyGetter getter = FUNCTION_CAST(getter_address); ASSERT(getter != NULL); { // Use the interceptor getter. v8::AccessorInfo info(args.arguments() - kAccessorInfoOffsetInInterceptorArgs); HandleScope scope(isolate); v8::Handle r; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); r = getter(v8::Utils::ToLocal(name_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!r.IsEmpty()) { return *v8::Utils::OpenHandle(*r); } } return isolate->heap()->no_interceptor_result_sentinel(); } static MaybeObject* ThrowReferenceError(String* name) { // If the load is non-contextual, just return the undefined result. // Note that both keyed and non-keyed loads may end up here, so we // can't use either LoadIC or KeyedLoadIC constructors. IC ic(IC::NO_EXTRA_FRAME, Isolate::Current()); ASSERT(ic.target()->is_load_stub() || ic.target()->is_keyed_load_stub()); if (!ic.SlowIsContextual()) return HEAP->undefined_value(); // Throw a reference error. HandleScope scope; Handle name_handle(name); Handle error = FACTORY->NewReferenceError("not_defined", HandleVector(&name_handle, 1)); return Isolate::Current()->Throw(*error); } static MaybeObject* LoadWithInterceptor(Arguments* args, PropertyAttributes* attrs) { Handle name_handle = args->at(0); Handle interceptor_info = args->at(1); ASSERT(kAccessorInfoOffsetInInterceptorArgs == 2); Handle receiver_handle = args->at(2); Handle holder_handle = args->at(3); ASSERT(args->length() == 5); // Last arg is data object. Isolate* isolate = receiver_handle->GetIsolate(); Address getter_address = v8::ToCData
(interceptor_info->getter()); v8::NamedPropertyGetter getter = FUNCTION_CAST(getter_address); ASSERT(getter != NULL); { // Use the interceptor getter. v8::AccessorInfo info(args->arguments() - kAccessorInfoOffsetInInterceptorArgs); HandleScope scope(isolate); v8::Handle r; { // Leaving JavaScript. VMState state(isolate, EXTERNAL); r = getter(v8::Utils::ToLocal(name_handle), info); } RETURN_IF_SCHEDULED_EXCEPTION(isolate); if (!r.IsEmpty()) { *attrs = NONE; return *v8::Utils::OpenHandle(*r); } } MaybeObject* result = holder_handle->GetPropertyPostInterceptor( *receiver_handle, *name_handle, attrs); RETURN_IF_SCHEDULED_EXCEPTION(isolate); return result; } /** * Loads a property with an interceptor performing post interceptor * lookup if interceptor failed. */ RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForLoad) { PropertyAttributes attr = NONE; Object* result; { MaybeObject* maybe_result = LoadWithInterceptor(&args, &attr); if (!maybe_result->ToObject(&result)) return maybe_result; } // If the property is present, return it. if (attr != ABSENT) return result; return ThrowReferenceError(String::cast(args[0])); } RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForCall) { PropertyAttributes attr; MaybeObject* result = LoadWithInterceptor(&args, &attr); RETURN_IF_SCHEDULED_EXCEPTION(isolate); // This is call IC. In this case, we simply return the undefined result which // will lead to an exception when trying to invoke the result as a // function. return result; } RUNTIME_FUNCTION(MaybeObject*, StoreInterceptorProperty) { ASSERT(args.length() == 4); JSObject* recv = JSObject::cast(args[0]); String* name = String::cast(args[1]); Object* value = args[2]; StrictModeFlag strict_mode = static_cast(args.smi_at(3)); ASSERT(strict_mode == kStrictMode || strict_mode == kNonStrictMode); ASSERT(recv->HasNamedInterceptor()); PropertyAttributes attr = NONE; MaybeObject* result = recv->SetPropertyWithInterceptor( name, value, attr, strict_mode); return result; } RUNTIME_FUNCTION(MaybeObject*, KeyedLoadPropertyWithInterceptor) { JSObject* receiver = JSObject::cast(args[0]); ASSERT(args.smi_at(1) >= 0); uint32_t index = args.smi_at(1); return receiver->GetElementWithInterceptor(receiver, index); } MaybeObject* StubCompiler::CompileCallInitialize(Code::Flags flags) { HandleScope scope(isolate()); int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); Code::ExtraICState extra_ic_state = Code::ExtractExtraICStateFromFlags(flags); if (kind == Code::CALL_IC) { CallIC::GenerateInitialize(masm(), argc, extra_ic_state); } else { KeyedCallIC::GenerateInitialize(masm(), argc); } Object* result; { MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallInitialize"); if (!maybe_result->ToObject(&result)) return maybe_result; } isolate()->counters()->call_initialize_stubs()->Increment(); Code* code = Code::cast(result); USE(code); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_INITIALIZE_TAG), code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_INITIALIZE, Code::cast(code))); return result; } MaybeObject* StubCompiler::CompileCallPreMonomorphic(Code::Flags flags) { HandleScope scope(isolate()); int argc = Code::ExtractArgumentsCountFromFlags(flags); // The code of the PreMonomorphic stub is the same as the code // of the Initialized stub. They just differ on the code object flags. Code::Kind kind = Code::ExtractKindFromFlags(flags); Code::ExtraICState extra_ic_state = Code::ExtractExtraICStateFromFlags(flags); if (kind == Code::CALL_IC) { CallIC::GenerateInitialize(masm(), argc, extra_ic_state); } else { KeyedCallIC::GenerateInitialize(masm(), argc); } Object* result; { MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallPreMonomorphic"); if (!maybe_result->ToObject(&result)) return maybe_result; } isolate()->counters()->call_premonomorphic_stubs()->Increment(); Code* code = Code::cast(result); USE(code); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_PRE_MONOMORPHIC_TAG), code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_PRE_MONOMORPHIC, Code::cast(code))); return result; } MaybeObject* StubCompiler::CompileCallNormal(Code::Flags flags) { HandleScope scope(isolate()); int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); if (kind == Code::CALL_IC) { // Call normal is always with a explict receiver. ASSERT(!CallIC::Contextual::decode( Code::ExtractExtraICStateFromFlags(flags))); CallIC::GenerateNormal(masm(), argc); } else { KeyedCallIC::GenerateNormal(masm(), argc); } Object* result; { MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallNormal"); if (!maybe_result->ToObject(&result)) return maybe_result; } isolate()->counters()->call_normal_stubs()->Increment(); Code* code = Code::cast(result); USE(code); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_NORMAL_TAG), code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_NORMAL, Code::cast(code))); return result; } MaybeObject* StubCompiler::CompileCallMegamorphic(Code::Flags flags) { HandleScope scope(isolate()); int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); Code::ExtraICState extra_ic_state = Code::ExtractExtraICStateFromFlags(flags); if (kind == Code::CALL_IC) { CallIC::GenerateMegamorphic(masm(), argc, extra_ic_state); } else { KeyedCallIC::GenerateMegamorphic(masm(), argc); } Object* result; { MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallMegamorphic"); if (!maybe_result->ToObject(&result)) return maybe_result; } isolate()->counters()->call_megamorphic_stubs()->Increment(); Code* code = Code::cast(result); USE(code); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MEGAMORPHIC_TAG), code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_MEGAMORPHIC, Code::cast(code))); return result; } MaybeObject* StubCompiler::CompileCallArguments(Code::Flags flags) { HandleScope scope(isolate()); int argc = Code::ExtractArgumentsCountFromFlags(flags); KeyedCallIC::GenerateNonStrictArguments(masm(), argc); Code::Kind kind = Code::ExtractKindFromFlags(flags); Object* result; { MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallArguments"); if (!maybe_result->ToObject(&result)) return maybe_result; } Code* code = Code::cast(result); USE(code); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MEGAMORPHIC_TAG), code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_MEGAMORPHIC, Code::cast(code))); return result; } MaybeObject* StubCompiler::CompileCallMiss(Code::Flags flags) { HandleScope scope(isolate()); int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); Code::ExtraICState extra_ic_state = Code::ExtractExtraICStateFromFlags(flags); if (kind == Code::CALL_IC) { CallIC::GenerateMiss(masm(), argc, extra_ic_state); } else { KeyedCallIC::GenerateMiss(masm(), argc); } Object* result; { MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallMiss"); if (!maybe_result->ToObject(&result)) return maybe_result; } isolate()->counters()->call_megamorphic_stubs()->Increment(); Code* code = Code::cast(result); USE(code); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_MISS_TAG), code, code->arguments_count())); GDBJIT(AddCode(GDBJITInterface::CALL_MISS, Code::cast(code))); return result; } #ifdef ENABLE_DEBUGGER_SUPPORT MaybeObject* StubCompiler::CompileCallDebugBreak(Code::Flags flags) { HandleScope scope(isolate()); Debug::GenerateCallICDebugBreak(masm()); Object* result; { MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallDebugBreak"); if (!maybe_result->ToObject(&result)) return maybe_result; } Code* code = Code::cast(result); USE(code); Code::Kind kind = Code::ExtractKindFromFlags(flags); USE(kind); PROFILE(isolate(), CodeCreateEvent(CALL_LOGGER_TAG(kind, CALL_DEBUG_BREAK_TAG), code, code->arguments_count())); return result; } MaybeObject* StubCompiler::CompileCallDebugPrepareStepIn(Code::Flags flags) { HandleScope scope(isolate()); // Use the same code for the the step in preparations as we do for // the miss case. int argc = Code::ExtractArgumentsCountFromFlags(flags); Code::Kind kind = Code::ExtractKindFromFlags(flags); if (kind == Code::CALL_IC) { // For the debugger extra ic state is irrelevant. CallIC::GenerateMiss(masm(), argc, Code::kNoExtraICState); } else { KeyedCallIC::GenerateMiss(masm(), argc); } Object* result; { MaybeObject* maybe_result = GetCodeWithFlags(flags, "CompileCallDebugPrepareStepIn"); if (!maybe_result->ToObject(&result)) return maybe_result; } Code* code = Code::cast(result); USE(code); PROFILE(isolate(), CodeCreateEvent( CALL_LOGGER_TAG(kind, CALL_DEBUG_PREPARE_STEP_IN_TAG), code, code->arguments_count())); return result; } #endif #undef CALL_LOGGER_TAG MaybeObject* StubCompiler::GetCodeWithFlags(Code::Flags flags, const char* name) { // Check for allocation failures during stub compilation. if (failure_->IsFailure()) return failure_; // Create code object in the heap. CodeDesc desc; masm_.GetCode(&desc); MaybeObject* result = heap()->CreateCode(desc, flags, masm_.CodeObject()); #ifdef ENABLE_DISASSEMBLER if (FLAG_print_code_stubs && !result->IsFailure()) { Code::cast(result->ToObjectUnchecked())->Disassemble(name); } #endif return result; } MaybeObject* StubCompiler::GetCodeWithFlags(Code::Flags flags, String* name) { if (FLAG_print_code_stubs && (name != NULL)) { return GetCodeWithFlags(flags, *name->ToCString()); } return GetCodeWithFlags(flags, reinterpret_cast(NULL)); } void StubCompiler::LookupPostInterceptor(JSObject* holder, String* name, LookupResult* lookup) { holder->LocalLookupRealNamedProperty(name, lookup); if (!lookup->IsProperty()) { lookup->NotFound(); Object* proto = holder->GetPrototype(); if (!proto->IsNull()) { proto->Lookup(name, lookup); } } } MaybeObject* LoadStubCompiler::GetCode(PropertyType type, String* name) { Code::Flags flags = Code::ComputeMonomorphicFlags(Code::LOAD_IC, type); MaybeObject* result = GetCodeWithFlags(flags, name); if (!result->IsFailure()) { PROFILE(isolate(), CodeCreateEvent(Logger::LOAD_IC_TAG, Code::cast(result->ToObjectUnchecked()), name)); GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(result->ToObjectUnchecked()))); } return result; } MaybeObject* KeyedLoadStubCompiler::GetCode(PropertyType type, String* name, InlineCacheState state) { Code::Flags flags = Code::ComputeFlags( Code::KEYED_LOAD_IC, NOT_IN_LOOP, state, Code::kNoExtraICState, type); MaybeObject* result = GetCodeWithFlags(flags, name); if (!result->IsFailure()) { PROFILE(isolate(), CodeCreateEvent(Logger::KEYED_LOAD_IC_TAG, Code::cast(result->ToObjectUnchecked()), name)); GDBJIT(AddCode(GDBJITInterface::LOAD_IC, name, Code::cast(result->ToObjectUnchecked()))); } return result; } MaybeObject* StoreStubCompiler::GetCode(PropertyType type, String* name) { Code::Flags flags = Code::ComputeMonomorphicFlags( Code::STORE_IC, type, strict_mode_); MaybeObject* result = GetCodeWithFlags(flags, name); if (!result->IsFailure()) { PROFILE(isolate(), CodeCreateEvent(Logger::STORE_IC_TAG, Code::cast(result->ToObjectUnchecked()), name)); GDBJIT(AddCode(GDBJITInterface::STORE_IC, name, Code::cast(result->ToObjectUnchecked()))); } return result; } MaybeObject* KeyedStoreStubCompiler::GetCode(PropertyType type, String* name, InlineCacheState state) { Code::Flags flags = Code::ComputeFlags( Code::KEYED_STORE_IC, NOT_IN_LOOP, state, strict_mode_, type); MaybeObject* result = GetCodeWithFlags(flags, name); if (!result->IsFailure()) { PROFILE(isolate(), CodeCreateEvent(Logger::KEYED_STORE_IC_TAG, Code::cast(result->ToObjectUnchecked()), name)); GDBJIT(AddCode(GDBJITInterface::KEYED_STORE_IC, name, Code::cast(result->ToObjectUnchecked()))); } return result; } void KeyedStoreStubCompiler::GenerateStoreDictionaryElement( MacroAssembler* masm) { KeyedStoreIC::GenerateSlow(masm); } CallStubCompiler::CallStubCompiler(int argc, InLoopFlag in_loop, Code::Kind kind, Code::ExtraICState extra_ic_state, InlineCacheHolderFlag cache_holder) : arguments_(argc), in_loop_(in_loop), kind_(kind), extra_ic_state_(extra_ic_state), cache_holder_(cache_holder) { } bool CallStubCompiler::HasCustomCallGenerator(JSFunction* function) { SharedFunctionInfo* info = function->shared(); if (info->HasBuiltinFunctionId()) { BuiltinFunctionId id = info->builtin_function_id(); #define CALL_GENERATOR_CASE(name) if (id == k##name) return true; CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE) #undef CALL_GENERATOR_CASE } CallOptimization optimization(function); if (optimization.is_simple_api_call()) { return true; } return false; } MaybeObject* CallStubCompiler::CompileCustomCall(Object* object, JSObject* holder, JSGlobalPropertyCell* cell, JSFunction* function, String* fname) { ASSERT(HasCustomCallGenerator(function)); SharedFunctionInfo* info = function->shared(); if (info->HasBuiltinFunctionId()) { BuiltinFunctionId id = info->builtin_function_id(); #define CALL_GENERATOR_CASE(name) \ if (id == k##name) { \ return CallStubCompiler::Compile##name##Call(object, \ holder, \ cell, \ function, \ fname); \ } CUSTOM_CALL_IC_GENERATORS(CALL_GENERATOR_CASE) #undef CALL_GENERATOR_CASE } CallOptimization optimization(function); ASSERT(optimization.is_simple_api_call()); return CompileFastApiCall(optimization, object, holder, cell, function, fname); } MaybeObject* CallStubCompiler::GetCode(PropertyType type, String* name) { int argc = arguments_.immediate(); Code::Flags flags = Code::ComputeMonomorphicFlags(kind_, type, extra_ic_state_, cache_holder_, in_loop_, argc); return GetCodeWithFlags(flags, name); } MaybeObject* CallStubCompiler::GetCode(JSFunction* function) { String* function_name = NULL; if (function->shared()->name()->IsString()) { function_name = String::cast(function->shared()->name()); } return GetCode(CONSTANT_FUNCTION, function_name); } MaybeObject* ConstructStubCompiler::GetCode() { Code::Flags flags = Code::ComputeFlags(Code::STUB); Object* result; { MaybeObject* maybe_result = GetCodeWithFlags(flags, "ConstructStub"); if (!maybe_result->ToObject(&result)) return maybe_result; } Code* code = Code::cast(result); USE(code); PROFILE(isolate(), CodeCreateEvent(Logger::STUB_TAG, code, "ConstructStub")); GDBJIT(AddCode(GDBJITInterface::STUB, "ConstructStub", Code::cast(code))); return result; } CallOptimization::CallOptimization(LookupResult* lookup) { if (!lookup->IsProperty() || !lookup->IsCacheable() || lookup->type() != CONSTANT_FUNCTION) { Initialize(NULL); } else { // We only optimize constant function calls. Initialize(lookup->GetConstantFunction()); } } CallOptimization::CallOptimization(JSFunction* function) { Initialize(function); } int CallOptimization::GetPrototypeDepthOfExpectedType(JSObject* object, JSObject* holder) const { ASSERT(is_simple_api_call_); if (expected_receiver_type_ == NULL) return 0; int depth = 0; while (object != holder) { if (object->IsInstanceOf(expected_receiver_type_)) return depth; object = JSObject::cast(object->GetPrototype()); ++depth; } if (holder->IsInstanceOf(expected_receiver_type_)) return depth; return kInvalidProtoDepth; } void CallOptimization::Initialize(JSFunction* function) { constant_function_ = NULL; is_simple_api_call_ = false; expected_receiver_type_ = NULL; api_call_info_ = NULL; if (function == NULL || !function->is_compiled()) return; constant_function_ = function; AnalyzePossibleApiFunction(function); } void CallOptimization::AnalyzePossibleApiFunction(JSFunction* function) { SharedFunctionInfo* sfi = function->shared(); if (!sfi->IsApiFunction()) return; FunctionTemplateInfo* info = sfi->get_api_func_data(); // Require a C++ callback. if (info->call_code()->IsUndefined()) return; api_call_info_ = CallHandlerInfo::cast(info->call_code()); // Accept signatures that either have no restrictions at all or // only have restrictions on the receiver. if (!info->signature()->IsUndefined()) { SignatureInfo* signature = SignatureInfo::cast(info->signature()); if (!signature->args()->IsUndefined()) return; if (!signature->receiver()->IsUndefined()) { expected_receiver_type_ = FunctionTemplateInfo::cast(signature->receiver()); } } is_simple_api_call_ = true; } } } // namespace v8::internal