# frozen_string_literal: true # require 'spec_helper' RSpec.describe Numo::Linalg do describe 'eig' do let(:m) { 5 } let(:mat_a) { rand_square_real_mat(m) } let(:mat_b) { rand_square_complex_mat(m) } it 'raises ShapeError given a rectangular matrix' do expect { described_class.eigh(Numo::DFloat.new(2, 4).rand) }.to raise_error(Numo::NArray::ShapeError) end it 'finds eigenvalues and eigenvectors for a square nonsymmetric matrix' do w, vl, vr = described_class.eig(mat_a, left: true, right: true) expect(vl).not_to be_nil expect(vr).not_to be_nil expect((mat_a.dot(vr) - vr.dot(w.diag)).abs.max).to be < ERR_TOL expect((vl.transpose.conj.dot(mat_a) - w.diag.dot(vl.transpose.conj)).abs.max).to be < ERR_TOL end it 'finds eigenvalues and right eigenvectors for a square nonsymmetric matrix' do w, vl, vr = described_class.eig(mat_a, left: false, right: true) expect(vl).to be_nil expect((mat_a.dot(vr) - vr.dot(w.diag)).abs.max).to be < ERR_TOL end it 'finds eigenvalues and left eigenvectors for a square nonsymmetric matrix' do w, vl, vr = described_class.eig(mat_a, left: true, right: false) expect((vl.transpose.conj.dot(mat_a) - w.diag.dot(vl.transpose.conj)).abs.max).to be < ERR_TOL end it 'finds eigenvalues and eigenvectors for a square complex nonsymmetric matrix' do w, vl, vr = described_class.eig(mat_b, left: true, right: true) expect(vl).not_to be_nil expect(vr).not_to be_nil expect((mat_b.dot(vr) - vr.dot(w.diag)).abs.max).to be < ERR_TOL expect((vl.transpose.conj.dot(mat_b) - w.diag.dot(vl.transpose.conj)).abs.max).to be < ERR_TOL end it 'finds eigenvalues and right eigenvectors for a square complex nonsymmetric matrix' do w, vl, vr = described_class.eig(mat_b, left: false, right: true) expect(vl).to be_nil expect((mat_b.dot(vr) - vr.dot(w.diag)).abs.max).to be < ERR_TOL end it 'finds eigenvalues and left eigenvectors for a square complex nonsymmetric matrix' do w, vl, vr = described_class.eig(mat_b, left: true, right: false) expect((vl.transpose.conj.dot(mat_b) - w.diag.dot(vl.transpose.conj)).abs.max).to be < ERR_TOL end end end